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Compressive Sensing and Low-Rank Libraries for Classification of Bifurcation
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Abstract. We show that for complex nonlinear systems, model reduction and compressive sensing strategies
can be combined to great advantage for classifying, projecting, and reconstructing the relevant low-
dimensional dynamics. L2-based dimensionality reduction methods such as the proper orthogonal
decomposition are used to construct separate modal libraries and Galerkin models based on data
from a number of bifurcation regimes. These libraries are then concatenated into an overcomplete
library, and L1-sparse representation in this library from a few noisy measurements results in correct
identification of the bifurcation regime. This technique provides an objective and general framework
for classifying the bifurcation parameters and, therefore, the underlying dynamics and stability. Af-
ter classifying the bifurcation regime, it is possible to employ a low-dimensional Galerkin model,
only on modes relevant to that bifurcation value. These methods are demonstrated on the complex
Ginzburg–Landau equation using sparse, noisy measurements. In particular, three noisy measure-
ments are used to accurately classify and reconstruct the dynamics associated with six distinct
bifurcation regimes; in contrast, classification based on least-squares fitting (L2) fails consistently.
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1. Introduction. Nonlinear dynamical systems are ubiquitous in characterizing the be-
havior of physical, biological, and engineering systems. With few exceptions, nonlinearity
impairs our ability to construct analytically tractable solutions, and we instead rely on ex-
periments and high-performance computation to study a given system. Numerical discretiza-
tion can often yield a system of equations with millions or billions of degrees of freedom.
Thus, both simulations and experiments can generate enormous datasets that strain computa-
tional resources and confound one’s understanding of the underlying dynamics. Fortunately,
many high-dimensional systems exhibit dynamics that evolve on a slow-manifold and/or a
low-dimensional attractor (e.g., pattern forming systems [16]). We propose a data-driven
modeling strategy that represents low-dimensional dynamics using dimensionality reduction
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methods such as proper orthogonal decomposition (POD) [26] and classifies/reconstructs the
observed low-dimensional manifolds with compressive (sparse) sensing [17, 12, 5, 52]. Thus
dynamic structures are represented efficiently with the L2 norm and identified from sparse
measurements with the L1 norm.

The application of machine learning and compressive sensing to dynamical systems is
synergistic in that underlying low-rank structures facilitate sparse measurements [31]. This
combination has the potential to transform a number of challenging fields. Such a strategy
may enhance nonlinear estimation and control, where real-time analysis is critical. Moreover,
adaptive time-stepping algorithms can take advantage of the low-dimensional embedding for
greatly reduced computational costs [30, 42]. Additionally, the interplay of sparsity and com-
plex systems has been investigated with the goal of overcoming the curse of dimensionality
associated with neuronal activity and neurosensory systems [22]. Compressive sensing may
also play a role in similar statistical learning, library-based, and/or information theory meth-
ods [15, 7] used in fluid dynamics [8, 2], climate science [24, 7], and oceanography [1]. Indeed,
compressive sensing is already playing a critical role in model building and assessment in
the physical sciences [35, 45, 53, 48]. These challenging open problems would benefit from a
paradigm shift in modeling and analysis, whereby low-dimensional coherence is leveraged for
use with sparse sampling techniques.

1.1. Challenges of POD-Galerkin models across parameter regimes. Galerkin-POD is
a well-known [26] dimensionality reduction method for complex systems. In the context of
fluid dynamics, Galerkin projection of the Navier–Stokes equations onto a truncated POD
mode basis is an effective method of model-order reduction, resulting in a system of ordinary
differential equations (ODEs). These equations may be orders of magnitude more compu-
tationally efficient than the full simulation. However, Galerkin projection onto POD modes
obtained across a range of parameter values, the so-called global POD [49, 44], often results
in unstable and/or inaccurate models. There have been a number of modifications to POD-
Galerkin models that seek to address this issue, but it remains a major challenge of low-order
modeling in fluids.

