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This paper develops reduced-order models for the unsteady lift on a pitching and plunging
airfoil over a range of angles of attack. In particular, we analyze the pitching and plung-
ing dynamics for two cases: a two-dimensional flat plate at Re = 100 using high-fidelity
direct numerical simulations, and a three-dimensional NACA 0006 airfoil at Re = 65, 000
using wind tunnel measurements. Models are obtained at various angles of attack, and
they are verified against measurements using frequency response plots and large am-
plitude maneuvers. These models provide a low-dimensional balanced representation of
the relevant unsteady fluid dynamics. In simulations, flow structures are visualized using
finite-time Lyapunov exponents.

A number of phenomenological trends are observed, both in the data and in the models.
As the base angle of attack increases, the boundary layer begins to separate, resulting
in a decreased quasi-steady lift coefficient slope and a delayed relaxation to steady-
state at low frequencies. This extends the low-frequency range of motions that excite
unsteady effects, meaning that the quasi-steady approximation is not valid until lower
frequencies than are predicted by Theodorsen’s classical inviscid model. Additionally, at
small angles of attack, the lift coefficient rises to the steady-state value after a step in
angle, while at larger angles of attack, the lift coefficient relaxes down to the steady-state
after an initially high lift state. Flow visualization indicates that this coincides with the
formation and convection of vortices at the leading edge and trailing edge. As the angle of
attack approaches the critical angle for vortex shedding, the poles and zeros of the model
approach the imaginary axis in the complex plane, and some zeros cross into the right
half plane. This has significant implications for active flow control, which are discussed.
These trends are observed in both simulations and wind tunnel data.

1. Introduction

The unsteady aerodynamics of small-scale wings at a high angle of attack is at the
focus of efforts to study bird and insect flight as well as to develop advanced controllers
for high-performance micro air vehicles (MAVs). The short time scales involved in gusts
and agile maneuvers make small wings susceptible to unsteady laminar separation, which
can either enhance or destroy the lift depending on the specific maneuver. For example,
certain insects (Birch & Dickinson 2001; Zbikowski 2002; Sane 2003; Wang 2005) and
birds (Videler et al. 2004) use the shape and motion of their wings to maintain the high
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transient lift from a rapid pitch-up, while avoiding stall and the substantially decreased
lift that follows. The enhanced performance observed in bio-locomotion relies on un-
steady mechanisms that will be important for model-based control of MAVs (Zbikowski
2002; Pines & Bohorquez 2006). The overarching goal of this analysis is to gain an un-
derstanding of the underlying unsteady flow physics of pitching and plunging airfoils and
to develop tractable reduced-order models suitable for feedback control.

The most important parameter for quantifying the trend towards smaller, slower ve-
hicles is the dimensionless Reynolds number, Re = cU∞/ν, where c is the chord length
of the wing, U∞ is the free-stream velocity, and ν is the kinematic fluid viscosity. Small,
lightweight vehicles typically experience low Reynolds number, both because of shorter
wing chord length and because lighter weight leads to a lower stall velocity. Flow over
an airfoil at low Reynolds number is characterized by a thick laminar boundary layer
that may have a stable separation bubble for moderate angles of attack. The effect of
Reynolds number and aspect ratio on stationary small wings is discussed in Torres &
Mueller (2004) and Kaplan et al. (2007).

Unsteady aerodynamic forces are readily excited for small vehicles at low Reynolds
numbers, in response to either a gust disturbance, aggressive maneuvering, or high-
frequency wing motion. The nondimensional parameters governing unsteadiness in the
flow over a pitching and plunging rigid airfoil are the Strouhal number and the reduced
frequency. The Strouhal number is given by St = fA/U∞, where f is the frequency of
oscillation and A is the peak-to-peak amplitude of the airfoil motion. Triantafyllou et al.
(1993) and Anderson et al. (1998) demonstrated that for a pitching or plunging airfoil, the
Strouhal number is typically in the range of 0.25-0.35 for efficient propulsion, although
aspect ratio has been shown to play a significant role (Buchholz & Smits 2008; Green
& Smits 2008). The reduced frequency, k = πfc/U∞, is frequency non-dimensionalized
by chord length. Both nondimensional frequencies increase with higher frequency oscil-
lations and smaller free-stream velocities, and they both decrease with smaller wing size.
Reduced frequency unsteadiness is excited by very rapid maneuvers, regardless of ampli-
tude, while Strouhal number unsteadiness is excited by a combination of fast and large
motion.

Flight dynamic time-scales are shorter for MAVs than for traditional aircraft, because
MAVs are lighter and more compact. Therefore, smaller vehicles are able to perform
aggressive maneuvers without the body inertia attenuating the motion, as is the case for
large aircraft. As flight dynamic and aerodynamic time-scales become comparable, it is
more difficult to simultaneously meet various control objectives. This highlights the need
for accurate low-order models that are compatible with both flight dynamic models and
with modern, robust feedback control techniques.

Ahuja & Rowley (2010) demonstrated that the flow past a stationary flat plate, with
2% thickness at Re = 100, undergoes a supercritical Hopf bifurcation at a critical angle
of attack, αc ≈ 27◦. Above this angle, the flow is characterized by periodic, laminar
vortex shedding. They go on to develop feedback controllers, based on balanced proper
orthogonal decomposition (BPOD) models (Rowley 2005), to suppress vortex shedding
at large angles of attack; their actuation is a localized body force near the trailing edge,
and the sensors measure velocity at two locations in the near-wake.

Figure 1 shows the lift coefficient, CL, against a static angle of attack, α, at the same
Reynolds number (Re = 100) for a flat plate with 1% thickness; in this case the Hopf
bifurcation occurs at αc ≈ 28◦. If the angle of attack varies in time, the lift coefficient may
deviate significantly from the static lift curve, as seen by the sinusoidal pitching and pitch-
up, hold, pitch-down maneuvers. The deviation is caused by transient forces, including
unsteady viscous effects, which are especially important at low Reynolds numbers, and



Unsteady aerodynamic models at low Reynolds numbers. 3

0 10 20 30 40 50 60 70 80 90

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Angle of Attack, α (deg)

Li
ft 

C
oe

ffi
ci

en
t, 

C
L

 

 
Pre−Shedding
Post−Shedding (average)
Min/Max of Limit Cycle

sinusoidal pitching

α(t) = 5◦ + 3◦ sin(0.4πt)

I

I

pitch-up, hold, pitch-down

maneuver, Eq. (4.1)

I

I

Figure 1. Lift coefficient, CL, against the static angle of attack, α. The flow undergoes a Hopf
bifurcation at αc ≈ 28◦. Unsteady airfoil motion causes deviations from the static lift curve.

large added-mass forces, which are given by the rate-of-work supplied to accelerate fluid
out of the way of an accelerating body.

