
Empirical State-Space Representations
for Theodorsen’s Lift Model

Steven L. Brunton, Clarence W. Rowley
Princeton University, Princeton, NJ 08544

Abstract

In this work, we cast Theodorsen’s unsteady aerodynamic model into a general form that allows for the introduction
of empirically determined quasi-steady and added-mass coefficients as well as an empirical Theodorsen function.
An empirically determined Theodorsen model is constructed using data from direct numerical simulations of a
flat plate airfoil pitching at low Reynolds number, Re = 100. Next, we develop low-dimensional, state-space
realizations that are useful for either the classical Theodorsen lift model or the empirical model. The resulting
model is parameterized by pitch-axis location and has physically meaningful states that isolate the effect of added-
mass and quasi-steady forces, as well as the effect of the wake. A low-order approximation of Theodorsen’s function
is developed based on balanced truncation of a model fit to the analytical frequency response, and it is shown that
this approximation outperforms other models from the literature. We demonstrate the utility of these state-space
lift models by constructing a robust controller that tracks a reference lift coefficient by varying pitch angle while
rejecting gust disturbances.
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1. Introduction

Obtaining accurate and efficient aerodynamic models has been an important goal of research efforts in aeronau-
tics over the past century. Aerodynamic models are necessary to design aircraft, to evaluate aeroelastic stability,
and to develop feedback control laws. Among the wide range of unsteady aerodynamic models in the litera-
ture (Leishman, 2006), the classical models of Wagner (1925) and Theodorsen (1935) remain widely used and
provide a benchmark for the linear models that proceed from them. Indeed, these models have been remarkably
successful for over three-quarters of a century (Bisplinghoff and Ashley, 1962; Newman, 1977; Leishman, 2006).
Garrick (1938) demonstrated the equivalence of Theodorsen’s frequency-domain transfer function and Wagner’s
time-domain indicial response function.

There is a long and distinguished history of modeling various aspects of unsteady aerodynamics (Dowell et al.,
1997; Dowell and Hall, 2001; Leishman, 2006). Theodorsen’s model is particularly attractive, because it is derived
from first principles using clear assumptions. The resulting model is broken down into physically meaningful
components, including the added-mass and quasi-steady contributions as well as the effect of the wake, captured
by Theodorsen’s transfer function. It is then clear how the model changes as certain assumptions are relaxed.
Additionally, the model is parameterized by the pitch center, x/c. Finally, the model is used extensively, which
carries its own inherent value (Brar et al., 1996; Maitre et al., 2003; Bruno and Fransos, 2008).

Theodorsen’s lift model was developed in 1935 to explain flutter induced instability that occurs in aircraft at
high velocity. The theory is based on incompressible, inviscid assumptions, and the resulting model is expressed in
the frequency domain. This limits the usefulness of this model, both for predicting the lift response in the time-
domain, as well as for designing modern control laws. In addition, the inviscid assumption becomes less accurate
for flows at low Reynolds number (Brunton and Rowley, 2009; Amiralaei et al., 2010), which are characterized by a
thick, laminar boundary layer. Unsteady aerodynamics at low Reynolds number is of particular recent interest to
understand insect and bird flight (Birch and Dickinson, 2001; Videler et al., 2004) as well as to develop advanced
controllers for high performance micro-aerial vehicles (Zbikowski, 2002; Eldredge et al., 2009; OL, 2010; Kerstens
et al., 2011).