A modified method that uses interpolated angles of multiple POD subspaces has been
demonstrated to capture F-16 parameterized dynamics [32]. Including additional modes, such
as the shift mode [36], to capture transients between qualitatively different flow regimes has
resulted in additional methods such as double POD [46], the Gauss–Newton with approxi-
mated tensors (GNAT) method [14], and trust-region POD [19, 6]. Alternative methods for
stabilizing POD by adding additional modes and closure terms have been investigated [3, 37].
In each case, the objective is to construct a dimensionally reduced set of dynamics that accu-
rately represents the underlying complex system and that does not suffer from instabilities.
There are additional methods based on POD manifolds that are useful for multiple parame-
ter regimes [50, 51]. A recent method that combines transition matrix models with dynamic
regimes that cluster, the so-called cluster reduced-order modeling (CROM), is also interesting
for these multiregime problems [29].

1.2. Current approach. To avoid a single POD-Galerkin model defined across dynamical
regions, we instead develop a classification scheme to determine which dynamic region our
system is in, and then use a Galerkin model defined only on modes in that region. The
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1718 S. L. BRUNTON, J. H. TU, I. BRIGHT, AND J. N. KUTZ

procedure advocated here involves two main steps. First, a modal library is constructed that
is representative of a number of distinct dynamical regimes; i.e., the low-dimensional attractors
are approximated by their optimal bases. Second, compressive sensing techniques are applied
using this learned library. The goals are threefold: (1) classify the dynamic regime, (2) project
the measurements onto the correct modal amplitudes, and (3) reconstruct the low-dimensional
dynamics through the efficient Galerkin projection [26]. Here we concatenate POD bases
to construct the library, although generalizing the library building strategy into a broader
machine learning context [18] is interesting and may yield even more efficient strategies. There
are many ways to build a library, especially considering the three goals above. In this case,
we keep distinct POD bases for each dynamic regime, since this is better for the Galerkin
projection step. The classification scheme, using L1 minimization in an overcomplete library,
is closely related to sparse representation from image classification [54].

The paper is outlined as follows. In section 2 a brief review is provided of the compressive
sensing architecture and its relationship to L1 convex optimization. Also reviewed are the
basic ideas behind the POD for L2 dimensionality reduction. These methods are combined in
section 3 to form the key contributions of this work. Namely, the L2 norm provides the sparse
basis modes used by the L1 norm for sparse representation. Section 4 demonstrates the use
of these techniques on one of the classical models of mathematical physics: the Ginzburg–
Landau equation. An outlook of the advantages and general applicability of the method to
complex systems is given in the concluding section 5.

2. Background. In the following subsections, we introduce two well-established tech-
niques that will be combined in this paper. The first method is compressive sensing, whereby
a signal that is sparse in some basis may be recovered using proportionally few measurements
by solving for the L1-minimizing solution to an underdetermined system. The second method
is the POD, which allows a dataset to be reduced optimally in an L2 sense.

Both theories have been applied to a range of problems. In this paper, we advocate
combining these methods since the L2 basis obtained from POD is a particularly good choice
of a sparse basis for compressive sensing. The underlying reason for this is that the data is
obtained from the low-dimensional attractors of the governing complex system.

2.1. L1-based sparse sensing. Consider a high-dimensional measurement vector U ∈ R
n,

which is sparse in some space, spanned by the columns of a matrix Ψ:

(2.1) U(x, t) = Ψa.

Here, sparsity means that U may be represented in the transform basis Ψ by a vector of
coefficients a that contains mostly zeros. More specifically, K-sparsity means that there are
K nonzero elements. In this sense, sparsity implies that the signal is compressible.

Consider a sparse measurement Û ∈ R
m, with m� n:

(2.2) Û = ΦU,

where Φ is a measurement matrix that maps the full-state measurement U to the compressed
measurement vector Û. Details of this measurement matrix will be given shortly. Plugging
(2.1) into (2.2) yields an underdetermined system:

(2.3) Û = ΦΨa.
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We may then solve for the sparsest solution a to the underdetermined system of equations
in (2.3). The L0 norm measures how many nonzero elements a vector has (i.e., the cardinality
of the vector); therefore, it measures sparsity. Solving for the solution a that has the smallest
|a|0 norm is a combinatorially hard problem. However, this problem may be relaxed to a
convex problem, whereby the |a|1 norm is minimized, which may be solved in polynomial
time [12, 17]. The L1 norm is the sum of the absolute values of every element of a vector,
and under some conditions, minimizing this norm will yield results similar to those obtained
when minimizing the L0 norm. The specific minimization problem is

argmin |â|1 such that ΦΨâ = Û.