In this work, we build on the ideas in Ahuja & Rowley (2010) by using direct lift
measurements and actuating the position of the wing. In keeping with the wind-tunnel
perspective, including limited actuator and sensor capability, we do not make use of any
linear or adjoint simulations. Instead, we construct maneuvers that are designed to excite
linear unsteady phenomena in the full nonlinear system, and obtain reduced-order models
using the eigensystem realization algorithm (ERA) of Juang & Pappa (1985). Ma et al.
(2011) have recently shown that the resulting models are equivalent to BPOD models,
but without the need for adjoint simulations.

We develop a reduced-order modelling framework to obtain models for the unsteady
aerodynamics of pitching and plunging airfoils at various angles of attack. The models
are linearized about a particular flow configuration, determined by the angle of attack,
wing shape, and Reynolds number, resulting in a hierarchy of models over a range of
parameters. A family of aggressive pseudo-random airfoil maneuvers is devised to identify
models from wind tunnel measurements. Special care must be taken, since obtaining
large reduced frequencies in a wind tunnel commonly involves decreased flow speeds and
subsequently reduced signal-to-noise ratio measurements. The models obtained are low-
dimensional, state-space representations that are ideal for use with modern robust and
optimal control techniques, which will be particularly important when flight dynamic
and aerodynamic time-scales are comparable. Models are developed for Re = 100 flow
past a two-dimensional flat plate and for Re = 65, 000 flow past a NACA 0006 airfoil.

The unsteady lift data, and the resulting models, are then used to analyze properties
of the unsteady flow field up to large angles of attack. In particular, models are tested
over a range of reduced frequencies and angles of attack, including large amplitude, mas-
sively separated flows. The numerical results in this paper are visualized using finite-time
Lyapunov exponent (FTLE) fields (Haller 2002; Shadden et al. 2005). FTLE methods
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have been used to study low Reynolds number aquatic propulsion (Peng & Dabiri 2008;
Wilson et al. 2009; Green et al. 2011), as well as 3D turbulence (Green et al. 2007) and
general vortex phenomena (Franco et al. 2007; Shadden et al. 2007). Lagrangian meth-
ods, such as FTLE, are particularly useful for identifying separated flows (Haller 2004;
Surana et al. 2006; Weldon et al. 2008). In this work, we use FTLE fields to infer lift
mechanisms based on unsteady separated flows.

2. Classical unsteady aerodynamic models

The classical models of Theodorsen (1935) and Wagner (1925), and their variants (von
Karman & Sears 1938), remain widely used (Pullin & Wang 2004), and they provide
inspiration for the state-space models in this paper as well as a benchmark to com-
pare against. Theodorsen’s model extends the quasi-steady thin airfoil theory to include
added-mass forces and the effect of idealized wake vorticity on the circulation around the
airfoil. The model assumes purely harmonic input motion of the angle of attack α and
the vertical position h, so that α(t) = Re(α̃(t)) and h(t) = Re(h̃(t)), where α̃(t) = ᾱeiωt

and h̃(t) = h̄eiωt, respectively. Defining the lift coefficient CL = 2L/ρU2
∞S, where L is

lift, ρ is the fluid density, U∞ is the free-stream velocity, and S is the wing area (or
the chord for a two-dimensional airfoil), Theodorsen’s model is given by CL = Re(C̃L),
where C̃L is

C̃L =
π

2

[
¨̃
h+ ˙̃α− a ¨̃α

]
︸ ︷︷ ︸

added-mass

+ 2π

[
α̃+

˙̃
h+ ˙̃α

(
1

4
− a
)]

︸ ︷︷ ︸
quasi-steady

C(k). (2.1)

Here, C(k) is the complex-valued Theodorsen’s lift deficiency function, describing the
attenuation of circulation around the airfoil by previously shed wake vorticity, in terms of
the reduced frequency, k = ωc/2U∞. Length is nondimensionalized by the chord length
c and velocity is nondimensionalized by U∞, the free-stream velocity. The pitch-axis
location a is measured with respect to the 1/2-chord (a = −1/2 is the leading-edge, and
a = 1/2 is the trailing-edge). Extensions of Theodorsen’s model have been developed for
time-domain analysis of arbitrary maneuvers (Edwards 1977; Brunton & Rowley 2012).

The form of Theodorsen’s model, composed of physically motivated terms, is par-
ticularly attractive. However, Theodorsen’s model is inviscid and assumes infinitesimal
motion of the airfoil, resulting in a planar wake. These assumptions are not valid for low
Reynolds number flows with thick, laminar boundary layers that may have significant
separation and complex wake structures.

Wagner’s model is formulated in the time-domain by a convolution integral, and it
is functionally equivalent to Theodorsen’s model. This is the first of a set of general
indicial response models, based on analytic, numerical, or experimental step-response
data (Truong & Tobak 1990; Lesieutre et al. 1994). A general indicial response model for
the circulatory lift in response to an arbitrary pitch motion, α(t), is given by:

Ccirc
L (t) = φ(t)α(0−) +

∫ t

0

φ(t− τ)α̇(τ)dτ (2.2)

where the “indicial response” φ(t) is the response of the lift coefficient given a step in
the angle of attack. Although this model can be quite accurate, the convolution integral
formulation has two major drawbacks: first, the model is not in a state-space form that
allows for modern analysis and robust control design, and second, the contributions of
various force terms are all lumped into the indicial response φ, making parameterization
difficult.
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The strengths and weaknesses of the above methods motivate the reduced-order models
presented in the following section. In particular, we present a framework for obtaining
low-dimensional state-space models from either theoretical, numerical, or experimental
lift measurements that retain many of the desirable features of the models above.

3. State-space unsteady aerodynamic models

This section presents reduced-order models for the discrete Navier-Stokes equations
with moving airfoil boundary conditions and lift force output equation, linearized about
an equilibrium state. Model reduction yields low-dimensional, state-space representations
of the unsteady lift coefficient, CL, in response to pitching and plunging airfoil motion.
The resulting models are accurate for a specific wing shape, configuration, and Reynolds
number, and they may be built from direct numerical simulations or experimental data.

Consider the general, nonlinear unsteady aerodynamic system arising from the un-
steady Navier-Stokes equations, written in the general form

ẋa = f(xa,u;µ)

y = g(xa,u;µ),
(3.1)

where xa ∈ Rn contains relevant information about the aerodynamic state (vorticity or
velocity field, angle of attack, amount of separation, etc.), u ∈ Rp contains the inputs to
the system (wing kinematics, actuators, etc.), y ∈ Rq are the outputs of interest (forces,
moments, pressure, etc.), and µ ∈ Rk are parameters (e.g., Reynolds number). The func-
tion f is related to the nonlinear Navier-Stokes equations, for example as the discretized
equations from a fluid solver, or the equations resulting from Galerkin projection onto a
set of basis functions.