We address both of these limitations in this paper. First, we develop an empirical generalization to Theodorsen’s
model, extending the model to various geometries and Reynolds numbers. In particular, empirical models from sim-
ulations or experiments are cast into the form of Theodorsen’s model using empirical added-mass and quasi-steady
lift coefficients, as well as an empirical Theodorsen function. The method of obtaining an empirical Theodorsen
model is demonstrated for a flat plate pitching at low Reynolds number, Re = 100.
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Nomenclature

(A,B,C,D) State-space model for total lift,
(A′, B′, C ′, 0) State-space model for quasi-steady lift,
(Ã, B̃, C̃, D̃) State-space Theodorsen’s function,
a Pitch axis with respect to 1/2−chord,
b Half-chord length of airfoil,
c Chord length of airfoil,
C(k) Theodorsen’s function,
C(s̄) Generalized Theodorsen’s function,
Ĉ(s̄) Empirical Theodorsen’s function,
CL Lift coefficient [CL , 2L/ρU2

∞c],
CLα Lift coefficient slope [CLαi = ∂CL/∂αi]
CAM
L Added-mass portion of lift coefficient,

CQS
L Quasi-steady portion of lift coefficient,

Ccirc
L Circulatory lift attenuated with wake,

CδL Indicial response in lift,
C1 Empirical added-mass coefficient,
C2 Empirical lift slope,
d Disturbance vector,

G(s̄) Transfer function for lift model,
h Vertical position of airfoil,
k Reduced frequency [k , ωb/U∞],
L Lift force,
L Laplace transform,
n Sensor noise,
Re Reynolds number [Re , cU∞/ν],
r Reference lift,
s Laplace variable (dimensional),
s̄ Laplace variable (dimensionless)

[s̄ , sb/U∞],
t Time (dimensional),
U∞ Free stream velocity,
x/c Pitch axis location with respect to chord,
α Angle of attack of airfoil,
αe Effective angle of attack,
ν Kinematic viscosity,
φ(τ) Wagner’s indicial response function,
τ Time (dimensionless) [τ , tU∞/b],
ω Frequency of maneuver [rad/s].

Next, state-space representations are developed for either the classical Theodorsen lift model or the empirical lift
model. These state-space models are desirable because they fit naturally into existing flight models, and they are
useful for the design of optimal controllers (Dullerud and Paganini, 2000; Skogestad and Postlethwaite, 2005). The
models are constructed to isolate the effect of added-mass and quasi-steady forces, as well as the effect of the wake,
as in Theodorsen’s original model. In addition, the models maintain the original pitch-axis parameterization. It is
important to note that although Theodorsen’s model includes the effect of an aileron and also describes moment
calculations, we consider only the lift coefficient output for pitch and plunge motion.

1.1. Previous work on representations of Theodorsen’s model
The literature contains a number of rational function approximations to Theodorsen’s transfer function, given

in Eq. (3) below, such as those presented in R.T. Jones (1938), Vepa (1977), Venkatesan and Friedmann (1986), and
Breuker et al. (2008). There are also approximations to Wagner’s indicial response function, derived in Garrick
(1938), R.T. Jones (1938), W.P. Jones (1945), and Venkatesan and Friedmann (1986), many of which are based
on Padé approximation. Dowell (1980) demonstrated a method for converting frequency-domain models to the
time domain. Dinyavari and Friedmann (1986) and Breuker et al. (2008) constructed state-space realizations for
Theodorsen’s transfer function, and Leishman and Nguyen (1990) used R. T. Jones’s approximation for the indicial
response function to derive a state-space realization for the circulatory lift. Edwards et al. (1978) derived a state-
space realization for the coupled aeroelastic equations, which he used to construct a linear-quadratic-regulator for
flutter suppression.

Peters et al. (2007) and Peters (2008) developed a general potential flow theory in state-space based on the
Glauert expansion of inflow states, of which Theodorsen’s model is a special case. However, Peters’s model requires
eight states for close agreement with Theodorsen’s model, while the other approximations require between two and
four states. With the exception of Peters, none of the above references develop state-space models for the full
unsteady model (Eq. (2) below), including added-mass forces.

In this paper, we develop a state-space representation for Theodorsen’s full unsteady lift model that retains the
physically motivated properties of the original model; this includes pitch-axis parameterization and separation of
added-mass, quasi-steady, and wake effects. The state-space modeling framework is sufficiently general that any
of the above approximations for Theodorsen’s function may be used. In addition, it is shown how an empirical
Theodorsen function may be obtained for a specific geometry and Reynolds number, allowing the inviscid assump-
tion to be relaxed. We also present a new state-space approximation of Theodorsen’s function, based on balanced
truncation, that is more accurate than those in the literature.