There are other algorithms that result in sparse solution vectors, such as orthogonal matching
pursuit [52].

This procedure, known as compressive sensing, is a recent development that has had
widespread success across a range of problems. There are technical issues that must be
addressed. For example, the number of measurements m in Û should be on the order of
K log(n/K), where K is the degree of sparsity of a in Ψ [10, 11, 4]. In addition, the mea-
surement matrix Φ must be incoherent with respect to the sparse basis Ψ, meaning that the
columns of Φ and the columns of Ψ are uncorrelated. Interestingly, significant work has gone
into demonstrating that Bernouli and Gaussian random measurement matrices are almost
certainly incoherent with respect to a given basis [13].

Typically a generic basis such as Fourier or wavelets is used in conjunction with sparse
measurements consisting of random projections of the state. However, in many engineering
applications, it is unclear how random projections may be obtained without first starting
with a dense measurement of the state. In this work, we constrain the measurements to be
point measurements of the state, so that Φ consists of rows of a permutation matrix. Our
primary motivation for such point measurements arises from physical considerations in such
applications as ocean or atmospheric monitoring where point measurements are physically
relevant. Moreover, sparse sensing is highly desirable as each measurement device is often
prohibitively expensive, thus motivating many of our efforts in using sparse measurements to
characterize the complex dynamics.

2.2. L2-based dimensionality reduction. POD [34, 26] is a tool with ubiquitous use in
dimensionality reduction of physical systems.1 Data snapshots U(x, t1),U(x, t2), . . . ,U(x, tq)
are collected into columns of a matrix A ∈ R

n×q. We then compute the singular value
decomposition (SVD) of A:

A = ΨΣW∗.

Columns of the matrix Ψ are POD modes,2 and they are ordered according to the variance
that they capture in the data A; if the columns of A are velocity measurements, then the POD
modes are ordered in terms of the energy that they capture. This variance/energy content

1POD is sometimes referred to as principal component analysis [38], the Karhunen–Loève decomposition,
empirical orthogonal functions [33], or the Hotelling transform [27].

2Often, POD modes are given by the matrix Φ. However, we choose Ψ for the POD basis and Φ for the
sparse measurement matrix for consistency with the compressive sensing literature. This is not to be confused
with notation from balanced POD, where Φ are direct modes and Ψ are adjoint modes [40].

D
ow

nl
oa

de
d 

12
/1

5/
14

 to
 1

08
.1

79
.1

73
.2

05
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1720 S. L. BRUNTON, J. H. TU, I. BRIGHT, AND J. N. KUTZ

is quantified by the entries of the diagonal matrix Σ, which are called singular values and
appear in descending order.

When the size of each snapshot (n) is much larger than the number of snapshots (q)
collected, i.e., n � q, as in high-dimensional fluid systems, there are at most q nonzero
singular values, and it is beneficial to use the method of snapshots [47]. In this method, we
solve the following eigenvalue problem:

A∗AW = WΣ2
q,

where Σq is the q× q upper-left block of Σ. It is then possible to find the first q POD modes
corresponding to nontrivial singular values by

Ψq = AWΣ−1
q .

The snapshots often exhibit low-dimensional phenomena, so that the majority of the vari-
ance/energy is contained in a few modes, smaller than the number of snapshots collected.
In this case, the POD basis is typically truncated at a predetermined cut-off value, such as
when the columns contain 99% of the variance, so that only the first r modes are kept. There
are numerous additional criteria for the truncation cut-off, and recent results derive a hard-
threshold value for truncation that is optimal for systems with well-characterized noise [23].
The SVD acts as a filter, and so the truncated modes often correspond to random fluctuations
and disturbances. If the data in the matrix A is generated by a dynamical system (nonlinear
system of ODEs of order n), it is then possible to substitute the truncated POD expansion
for the state U into the governing equation and obtain Galerkin projected dynamics on the
r basis modes [26]. Recall that we are assuming that the complex system under considera-
tion exhibits low-dimensional attractors; thus the Galerkin truncation with only a few modes
should provide an accurate prediction of the evolution of the system. Note that it has also
been shown recently that it is possible to obtain a sketched-SVD by randomly projecting the
data initially and then computing the SVD [20, 25, 39].