3.1. Linearized pitch and plunge models

For a model of the unsteady lift coefficient, CL, in response to pitching motion, a general
state xa will include the fluid state x (e.g., the vorticity ω or velocity v at grid points),
as well as the angle of attack α, its rate of change α̇, and the angular acceleration α̈,
resulting in a model of the form

ẋa ,
d

dt

xα
α̇

 =

fNS(x, α, α̇, α̈)
α̇
α̈


CL = glift(x, α, α̇, α̈)

= gν(x, α, α̇) + gφ(α̇, α̈),

(3.2)

where fNS are the discretized Navier-Stokes equations. The output is split into viscous
forces gν , and added-mass forces gφ, which depend linearly on α̇ and α̈ (Brennen 1982).

The input to (3.1) could also be vertical plunging motion ḧ or horizontal surging motion g̈.
Linearizing (3.2) about an equilibrium flow x̄(α0) at a base angle of attack α0 < αc

yields a model for the lift coefficient CL in response to pitch motion α̈:

d

dt

xα
α̇

 =

A B1 B2

0 0 1
0 0 0

xα
α̇

+

B3

0
1

 α̈
CL =

[
C Cα Cα̇

] xα
α̇

+ Cα̈α̈,

(3.3)
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where A = ∂fNS/∂x, B1 = ∂fNS/∂α, B2 = ∂fNS/∂α̇, B3 = ∂fNS/∂α̈, C = ∂gν/∂x,
Cα = ∂gν/∂α, Cα̇ = ∂(gν + gφ)/∂α̇, and Cα̈ = ∂gφ/∂α̈. It is important to note that
Eq. (3.3) is linearized about an equilibrium flow state x̄(α0) at a base angle of attack
α0 for pitching about a fixed pitch-axis location a. Theodorsen’s lift model has recently
been cast into the state-space form (3.3) in Brunton & Rowley (2012).

The model in Eq. (3.3) is in a general form with no assumption made about the fluid
state x. However, we may assume that the fluid state x represents vorticity and that
the flow responds instantaneously to pitch acceleration α̈ with an unsteady (irrotational)
potential flow, resulting in the added-mass forces Cα̇α̇ and Cα̈α̈. Therefore, B3 = 0 ,
so that α̇ is the input to the transient fluid dynamics in x. Furthermore, as long as
A is invertible, we may further simplify the model by defining a new state variable
x̃ = x+ A−1B1α. Writing Bα̇ = B2 + A−1B1, the model (3.3) then takes the form

d

dt

x̃α
α̇

 =

A 0 Bα̇
0 0 1
0 0 0

x̃α
α̇

+

00
1

 α̈
CL =

[
C Cα Cα̇

] x̃α
α̇

+ Cα̈α̈.

(3.4)

In Eq. (3.4), the wing motion (α, α̇, α̈) enter the transient fluid dynamic state x̃ through
the Bα̇ term. It is possible to write an equivalent model by introducing another change
of coordinates, ˜̃x = x̃+ A−1Bα̇α̇, and Bα̈ = A−1Bα̇. The resulting model is

d

dt

˜̃x
α
α̇

 =

A 0 0
0 0 1
0 0 0

˜̃x
α
α̇

+

Bα̈0
1

 α̈
CL =

[
C Cα Cα̇ − CA−1Bα̇

] ˜̃x
α
α̇

+ Cα̈α̈.

(3.5)

We may generalize the above model to include pitch, plunge, or combined pitch and
plunge motions. The general model is given by

d

dt

xu
u̇

 =

A 0 0
0 0 I
0 0 0

xu
u̇

+

Bü

0
I

 ü
y =

[
C Cu Cu̇

] xu
u̇

+ Cüü.

(3.6)

For this paper, we use a lift coefficient output, y = CL. Pure pitch is given by u = α,

pure plunge is given by u = h, and combined pitch and plunge is given by u =
[
α h

]T
.

3.2. Reduced-order model identification

Similar to Theodorsen’s expression, the models above are written in terms of the quasi-
steady and added-mass forces, given by the coefficients Cu, Cu̇, Cü in (3.6), and a model
for the transient fluid dynamics, given by (A,Bα̇,C ) in (3.4) and (A,Bü,C ) in (3.6). All
of the terms in the models above depend on the specific wing geometry, configuration and
Reynolds number used to determine the equilibrium flow state about which the equations
are linearized. In both cases, the transient fluid dynamic models are written in terms of



Unsteady aerodynamic models at low Reynolds numbers. 7

the vector x ∈ Rn, which is a representation of the fluid state, for example the velocity
or vorticity at each grid point; typically, the dimension n is quite large.

We seek a reduced-order model, (Ar,Br,Cr), of the full-state model, (A,B,C ), in terms
of a low-dimensional state, xr ∈ Rr, where r � n. This reduced-order model is obtained
by first identifying and removing the coefficients Cu, Cu̇, Cü from an impulse response in
either u̇ or ü, and identifying the remaining transient dynamics using the eigensystem
realization algorithm (ERA) of Juang & Pappa (1985). Ma et al. (2011) demonstrated
that the resulting model captures the r most observable and controllable fluid states
in a balanced representation, which is particularly good for efficiently and faithfully
representing the input-output relationship for a particular choice of sensors and actuators.
Identifying the quasi-steady and added-mass coefficients up-front guarantees accuracy of
the model in the limit of low-frequency and high-frequency motions. The modelling effort
is then targeted at the transient unsteady fluid dynamics that occurs at intermediate
frequencies, allowing for a low-order model that is accurate over a range of frequencies.

The reduced-order models presented in this work are obtained from an approximation
of the discrete-time impulse response in either α̇ (step in α), α̈ (step in α̇), or ḧ (step in
vertical velocity). These responses are obtained from maneuvers related to the canonical
pitch-up, hold, pitch-down maneuver that was developed by Eldredge et al. (2009) to
study low Reynolds number separation phenomena across simulations and experiments.
In the case of direct simulations, a smoothed linear ramp-step is used. This maneuver
is ideal for identifying unsteady aerodynamic models, because the unsteady contribution
from the quasi-steady, added-mass, and transient terms are separated in time.

For wind tunnel measurements, we use a frequency-rich input maneuver in conjunc-
tion with the observer/Kalman filter identification (OKID) algorithm (Juang et al. 1991),
which estimates the impulse response of a linear system in the presence of noisy measure-
ments. Obtaining high reduced frequencies in a wind tunnel typically involves low free-
stream flow velocity, and corresponding low signal-to-noise ratio measurements. There-
fore, a pseudo-random sequence of smoothed ramp-steps are concatenated to form an
aggressive system identification maneuver. This idea is inspired by the pulsed-blowing
identification of Kerstens et al. (2011). Because the input to this maneuver is a sequence
of discrete impulses in ü, the model identified is of the form in Eq. (3.6).