2. Background

Wagner (1925) developed a model for the unsteady lift on a two-dimensional airfoil for arbitrary pitching
motion. He computed analytically the effect of idealized planar wake vorticity on the circulation around the airfoil
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in response to a step in angle of attack. After this, the response to arbitrary motion could be constructed by
convolution with this indicial response. Ten years later, Theodorsen (1935) derived a related model to study
the aeroelastic problem of flutter instability. Wagner’s and Theodorsen’s theories are derived analytically for an
idealized two-dimensional flat plate airfoil moving through an inviscid, incompressible fluid. The motion of the
flat plate is assumed to be infinitesimal, leaving an idealized planar wake. Both theories refine the quasi-steady
theory (Eq. (1) below) by including the effect of the wake history on the induced circulation around the airfoil.
Section 2.3 demonstrates the equivalence of Theodorsen’s transfer function and Wagner’s indicial response function
via Laplace transform (Garrick, 1938; Jones, 1938). Additional derivation and review of Theodorsen’s theory may
be found in Bisplinghoff and Ashley (1962), Leishman (2006), and Newman (1977).

2.1. Theodorsen’s Model
Theodorsen’s model is an unsteady extension of the quasi-steady thin airfoil theory to include added-mass forces

and the effect of wake vorticity. Thin airfoil theory assumes that the vertical center of mass h and angle of attack
α motion of the airfoil is relatively slow and small, so that the flow field locally equilibrates to the motion. Thus,
the effects of ḣ and α̇ appear as an effective angle of attack and an effective camber, respectively, which may be
combined into a total effective angle of attack for the entire airfoil. This results in a quasi-steady expression for
the lift coefficient:

CQS
L = 2π

(
α+ ḣ+ α̇

(
1
2
− a
))

= 2παe (1)

where a is the pitch axis location measured in semi-chords with respect to the mid-chord (e.g., pitching about
the leading edge corresponds to a = −1, whereas the trailing edge is a = 1). Lengths are nondimensionalized
by the half-chord length, b, and velocity is nondimensionalized by the free-stream velocity, U∞, so that time is
nondimensionalized by the half-chord convection time, b/U∞.

For rapid maneuvers, it is necessary to include added-mass terms to account for the reaction force due to the
mass of fluid that is accelerated by the airfoil. Additionally, one must account for the induced circulation around
the airfoil due to the wake vorticity. Theodorsen’s model includes these added-mass forces and multiplies the
quasi-steady lift from thin airfoil theory by a transfer function C(k) to account for lift attenuation by the wake
vorticity:

CL = π
[
ḧ+ α̇− aα̈

]
︸ ︷︷ ︸

Added-Mass

+ 2π
[
α+ ḣ+ α̇

(
1
2
− a
)]

︸ ︷︷ ︸
Quasi-steady

C(k). (2)

Theodorsen’s transfer function C(k) is expressed in terms of Hankel functions H(2)
ν = Jν − iYν , where Jν and Yν

are Bessel functions of the first and second kind, respectively, and is given by

C(k) =
H

(2)
1 (k)

H
(2)
1 (k) + iH

(2)
0 (k)

. (3)

This expression is well-defined only for purely sinusoidal airfoil motion with a reduced frequency k = ωb/U∞.
Edwards (1977) derived a generalized Theodorsen’s function, C(s̄), in terms of modified Bessel functions of the
second kind, Kν(s̄), which is defined on the entire complex plane. s̄ = sb/U∞ is a dimensionless Laplace variable.
When s̄ = ik, C(s̄) returns the classical Theodorsen function for a sinusoidal input with reduced frequency k.

Figure 1 shows the frequency response of Theodorsen’s model, Eq. (2). The input motion is ḧ for the case of
plunging and α̈ for the case of pitching, and the output is lift coefficient CL. Theodorsen’s model for pitching
motion is parameterized by a = −1 + 2x/c, where x/c is the pitch axis location measured in positive chord lengths
c from the leading edge.