3. Methods—Combining L1 and L2. The major contribution of this work is the com-
bination of library building techniques (depicted schematically in Figure 1) based on the
L2-optimal POD with the L1-based compressive sensing architecture (depicted schematically
in Figure 2) for classification and reconstruction.

Consider a complex system that evolves according to the partial differential equation
(PDE)

(3.1) Ut = N(U,Ux,Uxx, . . . , x, t, β),

where U(x, t) is a vector of physically relevant quantities and the subscripts t and x denote
partial differentiation in time and space, respectively. Note that higher spatial dimensions may
be considered without loss of generality. The function N(·) can be a complicated, nonlinear
function of the quantity U, its derivatives, and both space and time. The parameter β is
a bifurcation parameter with respect to which the solution of the governing PDE changes
markedly. We assume a spatial discretization of (3.1), which yields a high-dimensional system
of degree n.
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· · · · · ·

· · ·

· · ·

· · ·

· · ·

=⇒

=⇒ =⇒=⇒=⇒

Ut = N(U,Ux,Uxx, . . . , x, t, β)

β1 β2 βj βJ

A1 A2 Aj =

⎡
⎣

| |
U(x, t1) · · · U(x, tq)

| |

⎤
⎦ AJ

Ψ1 Ψ2 Ψj =

⎡
⎣

| |
ψ1(x, βj) · · · ψrj (x, βj)

| |

⎤
⎦ ΨJ

Ψ =
[
Ψ1 Ψ2 · · · ΨJ

]

Complex System

Step 1:
Collect Data
(simulations or experiments)

Step 2:
Dimension Reduction

Step 3:
Library Building

Figure 1. Schematic of L2 strategy for library building. Data Aj is collected for many values of the
bifurcation parameter βj , and the principal components of this data are computed and truncated in Ψj. Although
each basis Ψj is truncated to contain only the most energetically relevant structures, the concatenated library
Ψ is overcomplete.

We would like to use measurements of the system (3.1) to determine its state. However,
full-state measurements are impractical for the high-dimensional system generated by dis-
cretization. Instead, m measurements are taken, where m � n; thus the measurements are
sparse. In this paper, we consider spatially localized or point measurements, Û, as discussed
in section 2.1. In this case, the matrix Φ ∈ R

m×n from (2.2) is composed of rows of the
identity matrix corresponding to the measurement locations. These m-dimensional sparse
observations are used to reconstruct the full n-dimensional state vector U.

Our approach is to learn a library of low-rank dynamical approximations in which the
dynamics are sparse and then apply compressive sensing to reconstruct the dynamics from
m� n measurements. First, we explore the full system (3.1) and collect dense measurements
for various values β1, β2, . . . , βJ of interest, making sure to cover a number of unique dynamical
regimes. For each case, snapshots of data from simulations or experiments are taken at a
number of instances in time and organized into a data matrix describing the evolution of the
full-state system:

Aj =

⎡
⎣ | | |
U(x, t1) U(x, t2) · · · U(x, tq)

| | |

⎤
⎦ ,

where q is the number of snapshots taken.
Once the data matrix is constructed for a given βj , its POD modes, or principal compo-
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Û Φ Ψ a
=

(a) full system

Û (ΦΨ) â

=

(b) sparse â

Û (ΦΨ) ã

=

(c) least-squares ã

Figure 2. Schematic of identification of sparse mode amplitudes â by L1 minimization. (a) Illustration of
measurement matrix Φ and sparse basis Ψ. The underdetermined matrix (ΦΨ) admits a sparse solution â (b)
and a least-squares solution ã = (Ψ∗Φ∗ΦΨ)−1Ψ∗Φ∗Û (c). This type of diagram was introduced by Baraniuk
in [4]. The data used in this figure is from the cubic-quintic Ginzburg–Landau equation (CQGLE) system in
section 4.

nents, Ψj , are identified through an SVD: Ψj = {ψi(x, βj)}rji=1. The POD modes are orthog-
onal and ordered by energy content. The number of modes retained, rj , is determined by a
cut-off criterion; for instance, one might specify that modes comprising 99% of the energy be
kept, or a hard threshold may be implemented [23].

