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We present an efficient and accurate method for long-time uncertainty propagation in 
dynamical systems. Uncertain initial conditions and parameters are both addressed. The 
method approximates the intermediate short-time flow maps by spectral polynomial bases, 
as in the generalized polynomial chaos (gPC) method, and uses flow map composition 
to construct the long-time flow map. In contrast to the gPC method, this approach has 
spectral error convergence for both short and long integration times.
The short-time flow map is characterized by small stretching and folding of the associated 
trajectories and hence can be well represented by a relatively low-degree basis. The 
composition of these low-degree polynomial bases then accurately describes the uncer-
tainty behavior for long integration times. The key to the method is that the degree of 
the resulting polynomial approximation increases exponentially in the number of time 
intervals, while the number of polynomial coefficients either remains constant (for an 
autonomous system) or increases linearly in the number of time intervals (for a non-
autonomous system). The findings are illustrated on several numerical examples including 
a nonlinear ordinary differential equation (ODE) with an uncertain initial condition, a linear 
ODE with an uncertain model parameter, and a two-dimensional, non-autonomous double 
gyre flow.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Uncertainty is an inherent feature in many complex systems ranging from simulations and experiments to natural sys-
tems such as the climate. There are a number of ways in which uncertainty enters a physical problem, including initial 
conditions, boundary conditions, model structure, and parameters of the model. We often describe these uncertainties sta-
tistically (e.g., mean, variance, etc.), and the goal is to quantify the statistical effects of these uncertainties on the evolution 
of the system at some time in the future.

In this work, we concentrate on uncertainty in initial conditions and parameters of a dynamical system, which may 
describe a physical process or the advection of particles (e.g., contaminates, chemicals, etc.) through the induced velocity 
field of a PDE. In particular, we focus on systems that can be represented by stochastic ordinary differential equations (ODEs) 
of the form:
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Fig. 1. Propagation of initially uniformly distributed particles through the double gyre flow: (a) initial distribution at t = 0, (b) distribution at t = 2, and (c) 
distribution at t = 20. See Section 5.3 for governing equations (A = 0.1, ω = 2π/10, ε = 0.25).

dx(t; Z)

dt
= F (t, x; Z), (1)

where x ∈ R
n is the state, Z ∈ R

d is a random vector representing uncertain parameters, and F : R × R
n × R

d → R
n is a 

smooth function. F need only be Lipschitz continuous in x for existence and uniqueness of solutions; however, F is often 
twice continuously differentiable, as is the case when F is a velocity field that is a solution of the Navier–Stokes equations. 
Given an initial condition x0 (possibly uncertain as well), we seek to obtain the solution x(t; Z) as a function of time and 
the uncertain variables Z .

Understanding how uncertainty propagates through a dynamical system is an important engineering problem, and it 
is at the focus of significant current research efforts. However, propagating a probability density function (PDF) through 
a long-time, nonlinear dynamical system is a challenging task due to the stretching and folding of associated trajectories. 
Even simple fluid velocity fields may give rise to extremely complicated, chaotic particle trajectories in the induced velocity 
field [1]. Fig. 1 illustrates the propagation of a uniform distribution of particles through the (deterministic) dynamical system 
of a so-called double gyre. For short-time integration, the distribution is still well approximated by a uniform distribution; 
however, for longer integration time, the distribution becomes stretched and folded by the nonlinear dynamics. We observe 
that the mean and variance are no longer sufficient to describe the long-time density. The main idea explored in this paper 
is a simple one: we represent highly nonlinear deformations (as in Fig. 1(c)) using the composition of short-time flow 
maps, for which the deformation is not too great, and relatively easy to approximate (as in Fig. 1(b)). A popular approach 
to obtain statistical information is Monte Carlo simulation: sample known distributions of the uncertain parameters to 
obtain statistics or density estimates. However, accurate estimates often imply large sample sizes and each sample requires 
a solution of the dynamical system. This makes Monte Carlo methods computationally expensive. An alternative method is 
to employ spectral expansions to describe the dependence on the random variables. The method of polynomial chaos (PC) 
was introduced by Wiener [2] and used Hermite polynomials to expand the solution involving Gaussian random processes. 
The spectral expansion in stochastic random variables was pioneered by Ghanem and Spanos [3] in the context of finite 
elements for solid mechanics. Xiu and Karniadakis [4] later pointed out that the PC approach can be generalized to include 
non-Gaussian processes, resulting in generalized polynomial chaos (gPC).

Generalized polynomial chaos (gPC) is a method for solving stochastic differential equations, such as (1), based on 
Galerkin projections with an appropriately selected basis [4]. The so-called chaos basis is selected from the Askey scheme 
of orthogonal polynomials such that the weighting function is the same as the PDF of the associated random variable. This 
choice results in exponential convergence of the solution for relatively short integration times and also in cases where the 
statistics are constrained [4–7]. However, in general, gPC has nonuniform convergence when there is a strong nonlinear 
dependence on random parameters. Hence gPC tends to break down for long-time integration since nonlinearities prevail.

A possible solution to address the nonuniform convergence of the gPC method is to adjust the degree of the chaos 
expansion as the PDF changes in time. In [8], a multi-element polynomial chaos method (ME-gPC) was developed, which 
adaptively decomposes the space of random inputs into multiple elements and subsequently employs polynomial chaos 
expansions at element level. Similar techniques have also been employed by [9,10]. Another solution, coined time-dependent 
gPC (TD-gPC), keeps a global expansion which is adapted in time [11]. The main idea of TD-gPC is to determine new, 
optimal polynomials for the chaos expansion at a number of discrete instants in time. These new polynomials are based on 
the stochastic properties of the solution at the particular time level. In [12], a hybrid approach is proposed which combines 
ME-gPC and TD-gPC.

1.1. Our approach — generalized polynomial chaos and flow map composition

We propose an alternative method to deal with the long-time integration of probability densities, which are poorly 
represented by gPC. The method approximates the short-time flow map by a spectral basis as in gPC and uses flow map 
composition to construct the long-time flow map.

Distributions undergo relatively modest deformation during short-time advection through the dynamical system, and so 
a short-time flow map may be efficiently represented with a low-degree polynomial basis. These short-time maps are then 
composed via spectral interpolation to obtain the long-time flow map. Flow map composition has been investigated in the 
autonomous [13] and non-autonomous cases [14]. It was demonstrated that the flow map composition has a number of 
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favorable properties, which have been leveraged to accurately and efficiently compute time-series of finite-time Lyapunov 
exponent (FTLE) fields [14].

As time increases, so do the number of flow map compositions, which results in an exponentially increasing polynomial 
degree, but with relatively low-degree polynomials for each of the local short-time flow maps. The short-time flow maps are 
approximated over a large domain of interest so that after one up-front computation of each flow map (a small number of 
collocation points are advected, similar to Monte Carlo) the propagation of PDFs through the system becomes a simple and 
inexpensive operation. In a sense, the low-degree polynomials comprise a reduced order model of the individual short-time 
flow maps. These maps may then be leveraged to efficiently propagate any PDF through the system with minimal additional 
cost.

This method has a number of advantages. First, accurate long-time integration of PDFs is achieved because the degree of 
the resulting polynomial is exponential in the number of compositions (time steps). However, the number of polynomial co-
efficients needed to represent the composition increases only linearly in the number of compositions (for a non-autonomous 
system), or remains constant (for an autonomous system). The resulting expansion is thus quite efficient. After the one-time 
up-front cost of computing these approximate short-time flow maps, any PDF may be propagated through the system. There 
is an additional benefit of having the approximate flow map for use with other dynamical systems methods, such as finite-
time Lyapunov exponents (FTLEs) and the Perron–Frobenius operator [15]. Finally, this method does not require significant 
overhaul of a computational code that integrates the original ODE. In contrast, these flow-map methods are built from in-
dividual trajectories obtained through a standard simulation. As in the case of computing FTLEs, pre-computing short-time 
flow maps allows us to propagate uncertainty at neighboring times without significant overlap in the computation.

