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Linear unsteady aerodynamic models are obtained for a NACA 0006 airfoil in a wind
tunnel experiment at Reynolds number 65,000. A family of system identification maneu-
vers, based on a canonical step-up, hold maneuver, are specifically designed to extract
relevant unsteady information from phase averaged wind tunnel measurements. Linear
models based on these maneuvers are constructed using OKID/ERA for the case of pitch-
ing about α0 = 0◦ and α0 = 10◦, as well as the case of pure plunge. It is shown that the
identified models are more accurate than Theodorsen’s model for all maneuvers, especially
those at larger base angle of attack.

Nomenclature

α = Angle-of-attack of airfoil
α0 = Base angle to linearize about
c = Chord length of airfoil

U∞ = Free-stream velocity
ρ = Fluid density
L = Lift force

CL = 2L/ρU2
∞S = Lift coefficient
S = Surface area of airfoil

CLα
= Lift coefficient slope in α

Hi = Markov parameters from impulse response
Re = cU∞/ν = Reynolds number
(Ar, Br, Cr) = Reduced order state-space realization of order r for fast dynamics

r = Order of reduced order model
x = State variable for fast dynamics

G(s) = Transfer function representation of fast dynamics

I. Introduction

The need for accurate, efficient aerodynamic models has been a key motivation in research efforts over the
past century. Aerodynamic models are necessary tools in the design of aircraft and to evaluate aeroelastic
and flight dynamic stability. Recent studies indicate that the enhanced performance in bio-locomotion1,2 is
due to utilization of unsteady aerodynamic mechanisms. These biological observations coupled with advances
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in small-scale manufacturing techniques and feedback control design have opened up new and interesting
problems in unsteady aerodynamic research.

There is a wide range of unsteady aerodynamic models in the literature. However, the classical unsteady
models of Wagner3 and Theodorsen4 provide a benchmark for the linear models that follow them. Wagner’s
model constructs the lift in response to arbitrary input motion by convolving the time derivative of the
motion with the analytically computed step response. Theodorsen developed an equivalent model in the
frequency domain using the same model assumptions of an incompressible, inviscid, planar wake. Although
Theodorsen’s model only applies to sinusoidal inputs, it was more suitable for the analysis of flutter instability
with the tools available at the time. However, it is possible with modern tools to construct a state space
realization based on Theodorsen’s model that is useful for time domain analysis.5 Even so, both models are
limited by the rigid assumptions that allow for them to be solved in closed form with analytic techiniques.

Linear indicial response models are a more general class of aerodynamic models, which may be con-
structed based on analytical, experimental, or numerical step response information. Wagner’s model is an
indicial response model based on an analytical step response. A fundamental limitation of indicial response
models is their formulation based on the convolution integral, which does not fit nicely into the modern
framework for feedback control design. Recently, a modeling procedure has been developed to construct low-
dimensional state-space models based on the indicial (step) response.6,7 The quasi-steady and added-mass
forces that dominate at low and high frequencies, respectively, are modeled using stability derivatives, and
the remaining fast dynamics are modeled using the eigensystem realization algorithm (ERA).8,9 It is possible
to use the Observer/Kalman filter identification (OKID) method10,11 to reconstruct the indicial response
from input/output data obtained from simulations, experiments, or flight tests using real maneuvers.

In this work, we demonstrate the utility of the modeling procedure outlined in Brunton and Rowley6,7 for
identifying aerodynamic models using measurements from a wind tunnel experiment. We develop a family
of system identification maneuvers for use with OKID/ERA that excite unsteady aerodynamics at a range
of relevant frequencies.

In section II we discuss the experiment, system identification maneuvers, and modeling procedure. Sec-
tion III are the results showing the maneuvers and models for pitching about α0 = 0◦ and α0 = 10◦ and for
pure plunge. Results include comparison with Theodorsen’s model.

II. Methods

A. Wind Tunnel Experiment

The following experimental data was collected in the Andrew Fejer Unsteady Flow Wind Tunnel at the
Illinois Institute of Technology. The wind tunnel test section is .6m× .6m× 3.5m.