After obtaining a discrete-time step response in either u or u̇, the quasi-steady and
added-mass coefficients Cu, Cu̇, and Cü are identified and subtracted from the measured
response. Next, a model for the remaining transient fluid dynamics is obtained using the
ERA. The transient portion (A,B,C ) of the model in Eqs. (3.4) and (3.6) is approximated
by the ERA model (Ar,Br,Cr) of order r � n = dim(A); the input is either u̇ or ü (for
example, u = α for pitch), and the output is CL. The general procedure is summarized:

(a) Obtain the impulse response in either u̇ or ü, possibly via OKID.
(b) Determine Cu, Cu̇, and Cü. The coefficients Cu and Cü guarantee correct low-

frequency and high-frequency behaviour of the model, respectively.
(c) Identify reduced-order model for remaining dynamics with the ERA.
Specific details about the algorithms and maneuvers are provided in Brunton (2012).

4. Results: two-dimensional flow past a flat plate at Re = 100

4.1. Direct numerical simulations

The numerical results in this paper are based on direct numerical simulations (DNS) of
the incompressible two-dimensional Navier-Stokes (NS) equations. We use the fast multi-
domain immersed boundary projection method (IBPM) of Taira & Colonius (2007) and
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Colonius & Taira (2008). This method has been rigorously verified against standard
examples, as well as a low Reynolds number tow-tank experiment in oil (Colonius &
Taira 2008).

The immersed body is a rigid flat plate airfoil that may either pitch or plunge with
velocity vB . The boundary conditions are uniform flow in the far field, which is valid
for a sufficiently large domain, and specified velocity vB at points along the body. An
efficient multi-domain approach is used, resulting in a series of nested grids, each twice
as large as the previous. The Poisson equation is solved on the largest domain with zero
boundary conditions, and the interpolated stream function from this larger grid is used
for the boundary condition on the next smaller grid. The Poisson equation is then solved
on this smaller grid, and the process is repeated, until the equations have been solved
on all grids. Time integration is performed using the implicit Crank-Nicolson scheme for
the viscous diffusion and a third order Runge-Kutta scheme for the convective terms.

The computational domain consists of five nested grids, using the multi-domain ap-
proach above. The finest grid covers a domain of 4× 4 (with lengths nondimensionalized
by chord), and the coarsest covers a domain of 64 × 64. Each grid has resolution of
400×400, which is sufficient for converged results at Re = 100. Additionally, the method
is slightly modified to solve the equations of motion in the body-fixed frame of the flat
plate by introducing a moving baseflow with uniform and purely rotational components.
In this formulation, the locations of the boundary points relative to the grid do not
change in time, so that the matrix involved in solving for the boundary forces is con-
stant, and can be decomposed (e.g., by a Cholesky factorization) once at the beginning
of the calculation. This approach is significantly faster than available alternatives when
the boundary points move relative to the grid.

4.2. Lagrangian particle analysis

The finite-time Lyapunov exponent (FTLE) field is used to visualize the unsteady flow
field, because it is well suited for identifying regions of separated flow and wake structures.
Ridges of the FTLE field that satisfy an additional hyperbolicity condition are Lagrangian
coherent structures (LCS) (Haller 2002; Shadden et al. 2005), and they are time-varying
analogs of the stable and unstable manifolds from dynamical systems theory.

This analysis involves advecting passive tracer particles through the time-varying fluid
velocity field by numerical integration, resulting in a particle flow map. The FTLE is the
maximum singular value of the flow map Jacobian, logarithmically scaled with respect
to the advection time. We use a computationally efficient method to compute the FTLE
field (Brunton & Rowley 2010), whereby a flow map with long advection time is broken
up into the composition of a number of intermediate flow maps with short advection
time. Neighboring FTLE field computations may re-use the intermediate flow maps,
which dramatically improves computational efficiency. The FTLE visualizations in this
paper are obtained by integrating particles backward in time, yielding FTLE ridges that
attract particles in forward time.

Figure 2 shows the attracting FTLE structures for simulated flow past a flat plate at
Re = 100 in various configurations. Ridges in the FTLE field indicate the stable separated
flow behind a stationary plate at α0 = 25◦, the vortex shedding behind a stationary plate
at α0 = 35◦, the von Kármán vortex street behind a pitching plate, and the formation
of a large leading-edge vortex for a plunging plate with α0 = 20◦ bias.

4.3. Models linearized at α0 = 0◦

At zero angle of attack, ramped step-response simulations are obtained for a flat plate
pitching about various points (leading edge, quarter chord, and middle chord) and plung-
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Figure 2. Finite-time Lyapunov exponent (FTLE) field for various two-dimensional separated
flows. (a) Steady flow past a flat plate at α = 25◦, (b) Unsteady vortex shedding past a flat plate
at α = 35◦, (c) von Kàrmàn vortex street behind a pitching plate, (d) leading-edge separation
for a plunging plate with α = 20◦. The Reynolds number for all flows is Re = 100, and the
reduced frequency is k = 1.26 for the pitching and plunging cases.

ing vertically. The lift coefficient history from the step-response simulations are synthe-
sized into models of the form in Eq. (3.4) for pitch and Eq. (3.6) for plunge, with ERA
models (Ar,Br,Cr) for the transient viscous fluid dynamics of order r = 7. Additionally,
a multiple-input model of the form in Eq. (3.6) is obtained that combines plunging with
pitching about various points. For the multiple-input case of combined pitch and plunge,
the ERA model also has order r = 7.

4.3.1. Small amplitude motions

The reduced-order models presented are based on ramped step-response simulations
with a small step magnitude M ; M = 0.1◦ in the case of pitching motion, and M = 0.1◦

effective angle of attack (ḣ = 0.00175) in the case of plunging motion. Therefore, it is
natural to compare the models with DNS for small amplitude motions. The frequency
response for each model is computed for sinusoidal input u(t) = M sin(ωt) with M = 1◦

for pitch (u = α), and M = 0.01 for plunge (u = h). The input to the models is
ü = −Mω2 sin(ωt), so that the Bode plot is a frequency response from input ü to CL.

Figure 3 shows the frequency response (i.e. Bode plot) comparing the DNS, reduced-
order models (3.4) and (3.6), Theodorsen’s model (2.1), and indicial response (2.2) for
pitching about the quarter-chord. Similar agreement is found in Bode plots for pitch
about the leading-edge and mid-chord as well as for plunge motion. In all of the Bode plots
and step-response plots, the low-order ERA models (single-input, single-output as well as
the multi-input, single-output) accurately reproduce the frequency response computed
by direct numerical simulations. Moreover, the ERA model is nearly identical to the
indicial response model, as they are both based on the same numerical step response.
Theodorsen’s model consistently over predicts the quasi-steady lift slope, and is not as
accurate in capturing the phase.