It is helpful to gain a physical intuition for the frequency response (i.e., Bode plot) and how it relates to the
aerodynamic response. The magnitude plot (top) shows the ratio of output magnitude (CL) to input magnitude
(α̈ or ḧ) in decibels (dB) for sinusoidal forcing at various fixed frequencies, and the phase plot (bottom) shows the
corresponding phase difference in degrees. The low-frequency asymptote in the Bode magnitude plot corresponds
to the quasi-steady case when the lift coefficient depends only on the angle of attack in the case of pitch, or
effective angle of attack in the case of plunge. For pitching motion, the low-frequency asymptote has a slope of
−40 dB/decade, consistent with the fact that α is obtained by integrating the input α̈ twice. In the case of plunge,
the low-frequency asymptote has a slope of −20 dB/decade, since the effective angle of attack is proportional to ḣ
which is the integral of the input ḧ.

The high-frequency asymptote in the Bode magnitude plot corresponds to the case where there are large
accelerations and the lift coefficient is strongly influenced by added-mass forces. In the case of pitching with a > 0
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Figure 1: Frequency response of Theodorsen’s model, Eq. (2). Input is ḧ for plunging motion and α̈ for pitching motion about various
locations x/c along the chord. The output is lift coefficient CL.

and plunge motion, there are added-mass forces directly proportional to the inputs (α̈ and ḧ), so that the Bode
plot has zero slope at high frequencies. There are no added-mass forces proportional to α̈ in the case of mid-chord
pitching, but there are forces proportional to α̇, so the Bode plot has a slope of −20 dB/decade at high frequencies.
This information is also reflected in the Bode phase plot. Notice that the phase at low frequency starts at −180◦

for the pitching models, which is consistent with the fact that the angle of attack is the second integral of the input;
twice integrating a sinusoid results in another negative sinusoid, hence the −180◦ phase.

The frequency response in Figure 1 undergoes a qualitative change as the pitch point is moved aft of the mid-
chord. At this point, the effect of added-mass terms on high frequency motions becomes negative; i.e., the phase
approaches −180◦ for large frequency. A direct result is that given a positive step in angle of attack, the lift initially
moves in the negative direction, because of negative added-mass forces, before the circulatory forces have a chance
to catch up and the system relaxes to a positive steady state.

2.2. Wagner’s model
Wagner’s model is similar to Theodorsen’s, except that it is formulated in the time domain, making it useful

for arbitrary input maneuvers. The model rests on a similar assumptions, including a planar wake, inviscid,
incompressible flow, and infinitesimal motion. The formulation is based on convolution with the (indicial) step
response function, φ(τ), where τ = tU∞/b is time nondimensionalized by the half-chord convection time. At time
τ = 0 the aerodynamic center is located at the mid-chord, and it shifts to the quarter-chord, x/c = 0.25, for all
future time, τ > 0. The lift due to the step is:

CδL = πδ(τ) + 2παφ(τ) (4)

The first term is the added-mass for a step in angle of attack about the mid-chord. The circulatory terms for an
arbitrary maneuver α(τ) are given by

Ccirc
L = 2π

(
α(0)φ(τ) +

∫ τ

0

α̇(σ)φ(τ − σ) dσ
)

= 2παe(τ) (5)

where αe(τ) is the effective angle of attack due to the induced circulation from the wake history.
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Figure 2: (a) Frequency response of Theodorsen’s transfer function C(s̄) (black) and the R.T. Jones approximation for C(s̄) (red) and
s̄L [φ(τ)] (black dash), respectively. (b) Frequency response for full lift model.