The model is a NACA 0006 airfoil, shown in Figure 1, with a chord length of .246 m and span of .598 m.
The free stream velocity is 4.00 m/s, which results in a Reynolds number of approximately 65, 000 and a
convective time unit of .0615 seconds. In all pitching experiments the pitch point is x/c = .11, or 11% chord.

Forces and moments are measured using the 6−axis ATI Nano25 force transducer, and free stream velocity
is measured using a Pitot tube with a Validyne DP-103 pressure transducer. The model is actuated using two
Copley servo tubes connected to individual pushrods, allowing for a full range of pitch and heave motions.
The position of these pushrods is measured using linear potentiometers.

Because the force transducer moves with the body, forces are measured in the body-fixed frame of the
airfoil. Therefore, we rotate the normal (N) and parallel (P ) forces in the z− and x− directions into the lift
(L) and drag (D) forces relative to the free stream velocity according to the following:[

L

D

]
=

[
cos(α) − sin(α)
sin(α) cos(α)

][
N

P

]
(1)

The pushrods are connected to the airfoil and force balance via a platform with a hinge constraint. In
this way, it is possible to command an angle of attack α by varying the relative displacement of the two
pushrods, as seen in Figure 1. For the pitching experiments below, we hold the front pushrod fixed, and
vary the height y1 of the rear pushrod to vary α. The vertical displacement y1 for a given α may be solved
using the following relationship:

(l3 cos(α)− l1)2 + (−l3 sin(α)− y1)2 − l22 = 0 (2)
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Figure 1. (left) Image of NACA 0006 model in wind tunnel. (right) Schematic of hinge apparatus connecting
pushrods to platform.

where l1 = 2.1”, l2 = 1.25”, and l3 = 3”.
Finally, the inertia of the model, sting and pushrods introduces time lags, so the measured angle is not

exactly the same as the commanded angle. Additionally, the Copley servo tube controller has its own PID
dynamics. Figure 2 is a schematic of the signals, and Figure 5 shows this for a particular maneuver. Since we
are interested in the aerodynamic model, and not the transfer function for the actuator or dynamics of the
mechanical system, we consider the angle of attack as measured by the potentiometer as the model input.

Mechanical System
αcmnd αpot CLAerodynamics

our model

Actuator
αpos

Figure 2. Schematic of wind tunnel experiment.

B. Modeling Procedure

It has been shown previously that a model of the form in Eq. 3 is effective in capturing the unsteady
aerodynamic response across the full range of relative frequencies.6,7

d

dt

x
α

α̇

 =

Ar 0 0
0 0 1
0 0 0


x
α

α̇

+

Br

0
1

 α̈
(3)

CL =
[
Cr CLα

CLα̇

]x
α

α̇

+ CLα̈ α̈

Here, CLα
, CLα̇

, CLα̈
are the stability derivatives and Ar, Br, Cr is a reduced order model for the additional

fast dynamics, obtained using the eigensystem realization algorithm. At high frequencies there are large
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added-mass forces proportional to α̈, so the input to the system must be α̈ for the linear system in Eq. 3 to
be proper in a control theory sense.

Previously, this model was constructed starting from the aerodynamic step response, or indicial response
(IR), and was therefore viewed as a reduced order model of the linear indicial response model. However, the
indicial response is an impulse in α̇ (step in α). To use the eigensystem realization algorithm to identify fast
dynamics of the form in Eq. (3) requires an impulse in α̈, less the contribution of the stability derivatives.
It is ideal if we are able to identify this model using realistic input/output data from a simulation or an
experiment instead of an idealized step response.

Now, instead of starting from the indicial response, we use the Observer/Kalman filter identification
(OKID) method to identify the Markov parameters, or impulse response parameters for an impulse in α̈.
A generic set of Markov parameters for an impulse in α̈ is shown in Figure 3. The first Markov parameter
corresponds to the added-mass term CLα̈ and will become the feed-through term, or D matrix, in our state-
space model. Because an impulse in α̈ is a ramp in α, we see a linear increase in Hi, and the slope is the lift
slope CLα

Subtracting off CLα
α, the Markov parameters decay to a non-zero value corresponding to CLα̇

,
since an impulse in α̈ is a step in α̇. Finally, after subtracting off each stability derivative, the remaining
transient response is modeled using ERA.