It is important to gain a physical intuition for the Bode plots and how they relate to
the aerodynamic response. The low-frequency asymptote in each Bode plot corresponds
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Figure 3. Frequency response of reduced-order model (3.4) (7-mode ERA component), indicial
response, Theodorsen and DNS (×) for pitching at quarter chord. Multiple-input ERA model
(3.6) for pitch/plunge agrees well (circle, ◦).

to the quasi-steady case when the lift coefficient depends only on the angle of attack in
the case of pitch, or effective angle of attack in the case of plunge. For pitching motion,
the low-frequency asymptote in the magnitude plot has a slope of −40 dB/decade†,
consistent with the fact that α is obtained by integrating the input α̈ twice. In the case
of plunge, the low-frequency asymptote has a slope of −20 dB/decade, since the effective
angle of attack is related to ḣ which is the integral of the input ḧ. In all instances, the
low-frequency asymptote of the model is lower than that of Theodorsen’s model, which
uses the inviscid 2π lift slope and over-predicts the true lift slope at Re= 100. The high-
frequency asymptote in the Bode magnitude plot corresponds to the case when there are
large accelerations and the lift coefficient is strongly influenced by added-mass forces. In
the case of pitch about the quarter-chord and plunge motion, there are added-mass forces
directly proportional to the inputs (α̈ and ḧ), so that the Bode plot has zero slope at high
frequencies. These forces are captured by the Cα̈ and Cḧ terms in Eqs. (3.6) and (3.4).
There is no added-mass lift force proportional to α̈ in the case of mid-chord pitching,
but there are forces proportional to α̇, so the Bode plot has a slope of −20 dB/decade at
high frequencies. This information is also reflected in the Bode phase plot. The phase at
low-frequency starts at −180◦ for the pitching models, which is consistent with the fact

† A decade is defined as an order of magnitude in frequency, and each integral of the input
adds −20 dB/decade to the magnitude slope.
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α0 = 0◦, α0 = 10◦, and α0 = 20◦ are included for comparison.

that the angle of attack is the second integral of the input (twice integrating a sinusoid
results in a negative sinusoid, hence the −180◦ phase).

4.4. Models linearized at sub-critical angles, α < αc

As the plate’s angle of attack is increased, the flow physics becomes significantly more
involved. Increasing the angle of attack results in an adverse pressure gradient on the
upper surface that thickens the upper boundary layer until the flow reverses, resulting
in a stable, attached separation bubble. Above a critical angle of attack, αc ≈ 28◦, the
separation bubble bursts, resulting in periodic, laminar vortex shedding.

This section presents models for a flat plate linearized at various angles of attack
up to the critical angle, αc, at which a Hopf bifurcation occurs. These cases provide a
more challenging demonstration of the modelling procedure, because the transient fluid
dynamic interactions are increasingly complex and important at larger angles of attack.

4.4.1. Frequency domain analysis

Using the reduced-order modelling technique described in Section 3, we have computed
reduced-order models linearized at α0 ∈ [0◦, 27◦] in 1◦ increments. Figure 4 shows the
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frequency response of models linearized at α0 = 0◦, α0 = 10◦, and α0 = 20◦, and the
corresponding data from DNS. As seen in Figure 1, the lift slope decreases for increasing
angle of attack, so it is not surprising that the low-frequency magnitude in the Bode
plot decreases for increasing angle of attack. Additionally, we see that at larger angle of
attack the phase converges to −180◦ at lower frequencies, indicating that solutions take
longer to reach equilibrium in the time domain. This is consistent with the fact that for
larger angles of attack the system is closer to instability, and a pair of eigenvalues of the
system approach the imaginary axis, lengthening the time-scale of relaxation.

To see this more clearly, we plot the poles and zeros of the models for α0 ∈ [0◦, 27◦],
shown in Figure 5. The model given by Eq. (3.4) always has two poles at the origin
because the input α̈ must be integrated twice to obtain the states α̇ and α. Because we
use an ERA model of order r = 7 for the transient dynamics, there are seven branches
of poles, in addition to the two poles at the origin; there are nine branches of zeros.

The most striking feature of Figure 5 is that as angle of attack increases, a pair of
poles and a pair of zeros march towards the imaginary axis. This explains the longer
relaxation times (convergence of Bode plots to −180◦ at successively lower frequencies).
It also indicates that the models are capturing the dynamics as the system approaches
a Hopf bifurcation. It is also interesting to note that there is a second set of poles and
zeros that branch from the real axis and march toward the imaginary axis for increasing
angle of attack. This is consistent with the fact that at larger angle of attack, there is
more complicated limit cycle behaviour. It is not surprising that the flow may undergo
several Hopf bifurcations as angle of attack or Reynolds number is increased, as observed
by Ruelle & Takens (1971).

4.4.2. Time domain analysis

The step-response simulations for the various base angles from α0 = 0◦ to α0 = 27◦ are
plotted in Figure 6. The lift coefficient at the base angle is subtracted, and we only plot
the transient dynamics after the step, so added-mass is omitted. Notice that between one
and five convective times, there is a dip in the lift coefficient followed by a rise to steady
state. A 7-mode ERA model is required to capture this feature accurately at all angles,
even at α0 = 0◦. Interestingly, a 7-mode model is also required to accurately capture the
frequency and decay rate of the oscillations in the large angle of attack cases. It is worth
noting that this data is based on a small, fast maneuver which yields relatively small
variations in the lift coefficient. Although this works well for DNS, the lift variations
are hundreds of times smaller than those of a canonical maneuver, shown in Figure 7,
and they may be too subtle for experimental measurements, motivating the aggressive
maneuvers used in the wind tunnel analysis.

A large amplitude pitch-up, hold, pitch-down maneuver, developed by Eldredge et al.
(2009) to study separation phenomena in pitching airfoils, is given by the following:

α(t) = α0 + αmax
G(t)

max(G(t))
, G(t) = log

[
cosh(a(t− t1)) cosh(a(t− t4))

cosh(a(t− t2)) cosh(a(t− t3))

]
(4.1)

The maneuver from Eq. (4.1) is used, at an angle of attack starting at α0 = 15◦ and
reaching a maximum angle of 25◦; the pitch point is the leading edge, the parameter
a = 11 determines how sharp the corners are in the maneuver, and t1 = 1, t2 = 3, t3 =
4, t4 = 6. This maneuver excites leading edge separation, as seen in the accompanying
FTLE images. The comparison of various reduced-order models with DNS is shown in
Figure 7. Theodorsen’s model is included for a baseline comparison. The pitch model
linearized about α0 = 15◦ matches the DNS very closely. The model linearized about
α0 = 0◦ is more accurate than Theodorsen’s model, but has the wrong lift coefficient
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Figure 5. Poles (left, ×) and zeros (right, ◦) of models for pitch about the middle-chord and
plunge, linearized at various angle of attack, from α = 0◦ to α = 27◦. (bottom) zoom in.

slope. The α0 = 15◦ model is also able to capture the negative slope of the lift coefficient
during the constant angle hold period between τ = 3 and τ = 4; this is an important
feature that is observed at large angles of attack, both in simulations and in experiments.