Although there are many positive features of the proposed method, there are certain drawbacks that should be clearly 
stated. The computational cost for a non-autonomous system may be significant, especially if we are only interested in 
propagating a single PDF through the system. However, in the case when significant stretching occurs, gPC and Monte Carlo 
will in general be more expensive, even for a single PDF. We refer to Section 6.3 for a comparison of the computational 
costs of these methods. In addition, the method relies on the existence of slow manifolds or attractors on which the 
dynamics are restricted, or a large enough computational domain so that composition may be performed. Unlike gPC, 
the mean and the variance do not appear as polynomial coefficients in our framework, but must be approximated by 
a subsequent (significantly cheaper) Monte Carlo sampling. However, for long-time integration higher order statistics are 
generally necessary anyway [7].

In general, this method and gPC both suffer from the so-called “curse of dimensionality,” whereby the number of poly-
nomial basis functions and collocation points becomes prohibitively large for even a moderately high-dimensional uncertain 
variables. Therefore, we view this method as best applying to physical vector fields of two and three dimensions, such as 
those induced by fluid velocity fields or gravitational potentials in astrophysics. In addition, these methods assume a global 
basis so that we are limited to simply connected global domains.

2. Problem formulation

2.1. Governing equation and flow map

Let D ⊆R
n be compact and F :R ×D×R

d →R
n be a smooth vector field. We consider the ordinary differential equation 

(ODE)

dx(t; Z)

dt
= F (t, x; Z), (2)

where Z = (z1, . . . , zd) are parameters of interest. In the case where F (t, x; Z) = F (x; Z), the ODE is called autonomous, 
otherwise it is called time-dependent or non-autonomous. A specific solution or trajectory satisfies the ODE and a given 
initial condition

x(t0; Z) = x0(Z). (3)

We emphasize that F (t, x; Z) and x0(Z) are functions of different subsets of Z : the first subset contains uncertain parame-
ters in the ODE, and the second one uncertain initial conditions.

Let ϕt f
t0

: D × R
d → D be the flow map, so that ϕ

t f
t0

(x0; Z) is a solution to the ODE (2) with initial condition x(t0; Z) =
x0(Z) from initial time t0 to final time t f . The flow map satisfies

dϕt
t0

(x0; Z)

dt

∣∣∣∣
t=t f

= F (t f , x0; Z), ∀x0 ∈ D, t f ∈ R. (4)

Equivalently, we can write the flow map (particle position) according to the integral equation:

ϕ
t f
t0

(x0; Z) = x(t0; Z) +
t f∫

F
(
t, x(t; Z); Z

)
dt. (5)
t0
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We note that ϕt f
t0

satisfies the following properties:

ϕ
t0
t0

= id, (6a)

ϕ
t2
t0

= ϕ
t2
t1

◦ ϕ
t1
t0

. (6b)

The latter property shows that a “long-time” flow map can be composed using “short-time” flow maps.
In the special case of an autonomous dynamical system, we use the notation ϕ�t to represent the flow map of duration 

�t (equivalent to ϕt0+�t
t0

, ∀t0 ∈R).

2.2. Probabilistic framework

As in [16], we will adopt a probabilistic framework and model the parameters of interest Z = (z1, . . . , zd) as a vector of 
d independent random variables in a properly defined probability space (Ω, F , P). Here, Ω is the sample space, which is 
equipped with a σ -algebra F and probability measure P . We will only consider continuous random variables.

Let ρi : Γi → R
+ be the probability density function (PDF) of the random variable zi(ω), ω ∈ Ω , whose image is Γi =

zi(Ω) ⊆ R for i = 1, . . . , d. Then

ρ(Z) =
d∏

i=1

ρi(zi), (7)

is the joint probability density of the random vector Z = (z1, . . . , zd) with the support

Γ =
d∏

i=1

Γi ⊆R
d. (8)

The random space Γ is d-dimensional, and the governing equation (2) should be valid for all Z ∈ Γ .

3. Generalized polynomial chaos

3.1. Univariate expansion

Let us consider a solution x(t; Z) of the initial value problem (2), (3) which depends on a single random variable Z . The 
PDF of Z is denoted ρ(Z) and has support Γ ⊆ R. The generalized polynomial chaos (gPC) expansion approximates the 
solution x via orthogonal polynomials of the random variable Z . The key observation in gPC is that the optimal expansion 
polynomials are orthogonal with respect to the PDF as weighting function. More precisely, we select a set of orthogonal 
polynomials {ψi(Z)}, satisfying

〈ψi,ψ j〉 =
∫
Γ

ψi(Z)ψ j(Z)ρ(Z)dZ = hiδi j, (9)

where δi j is the Kronecker delta function and hi is a normalization factor:

hi =
∫
Γ

ρ(Z)ψ2
i (Z)dZ .

(In the following we will assume that the basis functions are normalized, i.e. hi = 1.) Thus, if Z is a uniformly distributed 
variable in [−1, 1], its PDF is a constant and (9) defines the Legendre polynomials. For a normally distributed random 
variable, the Gaussian PDF defines the Hermite polynomials. For other cases and extensions we refer to [4,11].

The degree-P gPC expansion of x in Z is obtained by projection onto the selected basis

Px(t; Z) =
P∑

i=0

x̂e
i (t)ψi(Z), (10)

where P is the projector onto span{ψi(Z)}P
i=0, and x̂e

i are the exact expansion coefficients defined by

x̂e
i (t) = 〈x,ψi〉 =

∫
Γ

x(t; Z)ψi(Z)ρ(Z)dZ , i = 0, . . . , P . (11)

Note that the exact expansion coefficients x̂e
i rely on the exact solution x(t; Z).

The convergence of gPC expansions like (10) has been recently studied by [17]. In particular, conditions are presented 
for mean-square convergence.
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3.2. Multivariate expansion

Here, we are interested in the more general situation of a multidimensional probability space, i.e., Z = (z1, . . . , zd), d > 1
and ρ(Z) = ∏d

i=1 ρi(zi), where zi ∈ Γi . Therefore, we define multivariate basis functions for the gPC expansion of the solu-
tion x(t; Z). The multivariate basis functions are constructed as products of (univariate) orthogonal polynomials. In particular, 
given d families {ψ(k)

ik
(zk)}d

k=1 of univariate polynomials,1 then the d-variate polynomial basis functions are defined as

Ψi(Z) =
d∏

k=1

ψ
(k)
ik

(zk), ik ≤ Pk; Z ∈ Γ, (12)

where i = (i1, . . . , id) is a multi-index with |i| = i1 + · · · + id . Note that the maximum polynomial degree of a basis function 
of family k is Pk , and consequently the maximum degree of all multivariate polynomials is Pmax = ∑d

k=1 Pk . In gPC, usually, 
all expansion polynomials up to a maximum degree P are included, i.e., |i| ≤ P . The number of basis functions Ψi is thus

N =
(

d + P

d

)
. (13)

The multivariate basis polynomials satisfy the orthogonality relation

〈Ψi,Ψ j〉 =
∫
Γ

Ψi(Z)Ψ j(Z)ρ(Z)dZ = �i j, (14)

where �i j = ∏d
k=1 δik jk . As in (10), the degree-P multivariate gPC expansion of x in Z is obtained by projection onto the 

appropriate basis

Px(t; Z) =
P∑

|i|=0

x̂e
i (t)Ψi(Z), (15)

but now i is a multi-index, P is the projector onto span{Ψi(Z)}P
|i|=0, and x̂e

i are the exact expansion coefficients defined by

x̂e
i (t) = 〈x,Ψi〉 =

∫
Γ

x(t; Z)Ψi(Z)ρ(Z)dZ , ∀|i| = 0, . . . , P . (16)

Note that when d = 1, we obtain a univariate gPC expansion as described in Section 3.1.