CLα

CLα̇

CLα̈{
{

Hi from OKID
Hi − αCLα

Hi − αCLα
− CLα̇

Figure 3. Markov parameters output from OKID with (α̈, CL) as input/output pair (u, y).

It is important to use the form of the model in Eq 3 with α̈ as the input to the system. If one näıvely
applies the OKID/ERA method assuming the input is α̇ (so that the identified impulse response corresponds
to the indicial response) then the resulting model will not respect the high-frequency added-mass. Moreover,
if one considers the input of the system to be α̈, but does not subtract off the stability derivatives from the
Markov parameters, the resulting ERA system will be unstable. These issues are addressed in more detail
in the literature.7

C. System Identification Maneuvers

The system identification (ID) maneuver for these experiments was chosen with a number of criterion in
mind. Because the input to the model is α̈, we ultimately need a maneuver with rich α̈ content. Also, because
we are identifying various stability derivatives, we need the contribution from individual changes in α̈ to be
distinguishable in the measured lift force. Finally, because the experimental measurements have noise, we
require the system ID maneuver to be sufficiently aggressive so that the change in force is measureable in
response to the maneuver.

The maneuver is constructed as a pseudo-random sequence of ramp-up, hold and ramp-down, hold
maneuvers, related to the canonical maneuvers in Eldredge et al.12,13 The equations for u and u̇ for a single
pitch-up, hold are given in Eq. (4). In this case u = α.
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u(t) = A
G(t)

maxG(t)
, u̇(t) = A

tanh(a(t− t1))− tanh(a(t− t2))
maxG(t)

(4)

where

G(t) = log
[

cosh(a(t− t1))
cosh(a(t− t2))

· cosh(−at2)
cosh(−at1)

]
. (5)

The building block for our maneuver is shown in Figure 4.

u

u̇

ü

Time

0

A

t1 t2 t3

Figure 4. Pitch-up, hold maneuver.

The duration of the ramp τr = t2− t1 and hold τh = t3− t2 are bounded Gaussian white noise processes.
Similarly, the step amplitude A is sampled from a normal distribution, with the constraint that the maneuver
amplitude never exceeds ±10◦. A maneuver of this type is attractive for a number of reasons. First, the
signal α̈ consists of pseudo-randomly spaced pulses at the beginning and end of each ramp. The result is that
the large added-mass forces are similarly spaced pulses. Additionally, having a psuedo-random train of pulses
in α̈ is ideal for the OKID method. Finally, having large aggressive ramp-up and ramp-down maneuvers will
result in forces large enough to measure. The command and measured angles for a particular maneuver are
shown in Figure 5.

0 10 20 30 40 50 60 70 80 90
−10

−8

−6

−4

−2

0

2

4

6

8

10

Convective Times (s=tU/c)

A
ng

le
 (

de
gr

ee
s)

 

 
Commanded Angle
Measured Angle

Figure 5. Example system ID maneuver; Commanded angle is αpos, and measured angle is αpot.
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D. Phase Averaged Force Measurements

The force measurements are inherently noisy, and therefore we phase average over a number of cycles. The
top of Figure 6 shows the noisy force measurements, and the bottom shows the phase averaged force.

Phase averaged over 200 cycles

Figure 6. Phase averaged force measurement for 5 degree step-up, followed by 5 degree step-down.

Before phase averaging, we use a 6-th order Butterworth low-pass filter at 2500Hz. In addition, we coarsen
the data by averaging the measurements inside each interval [k∆t, (k+1)∆t), where ∆t = .1 convective time
unit, or .00615 seconds. Using this coarsened data as an input to the OKID method results in a discrete-time
model with time-step ∆t. Because the added-mass force appears as a feed-through term, it is possible to
convert this to a continuous time system without loss of accuracy at high frequencies. This step is also
important to ensure that the angular acceleration α̈, as computed by finite differencing, is not too noisy.