4.5. Behavior at post-critical angles, α > αc

It is important to establish how the linear models from Section 3 perform on large
amplitude maneuvers with significant flow separation. For this reason, we consider a
number of large amplitude pitch and plunge maneuvers and investigate both the model
performance and the flow field itself.

First, consider the pitch-up, hold, pitch-down maneuver from 0◦ to 45◦ and back down,
given by Eq. (4.1) and shown in the top of Figure 8. This maneuver exceeds the critical
angle of attack, and as is seen in the FTLE visualization, a large leading-edge vortex forms
and convects downstream. The curve labelled “Hybrid Model” is obtained by running
two models, one linearized at α0 = 0◦ and another at α0 = 25◦, and switching between
the models at time τ = 3.0 and again at τ = 4.0. The model does surprisingly well,
considering the large separated flow structures, although there is error during each phase
of the maneuver. Again, we notice that the slope of the lift response is negative during
the hold region. Investigating the FTLE field, we see that the FTLE ridge is parallel to
the trailing edge at τ = 3.0, and the ridge moves upstream along the upper surface of
the airfoil at τ = 4.0. The trailing edge separation likely accounts for the decreased lift,
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despite the leading edge vortex that typically provides enhanced lift (Taira & Colonius
2009).

This effect is more pronounced in Figure 9, which shows a flat plate in a sigmoidal
pitch-up maneuver to α = 32◦ at Re = 300. Because the airfoil does not pitch back down
to α = 0◦, it is possible to see the free evolution of the leading-edge vortex. Again, there
is a clear difference in the high-lift and low-lift states corresponding to whether or not
there is trailing edge separation. Because this flow is at a different Reynolds number,
and our linear models are not built to capture the nonlinear vortex shedding, we do not
include a model comparison.

Finally, we consider an aggressive sigmoidal plunge maneuver in Figure 10. The max-
imum plunging velocity corresponds to an effective angle of attack of over 40◦, based on
the formula αe = tan−1(ḣ/U∞); however, this large effective angle of attack is short lived.
The reduced-order model, linearized at α0 = 0◦ captures the lift coefficient quite well.
Again, the FTLE field indicates large leading and trailing edge separation that convect
downstream. The majority of the forces throughout the maneuver are added-mass forces,
which appear as a doublet in the lift coefficient, which contributes to the good model
performance.

4.6. Summary of numerical results

Pitch and plunge models have been developed for a flat plate at Re = 100 over a range
of sub-critical angles of attack, based on data from direct numerical simulations. These
models outperform Theodorsen’s classical model for all motions investigated, and the per-
formance gap widens at larger base angle of attack, as the flow becomes more separated,
and the assumptions of an inviscid, planar wake become less accurate.

A number of interesting flow phenomena arise at large base angles of attack. First,
as a pair of model eigenvalues moves towards the imaginary axis, the time-scale for
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relaxation to steady-state becomes longer. In addition, at a small base angle, the lift
rises to a steady-state value after a step in the angle, and at large base angle, the lift
starts at an initially high lift and decreases to steady-state. The FTLE fields indicate that
the flows have large separation for these maneuvers, and the lift is strongly correlated
to the trailing-edge separation condition. Large lift corresponds to streamlined trailing
edge flow parallel to the plate, and low-lift states have trailing edge separation, indicated
by an FTLE ridge that moves upstream, perpendicular to the plate. The extent of the
motion of the trailing-edge separation point upstream is roughly linear in the maneuver,
so the model captures the behavior of rapid maneuvers past the critical bifurcation angle.

In the next section, the reduced-order models, Eqs. (3.4) and (3.6), and Theodorsen’s
model are tested at higher Reynolds numbers in wind-tunnel experiments. Instead of
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a two-dimensional flat plate, we now use a lightweight, three-dimensional NACA 0006
airfoil with rounded leading edge; three-dimensional effects are reduced by having the
airfoil span nearly the entire width of the wind-tunnel. The following experimental results
at higher Reynolds number are a more realistic test of these models.
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(Re = 300). Peaks in lift coefficient (1,5) correspond to streamlined trailing edge condition.
Minima of lift coefficient (3) correspond to a trailing edge separation point moving up towards
the mid-chord of the airfoil and strong trailing-edge roll-up.

5. Experimental apparatus

The following experimental data was collected in the Andrew Fejer Unsteady Flow
Wind Tunnel at the Illinois Institute of Technology. The dimensions of the wind tunnel
test section are 0.6m× 0.6m× 3.5m.

The model is a NACA 0006 airfoil, shown in Figure 11 (a), with a chord length of
0.246 m and span of 0.598 m. The free-stream velocity is 4.00 m/s, which results in a
Reynolds number of approximately 65, 000 and a convective time of 0.0615 seconds. In
all pitching experiments the pitch point is at the 11% chord location.

Forces and moments are measured using a 6-axis ATI Nano17 force transducer. The
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free-stream velocity is measured using a Pitot tube with a Validyne DP-103 pressure
transducer. The model is actuated using two Copley servo tubes connected to individual
pushrods, allowing for a full range of pitch and plunge motions.

The force transducer moves with the body, so forces are measured in the body-fixed
frame of the airfoil. Therefore, we rotate the normal (N) and parallel (P ) forces in the z-
and x- directions into the lift (L) and drag (D) forces relative to the free-stream velocity:[

L
D

]
=

[
cos(α) − sin(α)
sin(α) cos(α)

] [
N
P

]
(5.1)
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Figure 12. Schematic of signals in wind tunnel experiment. Vact is the actuator voltage.

The lift and drag forces are then converted into nondimensional force coefficients.
The pushrods are connected to the airfoil and force balance via a lightweight aluminum

platform with a hinge constraint, as shown in Figure 11 (b). It is possible to command
an angle of attack α by varying the relative displacement of the two pushrods. For the
pitching experiments below, the front pushrod is held fixed, and the height of the rear
pushrod y1 is varied to change α. The vertical displacement y1 may be solved for as a
function of α, and vice versa, using the following relationship:

(l3 cos(α)− l1)2 + (−l3 sin(α)− y1)2 − l22 = 0 (5.2)

where l1 = 2.1”, l2 = 1.25”, and l3 = 3” for the setup in Figure 11.
Finally, the inertia of the model, sting and pushrods introduces time lags, so the

measured angle is not exactly the same as the commanded angle. Additionally, the Copley
servo tube controller has its own PID dynamics to track a reference position. Figure 12
is a schematic of the signals. The model input is the commanded angle of attack, αcmnd,
so that the models include the effect of the actuator and the mechanical apparatus.

5.1. Phase Averaged Force Measurements

To reduce the magnitude of sensor noise in the force measurements, we phase average
over a number of cycles. Data is collected for N identical runs and averaged, resulting in
a reduction of noise by a factor

√
N . The top of Figure 13 shows the force measurements

with sensor noise for a 5◦ step, and the bottom shows the phase-averaged force.
Before phase averaging, we use a 6-th order Butterworth low-pass filter at 2500 Hz.