2.3. Relationship between Wagner’s and Theodorsen’s functions, φ(τ) and C(s̄)
Garrick (1938) and Jones (1938) observed that Theodorsen’s transfer function, C(s̄), and Wagner’s indicial

response function, φ(τ), are related by a Laplace transform pair:

C(s̄) = s̄

∫ ∞
0

φ(τ)e−s̄τ dτ (6)

Therefore, Theodorsen’s and Wagner’s functions are equivalent representations of the effect of the wake in the
frequency domain and time domain, respectively. There are a number of rational function approximations to
Theodorsen’s transfer function C(s̄) in the literature, compiled in the second column of Table 1, and to Wagner’s
indicial response function φ(τ), compiled in the second column of Table 3, in Section 4.4. Figure 2 shows a frequency
response comparison between the exact Theodorsen function in Eq. (2) and the R.T. Jones approximation for C(s̄)
and φ(τ) from Tables 1 and 3. These will be useful in Section 4 for obtaining state-space realizations.

3. Generalized Theodorsen model

It is possible to generalize Theodorsen’s model by replacing the coefficients π and 2π, that are obtained using
linearized potential flow theory, with generalized coefficients C1 and C2. The new coefficients may be obtained
empirically, either through simulation or experiment, for a given Reynolds number and wing geometry. This will
yield better performance in the limit of low and high frequency motions. Additionally, it is possible to determine
an empirical function Ĉ(s̄) that plays the same role as Theodorsen’s C(s̄). Eq. (2) becomes:

CL = C1

[
ḧ+ α̇− aα̈

]
+ C2

[
α+ ḣ+ α̇

(
1
2
− a
)]

Ĉ(s̄). (7)

We now take the Laplace transform, L, of both sides to obtain a transfer function. For the case of pitch, u = α̈,

L [CL]
L [α̈]

= C1

(
1
s̄
− a
)

+ C2

[
1
s̄2

+
1
s̄

(
1
2
− a
)]

Ĉ(s̄) (8)

where s̄ is the dimensionless Laplace variable. The transfer function 1/s̄ corresponds to integration in the time
domain. Equation (8) is represented schematically in Figure 3.

The case of plunging, u = ḧ, has a simpler transfer function:

L [CL]

L
[
ḧ
] = C1 +

C2

s̄
Ĉ(s̄)

These transfer functions will be used to construct state-space representations in the next section.
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Figure 3: Empirical Theodorsen’s model, Eq. (8), for a pitching airfoil.

3.1. Determining coefficients C1 and C2

Theodorsen’s function is 1 at low frequencies and 1/2 at high frequencies. Decomposing it as C(s̄) = 1−C ′(s̄)
results in the following pitch model:

CL =−aC1︸ ︷︷ ︸
Cα̈

α̈+
[
C1 + C2

(
1
2
− a
)]

︸ ︷︷ ︸
Cα̇

α̇+ C2︸︷︷︸
Cα

α− C2C
′(s̄)

[
α+ α̇

(
1
2
− a
)]

︸ ︷︷ ︸
transient dynamics

(9)

Equation (9) yields expressions for the coefficients in terms of stability derivatives, C1 = −Cα̈/a and C2 = Cα,
which may be determined empirically. There are a number of ways to model the additional transient dynamics.
The simplest approach is to use the analytic Theodorsen function C(s̄); in this case, the empirically determined
C1 and C2 still guarantee the correct high and low frequency behavior. For better performance at intermediate
frequencies, it is possible to determine an empirical Theodorsen function Ĉ(s̄), as discussed in the next section.

3.2. Empirical Theodorsen function Ĉ(s̄)
Starting with an accurate state-space model for a given Reynolds number and geometry, it is possible to

determine an empirical Theodorsen function, Ĉ(s̄). Starting with a transfer function model, G(s̄), from α̈ to CL,
it is possible to solve for Ĉ(s̄) in Eq. (8) by first subtracting off the added-mass terms and then dividing through
by the quasi-steady terms:

Ĉ(s̄) =
G(s̄)− C1 (1/s̄− a)

C2 [1/s̄2 + (1/2− a) /s̄]
(10)

The empirical Theodorsen function Ĉ(s̄) is demonstrated in Figure 4 (a) for a model of a plate pitching about the
leading-edge at Re = 100. The empirical model has order r = 2; the resulting lift coefficient model is shown in
Figure 4 (b).