With the modes identified for each βj , an overcomplete library Ψ is constructed that
contains all of the low-rank approximations for each dynamic regime:

(3.2) Ψ=

⎡
⎣ | | | |
ψ1(x,β1) · · · ψr1(x,β1) · · · ψ1(x,βJ) · · · ψrJ(x,βJ)

| | | |

⎤
⎦ .

The library Ψ ∈ R
n×p contains the representative low-rank modes for all of the dynamical

behavior of the governing system that we explored in simulations or experiments. This is the
supervised learning portion of the analysis, resulting in a small number (p � n) of library
elements; note that p =

∑J
j=1 rj. The p library modes are not orthogonal, but rather come in
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groups of POD modes for each different βj . The dynamics at any given time will belong to a
specific βj regime so that the instantaneous dynamics are sparse in the library basis, allowing
for a sparse representation [54]. This overcomplete library building procedure is summarized
in Figure 1.

With the library (3.2), we can expand the state U using the low-rank POD representation

(3.3) U(x, t) =
J∑

j=1

rj∑
r=1

ajr(t)ψr(x, βj) = Ψa.

The solution is now represented in the p library elements constructed for the various values
of β, and by construction, we expect a to be sparse in the basis Ψ. This is because for any
particular βj , only a small subset of library elements is required to represent the solution.

Equation (3.3) is of the form in (2.1). To determine the vector a from a sparse data
measurement Û = ΦU, insert (3.3) into (2.2) and solve the underdetermined linear system
Û = (ΦΨ)a from (2.3) which has m equations (constraints) and p unknowns (modal coeffi-
cients), with m � p. We solve for a sparse â using compressive sensing (L1 minimization).
This approach is natural because it promotes sparsity, an expected property of a. Further,
solving for a using L1 minimization in the reduced-order library basis is significantly more
efficient than solving for U in the full space since p� n. The sparsity-promoting compressed
sensing procedure is illustrated in Figure 2.

The library construction (a one-time cost) and sparse sensing combine to give an efficient
algorithm for approximating the low-rank dynamics of the full PDE (3.1) using a limited
number of sensors and an empirically determined, overcomplete database. Specifically, the
full state of the system U at any given time t is achieved by evaluating a. There are a number
of immediate advantages to this method for characterizing complex dynamical systems:

(i) Once the library is constructed from extensive simulations, future prediction of the
system is efficient since the correct POD modes for any dynamical regime βj have
already been computed.

(ii) The algorithm works equally well with experimental data in an equation-free context,
for instance, by using dynamic mode decomposition [41, 43] or equation-free modeling
[30] in place of POD.

(iii) Given the low-rank space in which the algorithm works, it is ideal for use with control
strategies, which are practical only for real-time application with low-dimensional
systems.

Sparse sensing is significantly less expensive in the learned library Ψ since the high-
dimensional state has been replaced with a truncated POD representation. Additionally, less
information is required to categorize a signal than is required to fully reconstruct the signal, as
in the compressive sensing paradigm. This combination of classification and reconstruction in
a concatenated set of truncated POD bases using L1 minimization is appealing on a number
of levels. There is also a benefit to keeping the individual POD bases Ψj for reconstruction
once the bifurcation regime β has been identified.

4. Results. To illustrate the aforementioned strategy, consider the complex Ginzburg–
Landau model [16], which is ubiquitous in mathematical physics. Here it is modified to
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Table 1
Parameter regimes βj for the complex Ginzburg–Landau equation (4.1) (see Figure 3). The low-rank

approximations of these parameter regimes are used to construct the elements of the library Ψ.

τ κ μ ν ε γ Description

β1 −0.3 −0.05 1.45 0 −0.1 −0.5 three-hump, localized

β2 −0.3 −0.05 1.4 0 −0.1 −0.5 localized, side lobes

β3 0.08 0 0.66 −0.1 −0.1 −0.1 breather

β4 0.125 0 1 −0.6 −0.1 −0.1 exploding soliton

β5 0.08 −0.05 0.6 −0.1 −0.1 −0.1 fat soliton

β6 0.08 −0.05 0.5 −0.1 −0.1 −0.1 dissipative soliton

include both quintic terms and a fourth-order diffusion term much like the Swift–Hohenberg
equation:

iUt+

(
1

2
−iτ

)
Uxx−iκUxxxx + (1−iμ)|U|2U+ (ν−iε)|U|4U−iγU=0,(4.1)

where U(x, t) is a complex function of space and time. Interesting solutions to this governing
equation abound, characterized by the parameter values β = (τ, κ, μ, ν, ε, γ). In particular, we
consider six regimes that illustrate different dynamical behaviors, described in Table 1. The
CQGLE is useful for describing different qualitative phenomena associated with ultrashort
pulse lasers. Both the fourth-order diffusion and the quintic term serve to regularize the
dynamics, providing a broader range of interesting parameter regimes that remain stable.
Note that there are many interesting regimes in the complex Ginzburg–Landau equation [28].

Figure 3 illustrates the corresponding low-rank behavior produced in the simulations.
Figure 4 shows the singular values when POD is performed on the whole library, concatenated
from each regime. The rank required for 99% is r = 15, which is similar to the β4 regime.
However, this library is not useful for Galerkin projection, since it is not stable for any of the
regimes. This is a typical problem of applying the standard POD-Galerkin method across a
range of parameters. However, there are advanced methods based on POD manifolds that are
flexible for multiple parameter regimes [50, 51].

It is important to note that the six regimes described above are representative for charac-
terizing the behavior of a mode-locked laser. However, these regimes are not exhaustive, and
there are many additional parameter values that exhibit interesting phenomena. It is impor-
tant to note that even if the library is incomplete to begin with, it is possible to augment it
on-the-fly when entirely new dynamic regimes are sampled [9, 21].

As is common in many complex dynamical systems, especially those of a dissipative nature,
low-dimensional attractors are embedded in the high-dimensional space. The simulations from
each of these dynamic regimes exhibit low-dimensional structures which are spontaneously
formed from generic, localized initial data. The low-dimensional structures allow for the low-
rank POD approximations used in the library construction of Figure 5, as described in (3.2)
and Figure 1.

To highlight the role of compressive sensing in identification and reconstruction for dy-
namical systems, we allow the bifurcation parameter β = β(t) to vary in time so that the
dynamics switch between attractors as β changes. Consider an example where β = β1 for
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Figure 3. Evolution dynamics of (4.1) for the six parameter regimes given in Table 1: (a) β1, (b) β2,
(c) β3, (d) β4, (e) β5, and (f) β6. All parameter regimes exhibit stable, low-dimensional attractors as evidenced
by the singular values (inset). The SVD sampling occurs for every Δt = 1 in the interval t ∈ [40, 80]. Magenta
circles represent the modes that comprise 99% of the data and are used for the library Ψ.

1 20 40 60 80 100 120

10
−10

10
−5

10
0

SVD index, j

σj

Figure 4. Singular values for concatenated library with all regimes: Acat = [A1 A2 A3 A4 A5 A6].

t ∈ [0, 100), β = β3 for t ∈ [100, 200), and β = β5 for t ∈ [200, 300]. The evolution dynamics
for this case are illustrated in Figure 6(a).

We measure the state at either three (x1–x3) or five (x1–x5) locations x1 = 0, x2 =
0.7, x3 = 1.4, x4 = 1.8, x5 = 2.2 (shown at the bottom of Figure 5) taking data only at the
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Figure 5. Library Ψ of the dominant modes. The groupings, identified by their βj value, are associated
with the different dynamical regimes (a)–(f) in Figure 3. Note that the modes of the exploding dissipative
solution (d) have been included separately in the right-hand panel as there are 14 modes required to capture
99% of the dynamics in this regime. A sample cross-section of the first mode of each library element ψ1(x, βj)
(j = 1, 2, 3, 4, 5, 6) is shown in the bottom panel, color-coded with the top panels. The bottom panel also shows
the spatial location of the three sensors (light gray) and five sensors (including dark gray) used for sparse
sampling.

times t1 = 25, t2 = 125, and t3 = 225; these times are chosen 25 units after the bifurcation
value switches so that transients have decayed. At each instance, we take sparse measurements
and perform classification, projection, and forward simulation (Galerkin reconstruction), while
working exclusively in the low-dimensional POD library. The procedure is as follows:

(i) Classification. From a sparse set of measurements (three or five), the modes corre-
sponding to the specific βj are identified and extracted.