3.3. Non-intrusive techniques

In practice, we cannot employ (11) or (16) to find the expansion coefficients since it requires knowledge of the exact
solution. However, we can compute approximations of those integrals using numerical quadrature methods. This approach 
is commonly referred to as non-intrusive since it does not require modification of the numerical solver; it requires only 
sampling of the deterministic solution at the quadrature nodes. When the number of random variables d is small, a multidi-
mensional quadrature can be applied, for instance using tensor products of one-dimensional quadrature rules. Sparse grids 
become advantageous as the number of random variables increases. In high dimensions, Monte Carlo sampling is preferred 
since the convergence rate is independent of the number of random variables.

Let the approximate gPC expansion be given by

x̃(t; Z) =
P∑

|i|=0

x̂i(t)Ψi(Z). (17)

Then the coefficients are determined as

x̂i(t) =
K∑

k=1

x
(
t; Z (k)

)
Ψi

(
Z (k)

)
α(k), ∀|i| = 0, . . . , P , (18)

where {Z (k), α(k)} are a set of quadrature nodes and weights, and x(t; Z (k)) is the deterministic solution of (2) with fixed 
Z (k) . A Gaussian quadrature rule yields an exact result for polynomials of degree 2K − 1 or less by a suitable choice of the 
nodes and weights. This quadrature rule is chosen such that the approximate gPC expansion interpolates the solution at the 
nodes, and hence is a (pseudo-spectral) collocation method. For a Monte Carlo method the nodes over the domain Γ are 
randomly drawn from the probability distribution ρ , and the weights are 1/K .

1 Superscript (k) indicates the type of polynomial basis, and subscript ik the degree of the corresponding basis function.
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3.4. Statistical information

Statistical information can be readily obtained when a gPC approximation (17) is available. The approximate mean is 
obtained as

E[x] ≈ μ̃(t) = E[x̃] =
∫
Γ

P∑
|i|=0

x̂i(t)Ψi(Z)ρ(Z)dZ = 〈x̃,Ψ0〉 = x̂0(t), (19)

where we used orthogonality of the basis functions. The variance is approximated by

E
[
(x − μ)2] ≈ σ̃ (t) = E

[
(x̃ − μ̃)2] =

P∑
|i|=1

x̂2
i (t). (20)

4. Short-time flow map approximation and composition

Consider the flow map (5). We are interested in approximating the flow map for relatively short integration times, 
i.e. �t = t f − t0 is small. This is motivated by the fact that short-time flow maps are characterized by small stretching and 
folding of the associated trajectories, and hence can be represented by relatively low-order bases. Using the property (6b), 
we compose these low-dimensional bases to obtain the flow map for long integration times.

4.1. Short-time flow map approximation

Similarly to the approximate gPC expansion (17), we approximate the short-time flow map ϕt0+�t
t0

(x; Z) by a spectral 
expansion. The dependencies on both x and Z are described by orthogonal polynomials, i.e.

ϕ
t0+�t
t0

(x; Z) ≈ ϕ̃
t0+�t
t0

(x; Z) =
Q∑

|i|=0

P∑
| j|=0

ϕ̂
t0+�t
t0,i j Θi(x)Ψ j(Z), (21)

where Ψ j(Z) is defined by (12) and likewise

Θi(x) =
n∏

l=1

θ
(l)
il

(xl), il ≤ Q l; x = (x1, . . . , xn) ∈ D ⊆ R
n, (22)

where θ(l)
il

are univariate orthonormal polynomials, with Q = ∑n
k=1 Q k . We note that polynomial order of the multivari-

ate basis function may differ in each coordinate direction xl as denoted by the use of Q l . The expansion coefficients are 
computed using a collocation method, as discussed in Section 3.3. Thus, the flow map approximation is obtained in two 
steps:

1. The deterministic solution is computed at the quadrature nodes, i.e., at particular values of Z and x;
2. The expansion coefficients are determined by numerical quadrature as in (18).

The approximate expansion is then given by (21).

4.2. Flow map composition

We use flow map composition to compute long-time flow maps ϕt0+T
t0

with duration T by composition of a number of 
intermediate short-time flow maps ϕt0+�t

t0
. For t0 = 0 and T = M�t , we may use equally spaced intermediate short-time 

maps with duration �t:

ϕM�t
0 = ϕM�t

(M−1)�t ◦ · · · ◦ ϕ2�t
�t ◦ ϕ�t

0 . (23)

In practice, we know the flow map only on some discrete set of points, X0 ⊂ D, so we must use an interpolation scheme 
to go between the various flow maps. In [14] linear interpolation was used on a high-resolution grid of particles. This work 
differs from linear interpolation by introducing a spectral approximation of the short-time flow map, given by (21), which 
requires propagation of a comparatively small number of collocation points. Then, neighboring flow maps are composed by 
spectral interpolation. This procedure is straightforward since the short-time flow maps are polynomial vector functions.

Since memory and speed are both important computational issues, one wishes to propagate as few particles as possible. 
The method of flow map composition was originally used to speed up the computation of a time-series of flow maps 
by re-using intermediate flow maps to eliminate redundant particle integrations. For example, ϕt0+M�t

t0
and ϕt0+(M+1)�t

t0+�t
have a significant overlap. It is observed that the short-time flow map, does not stretch the flow significantly and may 
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be accurately represented by a relatively small number of basis polynomials, as above. Moreover, favorable error properties 
allow us to compose many such maps and obtain an accurate description of highly nonlinear, stretched flows over the entire 
domain. Therefore, it is possible to use many fewer points when representing each ϕ(k+1)�t

k�t , k = 0, . . . , M −1, compared with 
ϕM�t

0 . In some sense, the spectral approximations are reduced-order models for each short-time flow map. An immediate 
advantage is that we are able to rapidly pass any distribution through the flow map, and it is possible to efficiently compute 
the long-time flow map at neighboring times without redundant computation.

4.3. Composition on various computational domains

All of the example dynamical systems in this work are defined on compact domains D, so that ϕt
0(D) ⊆ D for all t . There 

are several computational issues that arise when applying flow map composition on non-compact domains. In particular, it 
may be difficult or impossible to define a domain of interest Di so that ϕt

0(Di) ⊆Di . Instead, we define a larger domain D′
so that Di ⊆D′ and, ϕt

0(Di) ⊆D′ for time t of interest.
This generally involves defining a domain of interest and a larger containing domain where short-time flow maps are 

computed. Then, the smaller domain of interest is passed through each short-time map using interpolation, without the 
need for extrapolation.

This procedure has been successfully applied to two-dimensional convective flows, such as the fluid flow past a pitching 
airfoil [14]. In this case, a larger computational domain is used to ensure that particles starting on a smaller domain of 
interest remain in the larger domain for the entire long-time flow map. As is often the case in free convective flows, the 
fluid flow may be uninteresting or unquantifiable sufficiently far upstream or downstream of the domain of interest. In this 
case, it is possible to apply an analytic outflow condition, significantly reducing the necessary size of the outer domain.