4. State-space realizations for Theodorsen’s lift model

Starting with Theodorsen’s model, Eq. (2), or the empirical model, Eq. (8), we construct a state-space repre-
sentation of the form:

ẋ = Ax+Bu

y = Cx+Du
⇐⇒

[
ẋ
y

]
=
[
A B
C D

] [
x
u

]
(11)

u ∈ Rq is the input, y ∈ Rp is the output, and x ∈ Rn is the state; the matrix notation is shorthand. These
representations are carefully constructed to retain the favorable properties of Theodorsen’s original model. In
particular, the model is parameterized by the pitch-axis location, and the added-mass and quasi-steady forces are
isolated from the effect of the wake. Moreover, the states of the model are physically meaningful quantities.

Consider state-space realizations for the quasi-steady (QS) and Theodorsen transfer function blocks in Figure 3:

Quasi-steady: ẋ′ = A′x′ +B′u′

y′ = C ′x′
(12)

Theodorsen: ˙̃x = Ãx̃+ B̃ũ

ỹ = C̃x̃+ D̃ũ
(13)
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Figure 4: (a) Frequency response of Theodorsen’s transfer function, C(s̄), from theory (black) and empirical Ĉ(s̄) for a flat plate
pitching about the leading edge, x/c = 0.0, at Re = 100 (red). (b) Frequency response of full lift model. Direct numerical simulations
(×) are included for comparison.

The output of the quasi-steady model is the input to Theodorsen’s transfer function, y′ = ũ, resulting in:

d

dt

[
x̃
x′

]
=
[
Ã B̃C ′

0 A′

] [
x̃
x′

]
+
[

0
B′

]
u′

ỹ =
[
C̃ D̃C ′

] [ x̃
x′

] ⇐⇒
 Ã B̃C ′ 0

0 A′ B′

C̃ D̃C ′ 0

 (14)

State-space realizations (Ã, B̃, C̃, D̃) for Theodorsen’s function will be presented in Section 4.4.

4.1. Pure pitch model
For the case of pure pitching motion, u = α̈, the quasi-steady transfer function from Eq. (8) is given by

QS(s̄) = C2

[
s̄−2 + s̄−1(1− 2a)/2

]
(15)

To obtain a realization for Eq. (15), we introduce the state x′ =
[
α α̇

]T , input u′ = α̈, and output y′ = CQS
L :

d

dt

[
α
α̇

]
=
[
0 1
0 0

] [
α
α̇

]
+
[
0
1

]
α̈

(16)

CQS
L =

[
C2 C2 (1− 2a) /2

] [α
α̇

]
The quasi-steady lift coefficient, CQS

L , depends on α and α̇, which comprise the state, x′. The added-mass transfer
function is AM(s̄) = C1

[
s̄−1 − a]. With state x = α̇, input u = α̈, and output y = CAM

L , a state-space realization
for the added-mass portion is:

d

dt
α̇ = α̈

(17)

CAM
L = C1α̇− C1aα̈
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The quasi-steady and added-mass models share a state α̇, so we may represent the total lift in a compact model:

d

dt

x̃α
α̇

 =

Ã B̃C2 B̃C2 (1− 2a) /2
0 0 1
0 0 0

x̃α
α̇

+

0
0
1

 α̈
(18)

CL =
[
C̃ D̃C2 C1 + D̃C2 (1− 2a) /2

] x̃α
α̇

− C1aα̈

In this model, we have combined the quasi-steady model in Eq. (16) with the model of Theodorsen’s function in
Eq. (13) according to the formula in Eq. (14), and we have included the additional added-mass forces from Eq. (17).

4.2. Pure plunge model
For plunge, u = ḧ, the quasi-steady transfer function is QS(s̄) = C2s̄

−1 and the added-mass force is C1ḧ. This
results in the following combined model

d

dt

[
x̃

ḣ

]
=
[
Ã B̃C2

0 0

] [
x̃

ḣ

]
+
[
0
1

]
ḧ

(19)

CL =
[
C̃ D̃C2

] [x̃
ḣ

]
+ C1ḧ

Note that there is no dependence of lift on the vertical height, h, only on its derivatives.