In addition, we coarsen the data by averaging the measurements inside each interval
[k∆t, (k + 1)∆t), where ∆t = 0.1 convective time unit, or 0.00615 seconds. Using this
coarsened data as an input to the OKID method results in a discrete-time model with
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Figure 13. Phase-averaged force measurement for 5 degree step-up, step-down.

time-step ∆t. Because the high-frequency forces are dominated by added-mass, a time-
step of ∆t = 0.1 is sufficiently small to excite and characterize the transient dynamics.

5.2. Mechanical resonance

Figure 14 shows the power spectrum of the normal force measurement for a number
of experiments designed to isolate the source and frequency of various mechanical reso-
nances. In one case, the bottom of the actuator assembly is struck with a rubber mallet,
resulting in a strong resonance at 77 Hz and at 138 Hz. When power is fed to the servo
motor controller, a significant resonant peak at 38 Hz develops, regardless of whether or
not the wind tunnel fan is on. It is likely that the resonance peak at 38 Hz is a result of
the internal PID dynamics of the servo motor controller, partially explaining the peaks
in the Bode plots at nearby frequencies in the following section.

6. Results: flow past a NACA0006 airfoil at Re = 65, 000

Unsteady aerodynamic models are developed for a NACA 0006 airfoil at Reynolds num-
ber 65, 000 based on wind tunnel measurements discussed in the previous section. Pitch
and plunge models of the form in Eq. (3.6) are constructed using the ERA/OKID method
in conjunction with aggressive system identification maneuvers described in Section 3. It
is shown that the low-order models identified from experiments are more accurate than
Theodorsen’s model for all maneuvers, especially those based at larger angle of attack.
We compute the reduced-order models using an on-design pseudo-random maneuver and
test the performance of the models on several pseudo-random off-design maneuvers; the
model performance is similar to the on-design case, and these plots are not shown.

After identifying significant mechanical ringing and aeroelastic effects in earlier results,
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the structural supports were rebuilt and the PID controller was tuned to reduce sources
of noise and vibration. In addition, a more sensitive Nano17 force transducer is used to
measure forces, so that less aggressive maneuvers may be accurately measured.

6.1. Pitching experiments

An aggressive pseudo-random maneuver, shown in the top of Figure 15, is used to obtain
a reduced-order model of the form in Eq. (3.6) for pitching motion linearized about
α0 = 0◦. The middle of Figure 15 shows the measured and modeled response. Both
models, Eq. (3.6) and Theodorsen’s model, appear to closely match the measured force;
however, from Table 1 in Section 6.3, Theodorsen’s model has nearly twice the error
as the ERA model. The agreement with Theodorsen’s model at α0 = 0◦ speaks to the
accuracy of the experiments after mechanical resonances were isolated and removed.

Figure 16 shows the same pitch maneuver performed at a base angle of α0 = 10◦. For
this maneuver, Theodorsen’s model is significantly less accurate than in the α0 = 0◦ case.
This is not entirely surprising, considering that the flow physics is increasingly complex
for larger angles of attack. In addition, the behavior in the hold regions is qualitatively
different from the α0 = 0◦ case: instead of a transient rise to the steady-state value, the
lift starts at an initially high value at the beginning of the hold, and decreases to the
steady-state value. Similar behavior was observed in simulations, where the difference in
behavior was explained by leading-edge and trailing-edge separation, as in Figure 7.

Figure 17 compares the Bode plots of the ERA models at α0 = 0◦ and α0 = 10◦ and
Theodorsen’s model. The model linearized at α0 = 10◦ converges to the low-frequency
asymptote at a lower frequency than the α0 = 0◦ model, and the magnitude is smaller
at low frequencies, consistent with a decreased lift coefficient slope. Additionally, since
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these models include the effect of the actuator and mechanical system, there is a strong
mechanical resonance at 30 rad/s c/U, which corresponds to about 76 Hz. The model
at α0 = 10◦ does not have a prominent resonance at 11 rad/s c/U (28 Hz), unlike the
model based at α0 = 0◦. It appears that the boundary layer separation at α0 = 10◦ has
almost entirely eliminated this resonance.

6.2. Plunge experiments

An aggressive plunge maneuver can be seen at the top of Figure 18. Since the Ch term
is zero in the plunge model (3.6), it is unnecessary to have the hold portions of the
maneuver at different heights. Therefore, the new maneuver accelerates into linear ramps
of different vertical velocity until a maximum or minimum height has been reached, after
which the position is held for a time and then the direction is reversed. The different
vertical velocities correspond to different effective angles of attack.

Figure 18 shows the results for plunging at α0 = 0◦ and Figure 19 shows the results for
plunging about α0 = 10◦. At α0 = 0◦ Theodorsen’s model is quite accurate, capturing
the qualitative behaviour. At α0 = 10◦, however, Theodorsen’s model fails to predict the
regions of constant vertical velocity, which correspond to a constant effective angle of
attack. In fact, during these effective angle of attack holds, Theodorsen’s model rises to a
steady state that is larger in magnitude, while the actual lift decreases from a large initial
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Figure 16. Experimental and modeled lift for pitch about a base angle α0 = 10◦.

value. Although the reduced-order model is more accurate at capturing this phenomena,
it is clear from the error signal that both models systematically underpredict the lift at
the beginning of these hold periods.

6.3. Model benchmarks

The results of Sections 6.1 and 6.2 are summarized here. Table 1 shows the error between
the measured data and both Theodorsen’s model and the identified model, Eq. (3.6) from
ERA/OKID. The error is measured by integrating the square of the difference between
each model and the measured data for a given maneuver. In each case, the error in the
ERA model is about half of the error in Theodorsen’s model. The error increases with
the base angle of attack, α0, which is reasonable, since the flow becomes increasingly
nonlinear for increasing angle of attack. The number of Markov parameters (values of
the discrete-time impulse response from OKID used by ERA) is reported.

The inherent time delay between command signal and measured force is identified by
choosing the time delay that minimizes the model error for the case of pitching about
α0 = 0◦. The results are shown in Table 2. Recall from Section 5.1 that the coarse sample
time is ∆t = 0.1 convective time units. Since the error is the same for a time delay of 2∆t
and 3∆t, it helps to use other indicators, such as the frequency response or how closely the
peaks in α̈ line up with the added-mass peaks in the force measurement. Based on these
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Error Error Markov Model
(Theodorsen) (ERA Model) parameters order

Pitch, α0 = 0◦ 0.0604 0.0331 100 7
Pitch, α0 = 5◦ 0.0752 0.0430 50 5
Pitch, α0 = 10◦ 0.1279 0.0629 150 5
Plunge, α0 = 0◦ 0.1414 0.0701 100 5
Plunge, α0 = 10◦ 0.2028 0.0991 100 5

Table 1. Comparison of Theodorsen and ERA model error with wind tunnel measurements
for pitch and plunge maneuvers. Error is quantified by computing the standard deviation, from
zero mean, of the error signal (measurement minus model).

comparisons, it was determined that the time-delay is τd = 3∆t (0.3 convective times).
This imposes a fundamental bandwidth limitation for closed-loop feedback control of
1/τd rad/s c/U, which is 8.6 Hz in dimensional units. This bandwidth is higher than was
reported by Kerstens et al. (2011) using leading-edge actuation.