4.4. Stability and error analysis

Stability and error analyses are notoriously challenging for the long-time behavior of trajectories in a chaotic dynamical 
system. Long-time stretching and folding of trajectories through a chaotic dynamical system is often confounded by the 
exponential growth of errors. Traditional local error analyses, such as those used to assess the accuracy scaling of integration 
schemes, may yield misleading or counterintuitive results. The exponential growth of even the smallest errors, on the order 
of machine precision, will eventually grow to an order determined by the largest scale of the chaotic attractor.

Fortunately, the finite-time exponential separation observed in chaotic systems is mediated by regions of large finite-time 
Lyapunov exponent (FTLE), which often occur as ridges. The FTLE field represents a finite-time sensitive of trajectories to 
initial disturbances or errors. It was shown in [14] that flow map composition benefits from the favorable property that 
particles flee from ridges of the FTLE field in forward time (which is in fact a property of the FTLE field), and therefore, they 
suffer less from the dominant exponential separation and error sensitivity.

It is extremely difficult to rigorously quantify the benefit of the aforementioned property in an error analysis of a time-
varying system, since the unsteady nature of the chaotic attractor remains a challenging open problem in dynamical systems. 
It is our understanding that current and ongoing research on Lagrangian coherent structures and the FTLE field are at the 
frontier in answering these challenging questions. However, the phase flow method of Ying and Candès [13] (autonomous 
version of flow map composition) includes a rigorous error analysis for the autonomous flow map composition. This work 
provides an upper bound for the error, but it does not consider the chaotic structure of stretching within the flow field, 
which may result in significantly tighter error bounds. In the autonomous case, additional computational savings may be 
achieved by composing short-time flow maps in powers of two.

A detailed error analysis of the non-autonomous flow map composition in chaotically mixing vector fields is the subject 
of ongoing work. In particular, building on the error results in [13] to include the particle shedding properties of FTLE ridges 
would be an important theoretical step in the development of computational methods for chaotic advection. However, this 
is beyond the scope of this work.

5. Results and discussion

We present three examples that illustrate the benefits of using spectral approximations of short-time flow maps and 
composing them for long-time uncertainty propagation. The first example is a nonlinear autonomous ordinary differential 
equation (ODE), which highlights the connection between the flow map and the gPC framework in case of an uncertain 
initial condition. The flow map composition is shown to be accurate and efficient although the solution evolves into the 
discontinuous Heaviside function and is not well captured by traditional polynomial expansions.Our second example is a 
simple linear autonomous ODE with an uncertain model parameter. It highlights the challenges that arise when using gPC 
for long-time integration, and it elucidates the inner-workings of our approach. The last example is the so-called double 
gyre flow [18,19], which is defined by a nonlinear time-dependent ODE system. This example is more involved and we 
illustrate how to deal with time dependency. In addition, we exploit the fact that we have low-dimensional expansions of 
the short-time flow maps to efficiently propagate multiple probability density functions through the flow for long times. 
Computational cost is addressed at the end of this section.
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Fig. 2. Nonlinear ODE — Flow map (25) for t = 0.2 (a), t = 3.0 (b), and t = 6.0 (c).

5.1. Nonlinear autonomous ordinary differential equation (nonlinear ODE)

In this first example, we consider a nonlinear autonomous ODE with an uncertain initial condition. We start out with 
the deterministic equation and consider the flow map over a range of initial conditions. We then model this range of initial 
conditions with an uncertain variable Z and illustrate how polynomial chaos is related to the flow map.

Let us consider the ODE

dx(t)

dt
= x(t)

(
1 − x2(t)

)
. (24)

This ODE has three fixed points: two stable ones at x = ±1, and an unstable one at x = 0. We are interested in all solution 
curves that start on the interval [−1, 1]; i.e., we wish to solve (24) for all initial conditions x(0) = x0, x0 ∈ [−1, 1]. This 
family of curves is given by the flow map ϕt

0 : [−1, 1] → [−1, 1], and satisfies

dϕt(x)

dt
= ϕt(x)

(
1 − (

ϕt
0(x)

)2)
, (25)

for all x ∈ [−1, 1] and t ≥ 0. The flow map is shown in Fig. 2 for t = 0.2, 3.0, 6.0. Note that, for long integration times, the 
flow map converges to a step function.

5.1.1. Generalized polynomial chaos interpretation
Alternatively, we can interpret the flow map of (24) in the polynomial chaos framework. As before, consider the initial 

value problem

dx(t)

dt
= x(t)

(
1 − x2(t)

)
, x(0) = Z , (26)

but now the initial condition is a uniformly distributed random variable between −1 and 1, which we denote Z ∼ U(−1, 1). 
More precisely, we have the following formulation:

dx(t, Z)

dt
= x(t, Z)

(
1 − x2(t, Z)

)
, x(0) = Z ∼ U(−1,1). (27)

Thus, argument Z of the solution x(t, Z) plays the role of argument x of the flow map ϕt
0(x) (compare with (25)). The 

appropriate gPC basis is given by the Legendre polynomials, as described in Section 3.1. Hence, we express the degree-P
approximation of the solution as

x̃(t, Z) =
P∑

i=0

x̂i(t)Li(Z), (28)

where Li are Legendre polynomials and x̂i the corresponding coefficients. The coefficients are computed using a colloca-
tion method, as described in Section 3.3. For propagation of the collocation points, in this and the following subsections, 
we use Matlab’s fourth-order Runge–Kutta integrator with a relative tolerance of 10−13 and absolute tolerance of 10−15. 
In Figs. 3(a, b), gPC approximations with P = 20 are shown for t = 3.0 and t = 6.0. As time progresses, the exact solu-
tion approaches a step function and becomes increasingly difficult to approximate. In Fig. 3(c), we increase the polynomial 
degree up to P = 140. This reduces the error, but the approximation still exhibits an undesired Gibbs phenomenon. The 
convergence of the relative error at t = 6.00 is shown in Fig. 5(a); it can be observed that exponential convergence is not 
achieved.

5.1.2. Generalized polynomial chaos and flow map composition
Analogous to the gPC expansion (28), we approximate the flow map (25) for a short time �t by a Legendre expansion. 

Thus, we write the approximate short-time flow map as
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Fig. 3. Nonlinear ODE — Exact solutions and P -th degree gPC approximations of (27) for t = 3.0 (a), and t = 6.0 (b, c). Note that in (c) the 140th degree 
approximation exhibits ringing (Gibbs phenomena).

Fig. 4. Nonlinear ODE — Exact flow maps and their approximations. In (a) the short-time flow map for �t = 0.2, see (29), is shown. In (b, c) the approximate 
flow maps are obtained by composition, as in (30), for T = 3 and T = 6.0 respectively.

Fig. 5. Nonlinear ODE — L2 norm of the relative error for increasing order P at t = 6.0 for: (a) the gPC expansion (28), and (b) the flow map obtained by 
composition of the short-time flow map (30). Note the spectral convergence of flow map composition in (b).