III. Results

The following results involve constructing and analyzing reduced order models based on the system ID
maneuvers discussed in Section IIC. For the case of pitching about α0 = 0◦ and α0 = 10◦, three pseudo-
random system identification maneuvers are each used to construct a reduced order model. These models
are compared in the frequency domain using Bode plots and in the time domain by how well they reproduce
the force measurement from the other identification maneuvers. For every maneuver, we collect force and
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position measurements for 100 identical instances of the maneuver and phase average. After phase averaging,
the measured force and angle of attack measurements are discretized with ∆t = .1 convective time unit, as
discussed in Section IID.

A. Pitching, α0 = 0◦

Figure 7 shows the measured angle of attack and lift coefficient for one of the pseudo-random test maneuvers,
Maneuver B. The black curve is the measured force, the red curve is our reduced order model, and the
green curve is Theodorsen’s model. Although Theodorsen’s model predicts the quasi-steady lift, it does not
adequately capture the large added-mass forces.
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Figure 7. Measured force compared with models (bottom) for pseudo-random maneuver B centered at α0 = 0◦

(top). A reduced order model with fast dynamics order r = 3 outperforms Theodorsen’s model.

This procedure is repeated with similar results for three pseudo-random maneuvers, A, B, and C, which
are seen in the top of Figure 8. It is possible to combine the measured response for each of the three
maneuvers and obtain a model based on the concatenated signal. This model is shown in the bottom of
Figure 8. Each of the maneuvers has amplitude roughly ±5◦.

It is important to note that the models obtained using each system ID maneuver accurately reproduce
the measured force for each of the other test maneuvers, as seen in Figure 9.

The Bode plots for each of the reduced order models based on the three system ID maneuvers, as well as
the concatenated maneuver, is shown in Figure 10. All three models have similar asymptotes, corresponding
to the low-frequency quasi-steady limit and high-frequency added-mass limit. In all of the models, there is a
prominent resonance at around 12 rad/s · c/U. In dimensional units, this corresponds to around 30Hz. It is
believed that this resonant peak is the result of dynamics in the mechanical system and is not aerodynamic
in nature. Some ringing can be seen in Figure 6 after the fast step-up and step-down maneuver.

Finally, the Markov parameters identified using the OKID method are shown in Figure 11. In contrast to
Figure 3, we notice that the added-mass forces due to CLα̈ are not all lumped into the first Markov parameter,
but are rather spread out over the first few parameters in an added-mass “bump”. This is responsible for
the “bump” in phase in the Bode plot around 5rad/s c/U. The correct modeling of this bump requires the
addition of fast dynamics, since it is not entirely governed by the CLα̈

term as is the case in theory and
DNS. Additionally, we see some ringing in the Markov parameters.
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Maneuver A Maneuver B Maneuver C

Figure 8. Response to combining all three system ID maneuvers at α0 = 0◦. Reduced order model with fast
dynamics of order r = 3 outperforms Theodorsen’s model.
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Figure 9. Performance of each reduced order model obtained on separate system ID maneuvers, applied to
maneuver B.
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Figure 10. Bode plots for the reduced order models obtained using each of the three system ID maneuvers,
and concatenated maneuver at base angle of attack α0 = 0◦.

0 1 2 3 4 5 6 7 8 9 10

0

0.02

0.04

0.06

0.08

0.1

Convective time (s=tU/c)

Li
ft 

C
oe

ffi
ci

en
t

 

 

Maneuver A
Maneuver B
Maneuver C
All Maneuvers

Figure 11. Markov parameters identified using OKID, for system ID maneuvers based around α0 = 0◦.

B. Pitching, α0 = 10◦

Here, we repeat the system identification maneuvers at a new base angle of α0 = 10◦. In these experiments,
the magnitude of the amplitude is ±10◦, which is twice as large as in the previous section. Because the
2π lift slope predicted by Theodorsen is not exact for this airfoil and Reynolds number, we subtract off the
steady-state error between Theodorsen’s predicted lift at 10◦ and the measured lift at 10◦.