6.4. Discussion about experimental results

Reduced-order models for the unsteady lift force have been obtained from wind tunnel
measurements of a pitching and plunging airfoil. The wind tunnel is a more challenging
test case with the addition of flow disturbances, time-delays, and sensor noise. Addition-
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Figure 18. Experimental and modeled lift for plunge about a base angle of α0 = 0◦.

Model order 7 7 7 7
Time delay (∆t) 1 2 3 4
Error (ERA Model) 0.0359 0.0331 0.0331 0.0727

Table 2. Effect of assumed time delay on model error. Model is α0 = 0◦ pitch case. 100
Markov parameters are used with ∆t = 0.1 convective time units.

ally, the experiment is performed at a moderate Reynolds number, Re = 65, 000, with a
three-dimensional wing with rounded leading edge, providing a more realistic model of a
micro aerial vehicle. The issue of plant disturbance and sensor noise motivates the use of
aggressive maneuvers, which excite strong unsteady aerodynamic responses across a range
of relevant frequencies. These maneuvers are used in conjunction with the ERA/OKID
algorithm to construct pitch and plunge models of the form in Eq. (3.6).

In both pitch and plunge experiments, at α0 = 0◦ and α0 = 10◦, the reduced-order
model outperforms Theodorsen’s model. At larger base angle of attack, α0 = 10◦, the
difference with Theodorsen is more pronounced. At α0 = 10◦ both models have larger
total error than in the α0 = 0◦ case, because of nonlinear flow effects that are not modeled.
The fact that the low-order model captures the additional mechanical effects indicates
that these methods may be applied more generally to problems in aeroelasticity. There
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Figure 19. Experimental and modeled lift for plunge about a base angle of α0 = 10◦.

is also an aerodynamic cushioning effect at α0 = 10◦, whereby the mechanical resonance
is attenuated and occurs at a slightly higher frequency.

The models based on wind tunnel measurements follow similar trends to those based
on simulations. For example, at larger base angle of attack, the model takes longer to
equilibrate to steady state, as reflected in the convergence to the quasi-steady asymptote
at a lower frequency. Additionally, at α0 = 0◦, the data and models exhibit a transient
rise to their steady-state values given a step in effective angle of attack, while at α0 = 10◦,
the data and models exhibit a transient decay to their steady-state values from a larger
initial value. In simulations, this is due to leading-edge and trailing-edge separation.

7. Conclusions and discussion

In this work, we have developed reduced-order models, and a flexible modelling proce-
dure, for the unsteady pitching and plunging aerodynamics of two low-Reynolds-number
configurations. The first set of results are two-dimensional direct numerical simulations
of a flat plate at Re = 100. It is shown that for a relatively low order model, with order
r = 7, the unsteady aerodynamic effects are well captured for all angles of attack up to the
Hopf bifurcation angle. The second set of results are based on wind tunnel measurements
of a NACA 0006 airfoil at Re = 65, 000. These experiments motivated the development



Unsteady aerodynamic models at low Reynolds numbers. 27

of aggressive system identification maneuvers for use with the OKID method, which al-
lows for accurate system identification over a range of frequencies, despite the reduced
signal-to-noise ratio experienced in high-reduced-frequency, low-Reynolds-number wind
tunnel experiments. The modelling procedure is able to capture the additional dynamics
associated with the structural resonance and actuator dynamics in the experiment.

The models presented in this paper provide quantifiable insights into the physics of
laminar separation that characterize flows at low Reynolds number. In both the simulated
results and the wind tunnel measurements, the low-order models exhibit similar trends
as the angle of attack is increased. The quasi-steady model asymptote is pushed to lower
frequencies at larger base angle of attack, α0, consistent with the fact that the boundary
layer is becoming more separated and a pair of complex eigenvalues moves toward the
imaginary axis in the models. In addition, we observe that poles and zeros of the reduced-
order models approach the imaginary axis as the base angle of attack is increased, and
at a subcritical angle of attack, some zeros move into the right half plane. This has
significant consequences for feedback control; in particular, the introduction of zeros
in the right-half complex plane will impose fundamental limitations on the bandwidth
that may be achieved with closed-loop feedback control (Kerstens et al. 2011). In the
experiment, we see an attenuation of the structural resonance at large angle of attack,
due to the cushioning effect of the separated boundary layer. In both simulations and
experiments, it is observed that there is qualitatively different behavior at low and high
base angle of attack for the lift in response to a step-up in angle of attack: at low angle
of attack, the lift rises to the steady-state value, whereas at high angle of attack, the
lift decreases to the steady-state value from an initial high lift state. This suggests the
formation of a leading-edge vortex, followed by trailing-edge separation at large angles
of attack, which is confirmed using FTLE visualizations.

An important feature of this study is the determination of flow regimes where these
models start to break down. Because the models are reduced-order models of the lin-
earized discrete Navier-Stokes equations with lift output equation, it is expected that
they will not be valid for flows that are dominated by nonlinear phenomena, such as
vortex shedding or large leading-edge vortex formation. For example, the models are not
necessarily valid when the angle of attack, α, or the effective angle of attack, αe, based
on the Strouhal number, exceeds the critical angle of attack at which Hopf bifurcation
occurs. As the base angle of attack approaches this critical angle, the radius of validity
of the model shrinks. However, it was demonstrated on several large-amplitude maneu-
vers, in which the flow was massively separated, that the model does surprisingly well,
as long as there are large angular or vertical rates associated with the motion, resulting
in added-mass.

The models developed here will be particularly useful in the context of active flow
control. The low-dimensional state-space form of these models is ideal for use with mod-
ern control techniques, such as H2 and H∞ synthesis (Kim & Bewley 2007; Bagheri
et al. 2009; Ahuja & Rowley 2010). In particular, the authors envision an experimental
demonstration of robust lift control that tracks a specified reference lift while rejecting
gust disturbances and attenuating sensor noise. As the base angle of attack is increased
and zeros enter the right half plane, there will be fundamental limitations on the band-
width of the closed-loop system. The design of flight controllers for micro aerial vehicles
is challenging, since the flight dynamic and fluid dynamic timescales are comparable.
The typical control paradigm of inner-loop/outer-loop design will no longer yield robust
controllers, and it will become necessary to apply modern control techniques. This is the
focus of current work by the authors.
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Wagner, H. 1925 Über die Entstehung des dynamischen Auftriebes von Tragflügeln. Zeitschrift
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