ϕ̃�t(x) =
P∑

i=0

(
ϕ̂�t)

i Li(x). (29)

The approximate long-time flow map at T = M�t can now be obtained by composing this short-time flow map with itself 
M times:

ϕ̃T (x) = (
ϕ̃�t ◦ ϕ̃�t ◦ · · · ◦ ϕ̃�t)︸ ︷︷ ︸

M times

(x). (30)

The system is autonomous, so we use the notation ϕ�t and drop the dependence on initial time t0. Note that the degree of 
this long-time flow map is P M ; at each time step �t the degree increases by a factor P . Hence, an increase of the integration 
time will automatically result in an increasing polynomial degree. In Fig. 4(a), the degree-3 short-time flow map approximation 
for �t = 0.2 is shown. In Figs. 4(b, c), this short-time flow map is composed to get the flow map at t = 15�t = 3.0 and 
t = 30�t = 6.0 respectively. We observe that the composition approach outperforms the gPC method (compare with Fig. 3). 
Furthermore, we obtain exponential convergence of the error at all times, as shown in Fig. 5. In particular, in Fig. 5(b) it can 
be seen that the relative error at t = 6.0 decays exponentially for increasing order P of the short-time flow map expansion, 
whereas the gPC expansion in Fig. 5(a) does not.
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5.2. Linear autonomous ordinary differential equation with an uncertain model coefficient (uncertain linear ODE)

In our second example, we consider a linear ODE with an uncertain parameter; this example has been used to illustrate 
the gPC method and its convergence breakdown for long term integration [4,11]. The model is given by a linear autonomous 
ODE

dx

dt
= −kx, x(0) = 1, (31)

where the coefficient k is uniformly distributed between 0 and 1, i.e., k ∼ U(0, 1). Defining k = 1
2 (1 + Z), where

Z ∼ U(−1, 1), we write

dx(t, Z)

dt
= −k(Z)x(t, Z), x(0) = 1. (32)

The stochastic solution to this initial value problem is

x(t, Z) = e−k(Z)t . (33)

The flow map is given by

ϕt
0(x; Z) = e−k(Z)t x. (34)

Note that the flow map is linear in x (linear ODE) and nonlinear in the random coefficient k. The mean and the variance of 
the stochastic solution are known exactly:

μ(t) = 1 − e−t

t
, (35a)

σ(t) = 1 − e−2t

2t
−

(
1 − et

t

)2

. (35b)

The time-dependent PDF of the stochastic solution is

fx(t, x) = 1

xt
, e−t x0 ≤ x ≤ x0. (36)

For future reference we define the following relative errors for the mean (expected value) and variance:

εmean(t) =
∣∣∣∣ μ̃(t) − μ(t)

μ(t)

∣∣∣∣, εvar(t) =
∣∣∣∣ σ̃ (t) − σ(t)

σ (t)

∣∣∣∣, (37)

where μ and σ denote exact values, and μ̃, σ̃ denote approximate values of the mean and variance respectively. As in 
the previous example, for all numerical integration we use Matlab’s fourth-order Runge–Kutta integrator with a relative 
tolerance of 10−13 and absolute tolerance of 10−15.

5.2.1. Generalized polynomial chaos
Since the coefficient k is uniformly distributed, we approximate the solution of (32) as an expansion in Legendre poly-

nomials:

x̃(t, Z) =
P∑

i=0

x̂i(t) Li(Z), (38)

where the coefficients x̂i are again computed using collocation.
The approximate mean and variance are easily obtained by exploiting orthogonality of the gPC basis functions (see 

Section 3.4):

μ̃(t) = x̂0(t), σ̃ (t) =
P∑

i=1

x̂2
i (t). (39)

In Fig. 6 the mean and variance of the 4th-degree gPC expansion are compared with the exact values given by (35). 
The gPC solution agrees only for short integration times. In particular, the variance of the gPC solution diverges after about 
15 time units. This observation is highlighted in Fig. 7, which shows the relative mean and variance errors given by (37). 
For long integration times the error quickly grows to order O(1). This effect was summarized nicely in [11]: “This poor 
behavior can be somewhat alleviated by increasing the expansion order. However, for a fixed polynomial degree P , the 
error levels will become definitely unacceptable after some time. Hence, continuing to increase the end-time will require 
an ever-increasing polynomial degree, which is not feasible in practice.” In the next section, we will employ flow map 
composition to effectively increase the polynomial degree.
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Fig. 6. Uncertain linear ODE — Evolution of the mean (a) and variance (b). In each subfigure the exact values are compared with the results of the 4th 
degree gPC expansion, and Monte Carlo sampling of the 4th degree gPC-FMC expansion. The exact mean and the approximations are indistinguishable. The 
exact variance and MC sampling of gPC-FMC are also in good agreement, whereas the variance obtained by gPC is incorrect (compare with Fig. 7).

5.2.2. Generalized polynomial chaos and flow map composition
In this section, we focus on an approximation of the flow map (34). First, we approximate the parametrized flow map 

(32) for a short integration time �t by the expansion:

ϕ̃�t(x; Z) =
1∑

i=0

3∑
j=0

ϕ̂i j Li(x)L j(Z), (40)

where the basis functions are Legendre polynomials. Note that the flow map is linear in x and cubic in Z , resulting in a total 
degree P = 4. The coefficients ϕ̂i j are computed using stochastic collocation as detailed in Section 3.3. Thus, computation 
of ϕ̂i j requires the propagation of 2 × 4 = 8 collocation points. We also remark that only one short-time flow map needs 
to be computed since the flow map is autonomous. Starting with the deterministic initial condition x0 = 1, the approximate 
solution of (32) at discrete times ti = i�t , i = 0, 1, 2, 3, . . . , is composed as

x0 → ϕ̃�t(x0; Z)︸ ︷︷ ︸
=x1(Z)

→ ϕ̃�t(x1(Z); Z
)

︸ ︷︷ ︸
=x2(Z)

→ ϕ̃�t(x2(Z); Z
)

︸ ︷︷ ︸
=x3(Z)

→ ·· · (41)

Note that, as before, the polynomial degree is increased by a factor P at each time step. This sequence also illustrates that, 
after one time step, the uncertain model parameter introduces an uncertain initial condition.

5.2.3. Monte Carlo sampling
A drawback of the expansion (41) is that the mean and variance cannot be computed as in gPC, since we cannot ex-

ploit the orthogonality of basis functions as in the derivation of (39). In this section, we employ Monte Carlo sampling to 
compute the mean and variance of (41). While using Monte Carlo sampling may at first seem contrary to the very nature 
of gPC, it has been used in the context of gPC-based ensemble Kalman filters to reduce sampling errors at reduced compu-
tational cost [20]. Sampling of the spectral expansion is also employed to estimate probability density functions [21], and 
to determine the statistics of the solution for inputs having different statistics [7]. For the sequence xi defined by (41), the 
mean and variance are approximated as

μ̃(ti) = 1

K

K∑
k=1

xi
(

Z (k)
)
, (42a)

σ̃ (ti) = 1

K

K∑
k=1

x2
i

(
Z (k)

) − μ̃2(ti), (42b)

where {Z (k)} are N numbers drawn from a uniform distribution over [−1, 1].
For our numerical experiments, we approximate the short-time flow map (40) for a time interval �t = 0.1 by a expansion 

of degree P = 4. The long-time flow map is constructed using (41), and the mean and variance are computed as in (42)
with K = 106. We will refer to this approach as Monte Carlo sampling of the polynomial chaos/flow map composition (MC 
of gPC-FMC). In Fig. 6, this approach is compared with the exact and gPC results. In particular, we observe that the variance 
obtained by MC sampling of the gPC-FMC method stays close to the exact values, even for long-time integration. In Fig. 7
the relative mean and variance errors are shown. We see that initially, the gPC-FMC approach has larger error than gPC (due 
to the Monte Carlo sampling), but in the long run the error increases slowly and remains small, while errors for gPC grow to 
order 1 for longer times. Numerical simulations confirm that εvar,mean = O (10−4) up to t = 120. For comparison, the mean 
and variance were also computed using Monte Carlo simulations (MC) of the exact solution. This also confirms the accuracy 
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Fig. 7. Uncertain linear ODE — Evolution of the relative mean (a) and variance error (b). In each subfigure the errors for (1) Monte Carlo sampling of the 
exact solution using 106 points (MC), (2) gPC expansion of 4th degree (gPC), and (3) Monte Carlo sampling of the 4th degree gPC-FMC expansion using 106

points (MC of gPC-FMC ) are shown.