4.3. Combined pitch and plunge model

For combined pitch and plunge, u =
[
ḧ α̈

]T
, the model is given by:

d

dt


x̃

ḣ
α
α̇

 =


Ã B̃C2 B̃C2 B̃C2(1− 2a)/2
0 0 0 0
0 0 0 1
0 0 0 0



x̃

ḣ
α
α̇

+


0 0
1 0
0 0
0 1

[ḧα̈
]

(20)

CL =
[
C̃ D̃C2 D̃C2 C1 + D̃C2(1− 2a)/2

] 
x̃

ḣ
α
α̇

+
[
C1 −C1a

] [ḧ
α̈

]

This realization is not minimal, since the state
[
0 1 −1 0

]T is unobservable. This is consistent with the fact
that in Theodorsen’s framework, ḣ contributes to an effective angle of attack after proper nondimensionalization.
It is possible to construct a minimal realization by introducing the state variable αe = α+ ḣ, resulting in:

d

dt

 x̃αe
α̇

 =

Ã B̃C2 B̃C2(1− 2a)/2
0 0 1
0 0 0

 x̃αe
α̇

+

0 0
1 0
0 1

[ḧ
α̈

]
(21)

CL =
[
C̃ D̃C2 C1 + D̃C2(1− 2a)/2

]  x̃αe
α̇

+
[
C1 −C1a

] [ḧ
α̈

]

This representation is more compact because the pitch and plunge models share the same dynamics, Ã.
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Approximate transfer function, Cr(s̄)
»
Ã B̃

C̃ D̃

–
, State-space realization of Cr(s̄)

R.T. Jones (1938)
0.5s̄2 + 0.2808s̄+ 0.01365

s̄2 + 0.3455s̄+ 0.01365

24 −0.3455 −0.01365 1
1 0 0

0.1081 .006825 0.5

35

Vepa (1977)
s̄4 + 0.761s̄3 + 0.1021s̄2 + 2.551e−3s̄+ 9.557e−6

2s̄4 + 1.064s̄3 + 0.1134s̄2 + 2.617e−3s̄+ 9.557e−6

266664
−0.532 −0.0567 −0.001308 −4.779e−6 1

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0.1145 0.0227 6.212e−4 2.389e−6 0.5

377775

Venkatesan &
Friedman (1986)

0.5(s̄+ 0.088)(s̄+ 0.37)(s̄+ 0.922)

(s̄+ 0.072)(s̄+ 0.261)(s̄+ 0.80)

2664
−1.133 −0.2852 −0.01503 1

1 0 0 0
0 1 0 0

0.1235 0.08482 0.007493 0.5

3775

Breuker et al. (2008)
0.5177s̄2 + 0.2752s̄+ 0.01576

s̄2 + 0.3414s̄+ 0.01582

24 −0.3414 −0.01582 1
1 0 0

0.09846 0.00757 0.5177

35

Balanced truncation
0.5s̄4 + 0.703s̄3 + 0.2393s̄2 + 0.01894s̄+ 2.318e−4

s̄4 + 1.158s̄3 + 0.3052s̄2 + 0.02028s̄+ 2.325e−4

266664
−1.158 −0.3052 −0.02028 −2.325e−4 1

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0.124 0.08667 0.008805 1.156e−4 0.5

377775

Table 1: Rational function approximations, Cr(s̄), to Theodorsen’s transfer function, C(s̄), and state-space representations.

Existing models Balanced Truncation
R.T. Jones Breuker et al. Venkatesan & Friedman Vepa r = 4 r = 5 r = 6

‖C − Cr‖∞ (dB) −36.73 −35.04 −33.81 −43.16 −50.62 −57.32 −62.14

Table 2: Norm of error, ‖C − Cr‖∞, between various models, Cr, and Theodorsen’s exact function, C, in decibels (dB).