(ii) Projection. The sparse measurements are projected, through a standard pseudoinverse
operation, onto the modes Ψj for the particular parameter βj to determine initial
values of an.

(iii) Reconstruction. The extracted library modes are evolved according to the POD-
Galerkin projection technique by using the spatial modes from the library Ψj in
conjunction with their time dynamics an(t) [26].

Figure 6(b) shows the resulting dynamic reconstruction, and Figure 6(c) shows the coefficients
of the specific sparse vector â identified at each time: t1, t2, and t3. Indeed, the proposed
algorithm using only three measurements reproduces the dynamics with remarkable success.
Although the recognition and reconstruction begin 25 time units after the bifurcation param-
eter switches, this may be very fast in absolute time units, especially for optical systems.
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(a) (b)Exact simulation Dynamic reconstruction

x x
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(c) β1 β2 β3 β4 β5 β6

mode coefficient, j

|âj(t3)|

|âj(t2)|

|âj(t1)|

Figure 6. Full evolution dynamics (a) and the low-rank POD dynamic reconstruction using compressive
sensing and Galerkin projection (b). The black lines in (a) at t = 25, 125, and 225 represent the sampling
times, while the three black circles represent the three sparse measurement locations. From the three samples,
panel (b) is reconstructed by identifying the correct POD modes and using Galerkin projection. Panel (c)
shows the modal coefficient vector â evaluated via convex L1 optimization for the three sampling times. Correct
identification is achieved of the β1 regime at t1 = 25 (circles, ◦), of the β3 regime at t2 = 125 (triangles, �),
and of the β5 regime at t3 = 225 (pluses, +). The |âj | are color-coded according to the library elements depicted
in Figure 5. For ease of viewing, the different βj regimes are separated by shaded/nonshaded regions and are
further identified at the top of panel (c).

To improve the recognition rate, and therefore the bandwidth of closed-loop control built on
these estimated states, it may be possible to augment the POD library with POD of the
transient dynamics. This is the subject of current work by the authors. Note that the number
of measurements m = 3, the number of library elements p = 24, and the original size of the
system n = 1024 are ordered so that m � p � n. Consequently, the matrix ΦΨ in the
underdetermined system (2.3) is a 3× 24 matrix, yielding an efficient L1 convex optimization
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problem for the sparse identification.
For this example, we choose effective sampling locations based on the library modes of Ψ.

If poor choices are made, i.e., not aligning the sensors with maxima and minima observed in
the POD library modes [55], then the dominant modes are often misidentified. This sensitivity
to sensor location suggests that sensor placement should be carefully considered. Moreover,
it is assumed that measurements of the system are perfect. However, noise is inherent in the
detector and/or model.

The POD-Galerkin simulation is many orders of magnitude faster than the full simulation,
as long as only a few modes are included. The dynamic regimes that include the fourth-order
diffusion are numerically stiff and take hours to simulate at high resolution in MATLAB.
Using an exponential time-stepping scheme would reduce this computation by an order of
magnitude. However, POD-Galerkin simulations take on the order of seconds, resulting in
many orders of magnitude speed-up. Reduced-order models based on POD-Galerkin have
many well-documented advantages, the foremost being computational efficiency over the full
simulation. The goal of this paper, however, is not to re-emphasize the benefits of POD-
Galerkin but to demonstrate the advantage of combining L1 and L2 techniques. Since there
are numerous subtle choices for the computation of the full simulation, we do not compare
benchmarks but rather comment that the reduced-order model is much faster.

To quantify the impact of noise on the classification and reconstruction, (2.2) is modified
to Û = ΦU+N (0, σ2), where Gaussian distributed, white-noise error N with variance σ2 is
added to account for measurement error. Figure 7 shows statistical results of 400 trials using
three or five sensors for noise strength σ = 0.2 or 0.5. With moderate noise (σ = 0.2), both
the three- and five-sensor scenarios identify the correct regime quite accurately. For stronger
noise (σ = 0.5), both three and five sensors lose a great deal of accuracy in the identification
process. It is also observed that having more sensors actually hinders the evaluation of the
β1 parameter regime, although the β3 and β5 cases improve. Indeed, numerical simulations
indicate that the three sensors placed at x = 0, 0.7, and 1.4 are robust and are not easily
improved on by varying placement or quantity. Further study is needed to determine optimal
sensor location.