Fig. 8. Uncertain linear ODE — Error convergence of the relative mean (a) and variance errors (b) at t = 30, for the gPC expansion (39), and Monte Carlo 
sampling of (41).

of the gPC-FMC approach since the results are nearly indistinguishable. Fig. 8 shows the error convergence of the mean and 
the variance at t = 30, as the polynomial degree P increases. The gPC method converges very slowly, while both the mean 
and variance obtained by Monte Carlo sampling of the gPC-FMC expansion converge exponentially. The saturation at P = 4
is due to the number of Monte Carlo sampling points (K = 106); more sampling points result in a lower saturation level. 
This observation is consistent with the results in Fig. 7 since the MC and MC of gPC-FMC curves are nearly identical.

5.2.4. Numerical quadrature
In this section, we employ a quadrature rule to compute the mean and variance of (41), in place of the Monte Carlo 

sampling used in the previous section. In particular, we compute

μ̃(ti) =
K∑

k=1

xi
(

Z (k)
)
α(k), (43a)

σ̃ (ti) =
K∑

k=1

x2
i

(
Z (k)

)
α(k) − μ̃2(ti), (43b)

where {Z (k), α(k)} are a set of nodes and corresponding weights. In the following we will use Gauss–Legendre quadrature.
We approximate the short-time flow map (40) as in the previous section, with �t = 0.1 and P = 4. The mean and 

variance of the long-time flow map are computed using (43) with K = 102 nodes. This implies that we can exactly compute 
integrands with polynomial degree up to P = 2 · 102 − 1 = 199. At t = 30 we have composed 300 flow maps, which results 
in a polynomial of degree 4300. However, such a high degree is not necessary for computation of the mean and variance 
and the quadrature approximation suffices. In Fig. 9 the relative mean and variance errors are shown. We see that gPC 
only performs better than gPC-FMC for short integration times (t < 4). Comparing with Fig. 9, we also see that numerical 
quadrature with 102 nodes, outperforms MC with 106 points. Numerical simulations confirm that εvar,mean = O (10−7) up 
to t = 120. In Fig. 10, the error convergence of the mean and the variance at t = 1 and t = 30 are shown. The gPC-FMC 
achieves minimal error for an expansion order P = 7 of the short-time flow map for both t = 1 and t = 30. Note that 
gPC-FMC converges faster to the exact variance than gPC for both short and long integration times.
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Fig. 9. Uncertain linear ODE — Evolution of the relative mean (a) and variance error (b). In each subfigure the errors for a gPC expansion of 4th degree 
(gPC), and a the 4th degree gPC-FMC expansion using 102 points for numerical quadrature (Quad.) are shown.

Fig. 10. Uncertain linear ODE — Error convergence of the relative mean (a) and variance errors (b) at t = 1 and t = 30. Results for the gPC expansion, see 
(39), and numerical quadrature of (41) using 102 nodes, see (43), are shown.

5.3. Nonlinear time-dependent double gyre flow

In this section, we consider a nonlinear time-dependent double gyre flow, which was used in Section 1 (see Fig. 1) to 
illustrate the significant effect of nonlinearities for long-time integration. The double gyre flow is analytically defined in 
[18,19] by the stream function

ψ(x1, x2, t) = A sin
(
π f (x1, t)

)
sin(πx2), (44)

where

f (x1, t) = a(t)x2
1 + b(t)x1, (45)

a(t) = ε sin(ωt), (46)

b(t) = 1 − 2ε sin(ωt), (47)

on the domain D = [0, 2] × [0, 1]. The velocity field is obtained by differentiation

u = − ∂ψ

∂x2
, v = ∂ψ

∂x1
. (48)

Thus, using u = d/dt(x1), v = d/dt(x2), the governing equations are given by the system of nonlinear ODEs

dx1

dt
= −π A sin

(
π f (x1, t)

)
cos(πx2), (49a)

dx2

dt
= π A cos

(
π f (x1, t)

)
sin(πx2)

df (x1, t)

dx1
. (49b)

For ε = 0 the ODE is autonomous, and for ε �= 0 it is time-dependent and the gyres conversely expand and contract periodi-
cally in the x1-direction such that the rectangle enclosing the gyres remains invariant.

In the next sections, we will consider the propagation of uniformly distributed particles, and also the propagation of den-
sity functions. For all numerical integration we use a fixed-step fourth-order Runge–Kutta method with time-step h = 0.01.
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Fig. 11. Double gyre — Propagation of particles using gPC. Each subfigure shows the initial distribution (box) and a deformed distribution at a later time. 
More specifically, (a), (b), and (c) show the particle distributions at t = 2, t = 10, and t = 20 respectively, that are obtained using a 10th degree gPC 
expansion, (d) also shows the distribution at t = 20, however here a 100th gPC expansion is employed. See Section 5.3 for governing equations (A = 0.1, 
ω = 2π/10, ε = 0.25).

5.3.1. Generalized polynomial chaos
In this section, we use the gPC method to describe the dependence of the solution of (49) on a uniformly distributed 

uncertain initial condition. Here, the uncertain initial condition x(t0; Z) depends on two independent random variables 
(Z = (z1, z2)). Thus, the gPC approximation is given by

x̃(t; Z) =
P∑

|i|=1

x̂i(t)Li(Z), (50)

where i = (i1, i2) is a multi-index, x̂i denote expansion coefficients (see Section 3.2), and

Li = L(1)
i1

(z1)L(2)
i2

(z2), i1 + i2 ≤ P , (51)

is a product of Legendre polynomials. The expansion coefficients are computed using a collocation method as described in 
Section 3.3. The initial condition is specified as

x(t0; Z) = (
x1(t0; Z), x2(t0; Z)

) = (a + bz1, c + dz2), (52)

where a, b are constants such that 0 ≤ a ± b ≤ 2, c, d are constants such that 0 ≤ c ± d ≤ 1, and z1, z2 are uniformly 
distributed on [−1, 1].

For our numerical experiments we set a = 0.995, b = 0.075, c = 0.825, and d = 0.075. Thus, the uncertain initial condi-
tion is uniformly distributed on a small square as depicted in Fig. 11. We employ a 10th degree gPC expansion (P = 10) 
to propagate particles from this distribution. The gPC expansion approximates the particle distribution at t = 2 and t = 10
accurately as shown in Figs. 11(a) and (b). However, at later times the gPC approach breaks down, and we obtain incorrect 
non-smooth particle distributions. This is illustrated in Fig. 11(c), where the non-smooth distribution of particles at t = 20
is shown. Increasing the polynomial degree does not alleviate the situation: even for a 100th degree gPC approximation we 
obtain an inaccurate particle distribution as shown in Fig. 11(d).