Figure 12 shows the measured response for maneuver B, along with the model prediction. The agreement
of the model in Eq. (3) is not as close as in the α0 = 0◦ case, which is most likely due to nonlinear flow
effects that are not modeled. However, the model significantly outperforms Theodorsen’s model.
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Figure 12. Measured force compared with models (bottom) for pseudo-random maneuver B centered at
α0 = 10◦ (top). A reduced order model with fast dynamics order r = 3 outperforms Theodorsen’s model.
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Figure 13. Bode plots for the reduced order models obtained using each of the three system ID maneuvers,
and concatenated maneuver at base angle of attack α0 = 10◦.

The Theodorsen model has relatively poor quasi-steady agreement, which is due to the fact that the lift
slope decreases significantly for larger angles of attack. This is seen in the decreased slope in the Markov
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parameters in Figure 14 as well as in the low frequency asymptote in the Bode plot in Figure 13. Again, we
see a prominent resonant peak at around 30Hz.
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Figure 14. Markov parameters identified using OKID for maneuvers based around α0 = 10◦.

C. Comparison of Model at α0 = 0 and α0 = 10

Figure 15 shows the Bode plots for the models linearized at α0 = 0◦ and α0 = 10◦. We notice that the
model takes longer to reach steady state at the larger angle of attack, as illustrated by the convergence of
low frequency asymptotes at lower frequencies. This effect has been seen when comparing similar models
obtained in simulations at Reynolds number 100.
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Figure 15. Markov parameters identified using OKID.
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D. Model for Plunging

Figure 16 shows the model obtained for the case of pure plunge. The system ID maneuver is essentially the
same as in the pitching case, except both servo tube controllers are sent the same signal. Figure 17 shows
the frequency response for the pure plunge model. Again, there is a resonance at around 30Hz.
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Figure 16. Measured force and model prediction for plunge maneuver using reduced order model with fast
dynamics of order r = 3.
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Figure 17. Bode plot of reduced order model, Eq. (3), and Theodorsen’s model for plunge.
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IV. Conclusions

We have demonstrated an accurate and efficient modeling procedure for developing unsteady aerodynamic
models from wind tunnel measurements. To this end, we have developed a family of aggressive system
identification maneuvers that excited unsteady aerodynamic responses across a range of relevant frequencies.

In the case of pitching about zero angle of attack, α0 = 0◦, our reduced order model agrees well with the
measured response. In fact, the models obtained with three different maneuvers are very similar, and are
able to reconstruct the lift coefficient for each of the other maneuvers. Theodorsen’s model agrees well with
the quasi-steady forces, but does not capture the high frequency forces as accurately as the identified model.

The results for pitching about a non-zero angle of attack, α0 = 10◦, are similar. However, at this angle
of attack the flow is separated, and the agreement between our linear model and the measurements is not as
close, presumably due to nonlinear flow effects that are not modeled. In addition, the lift slope decreases for
larger angle of attack; this effect is well captured by our linear model, but is not taken into consideration in
Theodorsen’s model, resulting in poor quasi-steady agreement.

When comparing the models obtained at α0 = 0◦ and α0 = 10◦, we observe that the model takes
longer to equilibrate to steady state at larger angle of attack. This can be seen by noting that the low-
frequency asymptote converges for lower frequencies in the Bode plot. This effect has been seen when
comparing models obtained via simulations at Reynolds number 100, and indicates a complex conjugate pair
of eigenvalues approaching the imaginary axis towards a Hopf bifurcation, and subsequent coherent vortex
shedding. The agreement at this larger Reynolds number suggests that the flow is still dominated by large
coherent structures.

Finally, we note that in all of the models there is a significant “bump” in magnitude and phase followed
by a resonant peak at around 12 (rad/sec c/U), or roughly 30Hz. It is believed that this is due to oscillations
in the servo tube controllers as well as mechanical ringing in the system. It is interesting that the low order
model captures these additional effects, and this is an indication that these methods may be applied more
generally to aeroelastic modeling problems.
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