These results suggest that multiple samplings in time can be used to reach a statistical
conclusion about the correct parameter regime, thus avoiding misidentification. For example,
we already wait 25 time units after β switches to take sparse measurements, so that transients
decay. If, instead of sampling a single time unit at t = 25, we accumulate information over
5–10 time units, the effect of sensor noise is significantly attenuated.

We also investigate the least-squares estimate ã for the mode amplitudes based on the
three-sensor and five-sensor configurations. In every single case, for no noise, as well as for
noise levels σ = 0.2 and σ = 0.5, the least-squares solution ã results in the misidentification
of the β1 and β5 regimes, instead identifying the incorrect β3 regime. The collapse of L2

minimization for identifying the bifurcation parameter regime highlights the success of the
sparse sampling strategy, centered around L1 minimization.

5. Discussion. In conclusion, we advocate a general theoretical framework for complex
systems whereby low-rank structures are represented by the L2-optimal POD and then iden-
tified from limited noisy measurements using the sparsity-promoting L1 norm and the com-
pressive sensing architecture. The strategy for building a modal library by concatenatingD
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Figure 7. Accuracy of region classification for the system described in Figure 6. The bifurcation parameter
β switches from β1 at t1 = 25 to β3 at t2 = 125 to β5 at t3 = 225. The bar charts illustrate which bifurcation
regime β1–β6 is classified from sparse measurements by the L1-minimization procedure described above. Three
or five sensors are considered under moderate (σ = 0.2) and strong (σ = 0.5) error measurements using 400
realizations. More sensors improve the region identification performance for regions β3 and β5, but decrease
performance for β1.

truncated POD libraries across a range of relevant bifurcation parameters may be viewed as
a simple machine learning implementation. The resulting modal library is a natural sparse
basis for the application of compressive sensing. After the expensive one-time library building
procedure, accurate identification, projection, and reconstruction may be performed entirely
in a low-dimensional framework.

These results are among the first, along with [8], to combine even simple machine learning
concepts and compressive sensing to complex systems for both

(i) correctly identifying the dynamical parameter regime, and
(ii) reconstructing the associated low-rank dynamics.

Pairing a low-dimensional learned library, in which the dynamics have a sparse representation,
with compressive sensing provides a powerful new architecture for studying dynamical systems
that exhibit coherent behavior.

With three sensors, it is possible to accurately classify the bifurcation regime, reconstruct
the low-dimensional content, and simulate the Galerkin projected dynamics of the complex
Ginzburg–Landau equation. In addition, we investigate the performance of compressed sensing
with the addition of sensor noise and the addition of more sensors. For moderate noise levels,
the method accurately classifies the correct dynamic regime, although performance drops for
larger noise values. The addition of more sensors does not significantly improve performance,
although the sensor placement was not exhaustive. In contrast, classification based on least-
squares fails to identify the β1 and β5 regions for all noise levels, in every trial.D
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There are a number of important directions that arise from this work. The library building
procedure discussed in Figure 1 is quite general, and it will be interesting to investigate
additional library building techniques and machine learning strategies. For example, is it
possible to remove features that are common to all of the dynamic regimes to enhance contrast
between categories in the L1 classification step? It will also be interesting to investigate
optimal sensor placement based on the principle of maximizing incoherence with respect to
the overcomplete basis. To improve the classification time, it may also be possible to augment
the POD libraries with transient dynamics. Finally, it may be possible to use coherence
between each pair of local bases (Ψi,Ψj) as a means of constructing an induced metric on the
space of bifurcation parameters. This may facilitate the accurate categorization of dynamic
regimes that have not been directly explored in the training step. Finally, the procedure
above is promising for use with data assimilation techniques, which typically incorporate new
measurements using least-squares fitting (L2).

As these directions unfold, we believe that the combination of L2 low-rank representations
and L1-sparse sampling will enable efficient characterization and manipulation of low-rank dy-
namical systems. The ultimate goal is to always work in a measurement space with dimension
on the order of the underlying low-dimensional attractor. It will be interesting to leverage
these efficient techniques for closed-loop feedback control.
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