5.3.2. Generalized polynomial chaos and flow map composition
In this section, we employ approximations of the short-time flow maps (21), and composition, see (23), to propagate 

uncertainty. As in Section 5.3.1 we consider uncertain initial conditions. The approximate sequential flow maps for a short 
integration time �t are given by (21) and (22), where t0 = 0, . . . , (M − 1)�t , Ψ j(Z) = 0 (no uncertain model parameters), 
n = 2, and θi1 , θi2 are Legendre polynomials, which are defined over [0, 2] and [0, 1] respectively. For our numerical example 
we set �t = 0.1, Q 1 = 10 and Q 2 = 5. As in the second gPC example, we consider an uncertain initial condition (52), which 
is uniformly distributed on a square as shown in Fig. 11. Composing 100 short-time flow map approximations, we obtain 
the distribution of uniform particles at t = 10 as shown in Fig. 12(a). In contrast to the gPC result in Figs. 11(c) and (d), 
we observe that the composition of approximate short-time flow maps is able to describe the stretching and folding of the 
trajectories accurately. The results highlight the fact that composition of spectral approximations of short-time flow maps 
lead to numerically stable and accurate solutions even in the case of strong nonlinearities.
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Fig. 12. Double gyre — Propagation of particles using gPC/FMC. Each subfigure shows the initial distribution (box) and a deformed distribution at a later 
time. More specifically, (a) and (b) shows the particle distribution at t = 10, and t = 20 respectively, that are obtained using flow map composition; the 
short-time flow map is computed for �t = 0.1 and is of order 10 in the x1-direction and 5 in x2-direction. See Section 5.3 for governing equations (A = 0.1, 
ω = 2π/10, ε = 0.25).

5.3.3. Propagation of a PDF
In this section, we use short-time flow map approximations to propagate two different probability density functions 

(PDFs). Once these approximations are computed, any PDF can be propagated at little extra cost since only composition of 
the short-time flow maps is required. To simplify our calculations, we use the Perron–Frobenius operator to propagate the 
PDFs. Let the PDF at some initial time t0 be given by ρ0(x). Then the PDF at some later time t f is

ρ(x, t f ) = ρ0
(
ϕ

t0
t f

(x)
)∣∣det

(
Dϕ

t0
t f

(x)
)∣∣, (53)

where Dϕ
t0
t f

(x) is the Jacobian matrix corresponding to the spatial derivatives of the flow map. Since the double gyre flow 
is incompressible,2 we have |det(Dϕ

t0
t f

(x))| = 1, and the density is simply

ρ(x, t f ) = ρ0
(
ϕ

t0
t f

(x)
)
. (54)

As above, we approximate the short-time flow maps by Legendre polynomials. However, here we need approximations of 
the reversed short-time flow maps, i.e. ϕ̃k�t

(k+1)�t(x), k = 0, . . . , M − 1. Once these approximations are calculated, the PDF at 
time t = M�t is obtained on a discrete grid of points, X0 ∈D, as follows:

X0 → ϕ̃
(M−1)�t
M�t (X0)︸ ︷︷ ︸

=X1

→ ϕ̃
(M−2)�t
(M−1)�t (X1)︸ ︷︷ ︸

=X2

→ ·· · → ϕ̃0
�t(XM−1)︸ ︷︷ ︸

=XM

(55a)

ρ(X0, M�t) = ρ0(XM). (55b)

For our two numerical examples we use the same values as above for the short-time flow map approximations, i.e. �t =
0.1, Q 1 = 10 and Q 2 = 5. In our first example, we consider a Gaussian-like PDF with local support as shown in Fig. 13(a). 
This PDF is propagated through the double gyre flow, and the time-varying PDF at times t = 2, t = 10, and t = 20 is shown 
in Figs. 13(b, c). Using the same flow map approximations, we propagate another Gaussian-like PDF with support over the 
whole domain, see Fig. 14. The PDF at later times t = 2, t = 10, and t = 20 is shown in Figs. 14(b, c).

The evolution of any other PDF can be computed efficiently since it only requires evaluation of the initial PDF at points 
that are propagated using composition of pre-computed short-time flow maps. In addition, this representation can be em-
ployed for fast dynamical systems calculations, such as computation of finite-time Lyapunov exponent (FTLE) fields and 
almost-invariant sets [14,15,22].

6. Comparison with other methods

It has been demonstrated that gPC-FMC is accurate for long-time uncertainty propagation through a dynamical system, 
compared to traditional gPC. As mentioned in the introduction, multi-element gPC (ME-gPC) is a way to maintain the 
accuracy of gPC for long integration times [8]. In this section we compare, for the first two examples in Section 5, the 
gPC-FMC method with fourth-order Runge–Kutta (RK4) integration and ME-gPC. The gPC method is a spectral method, and 
ME-gPC is literally a refinement of gPC in the sense that it employs spectral elements (piecewise polynomial basis functions). 
In the ME-gPC method, the space of random inputs is decomposed into spectral elements when the relative error in variance 
becomes greater than a threshold value θ . In each random element a gPC expansion of fixed order is employed. For details 
and definition of the threshold criterion we refer to [8]. In comparing these methods, we focus on a computational efficiency 
in terms of walltime and error. All algorithms were implemented carefully in Matlab; however our implementation might 

2 The approximate flow map does not necessarily preserve area. However, we verified numerically that the flow map is nearly incompressible (on average 
about 0.1% of area is lost).



798 D.M. Luchtenburg et al. / Journal of Computational Physics 274 (2014) 783–802
Fig. 13. Double gyre — Propagation of a ‘local’ PDF through the time-dependent double gyre flow using flow map composition; the approximate short-time 
flow map is computed for �t = 0.1 and is of order 10 in the x-direction and 5 in y-direction: (a) initial PDF at t = 0, (b) PDF at t = 2, (c) PDF at t = 10, 
and (d) PDF at t = 20. The colormap varies from 0 (blue) to maximum (red). See Section 5.3 for governing equations (A = 0.1, ω = 2π/10, ε = 0.25).

Fig. 14. Double gyre — Propagation of a ‘global’ PDF through the time-dependent double gyre flow using flow map composition; the approximate short-time 
flow map is computed for �t = 0.1 and is of order 10 in the x-direction and 5 in y-direction: (a) initial PDF at t = 0, (b) PDF at t = 2, (c) PDF at t = 10, 
and (d) PDF at t = 20. The colormap varies from 0 (blue) to maximum (red). See Section 5.3 for governing equations (A = 0.1, ω = 2π/10, ε = 0.25).

not be optimal. In that sense, walltimes should be used for qualitative rather than quantitative comparison, although results 
indicate that gPC-FMC performs well.

6.1. Nonlinear ODE

We consider the example of Section 5.1. We first integrate the nonlinear ODE (24) using a vectorized RK4 integrator with 
constant time step h. We take the RK4 solution with h = 10−5 as the ‘exact’ solution. The error converges for a time step 
hs = 10−3, and we use this time step for ME-gPC and gPC-FMC. For computation of the L2 error and walltime, we propagate 
500 uniformly distributed points over the interval [−1, 1]. The L2 error versus walltime for RK4 integration, ME-gPC, and 
gPC-FMC is shown in Fig. 15 for integration times T = 3, 6. First, we focus on the RK4 branch (Monte Carlo simulation). 
The time step h is decreased from 0.5 to 10−4, and consequently the L2 error decreases while the walltime increases. As 
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Fig. 15. Nonlinear ODE — L2 error versus walltime. Comparison of RK4, ME-gPC, and gPC-FMC for (a) T = 3, and (b) T = 6. Along the branch denoted by 
RK4, the time step h is decreased from 0.5 to 10−4. For all other branches the RK4 time step is fixed at hs = 10−3, and each branch is associated with a 
particular polynomial expansion order P . Along a gPC-FMC branch (�), the time step for the short-time flow map �t is decreased from 1 to 0.001. Along 
a ME-gPC branch (�), the threshold value θ is varied from 1 to 10−5 (θ ∈ {10−5, 10−4, 10−3, 10−2, 10−1, 100}).

mentioned above, the error levels off at hs = 10−3. Second, we consider the gPC-FMC branches. The RK4 time step is fixed 
for all branches at hs = 10−3. Each branch represents a different polynomial expansion order (P ranges from 3 to 41). Along 
each branch, the time step for the short-time flow map �t is decreased from 1 to 0.001. The curves are ‘C-shaped’ showing 
that the L2 error decreases, whereas the walltime initially decreases, but later increases. The walltime reflects a trade off 
between the cost of integration of the collocation points for a time �t and the number of compositions M = T /�t that 
are required for a total integration time T . There is a small region where gPC-FMC outperforms RK4 integration. Third, 
we consider the ME-gPC method. The RK4 time step is fixed at hs = 10−3, and each branch also represents a particular 
polynomial expansion order. Along each branch, the threshold value θ is varied from 1 to 10−6. Thus, more and more 
spectral elements are introduced when θ is lowered, and when it is high enough no spectral elements are introduced, and 
ME-gPC is equivalent to gPC. In the graphs, the latter are the ME-gPC points with smallest walltime and largest L2 error. 
The maximum number of spectral elements that corresponds to each θ value is shown in Fig. 16.

The flow map for this example is autonomous. This implies that we need to compute one short-time flow map for the 
gPC-FMC method. The propagation of points follows from composition evaluation of this polynomial approximation (flow 
map composition). In the gPC method, the collocation points need to be propagated for each RK4 time step, the polynomial 
expansion needs to be built and evaluated for all points that are propagated. This procedure is more costly and consequently 
we have a larger walltime compared to gPC-FMC. Furthermore, for the ME-gPC method, the threshold value θ is checked 
at each time step, and if needed more elements are created to keep the error bounded. It is clear that for this example 
gPC-FMC outperforms ME-gPC.
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Fig. 16. Nonlinear ODE — ME-gPC: Maximum number of spectral elements as the threshold θ in Fig. 15 is varied. Subfigures (a) and (b) correspond to 
Figs. 15(a) and (b) respectively.

6.2. Uncertain linear ODE

Here, we consider the example of Section 5.2. As above, we first integrate the ODE (31) using a vectorized RK4 integrator 
with constant time step h. We take the RK4 solution with h = 10−5 as the ‘exact’ solution. The error converges for a time 
step hs = 10−3, and we use this time step for ME-gPC and gPC-FMC. We evaluate the error for 1000 uniformly distributed 
points over the interval [−1, 1]. The L2 error versus walltime for RK4 integration, ME-gPC, and gPC-FMC is shown in Fig. 17
for integration times T = 10, 30. The description of this figure is completely analogous to Fig. 15, and we refer the reader 
to Section 6.1 for more details. For both the gPC-FMC and ME-gPC method we consider polynomial expansions ranging from 
P = 3 to 21. For the gPC-FMC method, the time step of the short-term flow map varies over the range �t = 0.001–1. For the 
ME-gPC method, we vary the threshold θ from 1 to 10−3. We observe that for relatively high-degree polynomial expansions 
(P = 15, 21), lowering the threshold value to 10−3 does not have an effect. The maximum number of spectral elements that 
corresponds to each θ value is shown in Fig. 18. For this example we also observe that gPC-FMC outperforms ME-gPC.

6.3. Computational resources

Computationally, gPC-FMC should be compared against Monte Carlo sampling, since in both algorithms a large cloud of 
initial conditions are passed through the dynamical system to obtain statistics of the long-time distribution. However, in 
gPC-FMC the computational burden is shifted from integration to polynomial evaluation required for interpolation.

In order to compute the expansion coefficients of the short-time flow expansion (21), we need to integrate the governing 
equations (2) for all quadrature points, as described in Sections 4.1 and 3.3. However, an accurate approximation of the 
short-time solution requires significantly less points than required by Monte Carlo sampling of the long-time solution.

Typically, it is assumed that the cost of polynomial evaluation is negligible compared to the cost of integrating a trajec-
tory. For example, compared to large-scale numerical simulations it is clear that simple algebraic evaluations do not incur 
any notable cost. In [20], where a gPC-based ENKF is considered, it is also assumed that simulations are expensive compared 
to the cost of gPC. Thus, for problems with a large state-space, the only relevant number for the computational cost is the 
number of quadrature points that needs to be integrated.

6.3.1. Other considerations
In many engineering applications integrating particle trajectories through measured velocity fields will already involve 

expensive interpolation between data snapshots [23,24]. Many of these methods may be extended to data collected from 
physical collocation points, realized by ocean gliders, UAVs, etc. In this case, the number of physical collocation points should 
be minimized.

Finally, there is a possibility for significant reduction in memory requirements with the proposed method. Extracting 
short-time flow maps using a small number of collocation points effectively compresses the relevant information in velocity 
field snapshots. This makes it possible to minimize data transfer and to potentially store all of the short-time flow maps in 
RAM, even for problems with large datasets.

7. Conclusions

We have presented a flexible approach for long-time uncertainty propagation in dynamical systems. The method approx-
imates short-time flow maps by low-order spectral polynomial expansions and uses flow map composition to construct the 
flow map for longer integration times. In contrast to the gPC method, which performs poorly for long integration times, 
this approach has exponential error convergence for both short and long integration times. The composition of short-time 
flow maps, each represented in a low-order polynomial basis, leads to an overall flow map whose degree is exponential 
in the number of compositions, while the number of polynomial coefficients required to represent the overall flow map is 
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Fig. 17. Uncertain linear ODE — L2 error versus walltime. Comparison of RK4, ME-gPC, and gPC-FMC for (a) T = 10, and (b) T = 30. Along the branch 
denoted by RK4, the time step h is decreased from 0.5 to 10−4. For all other branches the RK4 time step is fixed at hs = 10−3, and each branch is 
associated with a particular polynomial expansion order P . Along a gPC-FMC branch (�), the time step for the short-time flow map �t is decreased from 
1 to 0.001. Along a ME-gPC branch (�), the threshold value θ is varied from 1 to 10−3 (θ ∈ {10−3, 10−2, 10−1, 100}).

Fig. 18. Uncertain linear ODE — ME-gPC: Maximum number of spectral elements as the threshold θ in Fig. 17 is varied. Subfigures (a) and (b) correspond 
to Figs. 17(a) and (b) respectively.
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only linear in the number of compositions (or constant, for an autonomous system). The method is particularly efficient for 
propagating multiple PDFs through the same dynamical system, since the short-time flow maps need to be computed only 
once.

The above approach was applied to three examples. In the first example, flow map composition is shown to be accurate 
and efficient although the uniformly distributed initial condition evolves into the discontinuous Heaviside function and is not 
well captured by traditional polynomial expansions, such as gPC. Our second example highlights the problem of long-time 
integration and the non-uniform convergence of the gPC method when a nonlinearity enters through an uncertain model 
parameter. The last example is the time-dependent double gyre flow, and illustrates the effectiveness of the approach even 
in the case of strong nonlinearities.

A number of future directions arise from this work. The efficiency and low memory requirements of this method make it 
directly applicable to large-scale contaminant release problems, such as tracking oil spills [25]. In particular, one may view 
the spectral flow map composition as a reduced-order model for the long-time flow map, whereby it is possible to rapidly 
advect any distribution after the up-front cost of integrating collocation points. It would also be interesting to apply this 
method to other dynamical systems such as mechanical linkages and multi-body problems in astrophysics, where long-time 
integration and uncertainty management are issues. It is important that the state dimension of these systems is not too 
large.

In addition to demonstrating this approach on large-scale physical problems, there are further aspects of the method 
which should be investigated. The favorable error properties of flow map composition have previously been investigated 
in the context of finite-time Lyapunov exponents. However, the structure of the resulting high-degree polynomial obtained 
through composition is tailored to represent long-time mixing structures in the flow, and understanding the nature of these 
polynomials is a topic of current research. Finally, it may be possible to determine high-order statistics directly from the 
leading terms of the long-time polynomial to reduce the burden of Monte Carlo sampling.
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