4.4. State-space realizations for Theodorsen’s function C(s̄) and Wagner’s function φ(τ)
To obtain the Ã, B̃, C̃, and D̃ in Eq. (13), there are a number of rational approximations to Theodorsen’s

function C(s̄), Eq. (3), including the approximations of Jones (1938), Vepa (1977), Venkatesan and Friedmann
(1986) and Breuker et al. (2008). For each of these transfer functions it is possible to obtain a state-space
realization in controller canonical form. Both the transfer function and state-space realization are presented in
Table 1 for each approximation. The resulting lift model, using Jones’s approximation, agrees well with the exact
Theodorsen model, as shown in Figure 2 (b). Figure 5 shows the magnitude of the error in each approximation.

We also develop a new state-space approximation for Theodorsen’s transfer function C(s̄). Using the analytic
expression in Eq. (3), we compute the values of Theodorsen’s function at 1200 points logarithmically spaced in the
interval [10−3, 102]. These data points are then used to construct a stable, minimum phase, 11th-order state-space
realization using the Matlab function, fitfrd. Finally, balanced truncation is applied to obtain a reduced order
model, Cr, of order r. The balanced model of order r = 4 is presented in Table 1. The comparison of these balanced
truncation models with different order of truncation is also shown in Figure 5 and Table 2. For order r ≥ 4, the
balanced truncation models have smaller error norm, ‖C − Cr‖∞, than previous models from the literature. It
is also possible to obtain reduced order models using the method of balanced residualization, which yields exact
agreement at low frequencies, but these models typically have larger error at moderate and high frequencies.

It is also possible to obtain state-space realizations for Wagner’s indicial response, φ(τ). Realizations based
on R.T. Jones’s approximation (1938) have been previously developed by Dinyavari and Friedmann (1986) and by
Leishman and Nguyen (1990). The Laplace transform of the indicial response function φ is the transfer function from
α̇ to the circulatory lift coefficient Ccirc

L . Garrick’s approximation from Table 3 is a simple expression, but it does not
have a simple Laplace transform. The other two expressions in Table 3 have the form φ(τ) = 1−a1e

−b1τ −a2e
−b2τ .
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Figure 5: Magnitude of error between exact Theodorsen’s function, C(s̄), and various reduced-order models, Cr(s̄).

Approximate indicial response, φ(τ)

»
Ã B̃

C̃ D̃

–
, State-space realization of φ(τ)

Garrick (1938)
τ + 2

τ + 4
Not a rational expression

R.T. Jones (1938) 1.0− 0.165e−0.0455τ − 0.335e−0.3τ

2664
−0.3455 −0.01365 0 1

1 0 0 0
0 1 0 0

0.5 0.2808 0.01365 0

3775

W.P. Jones (1945) 1.0− 0.165e−0.041τ − 0.335e−0.32τ

2664
−0.361 −0.01312 0 1

1 0 0 0
0 1 0 0

0.5 0.2945 0.01312 0

3775

Venkatesan &
Friedman (1986) 1.0− 0.203e−0.072τ − 0.236e−0.261τ − 0.06e−0.8τ

26664
−1.133 −0.2852 −0.01503 0 1

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0.501 0.6918 0.2281 0.01503 0

37775

Table 3: Approximations for Wagner’s indicial response function φ(τ).

The Laplace transform of φ(τ) is:

Lφ(τ) =
1
s̄
− a1

s̄+ b1
− a2

s̄+ b2
(22)

This yields the state-space realizations with input α̇ and output Ccirc
L in Table 3.

Because of the equivalence of Wagner’s function φ(τ) and Theodorsen’s transfer function C(s̄), it is not necessary
to develop an explicit state-space realization for Wagner’s full unsteady model.
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Figure 6: (a) Controller performance on a step maneuver. (b) Bode plot of loop transfer function.

5. Robust lift control based on Theodorsen’s model

The pitch model derived in Section 4.1 is now used to develop a robust controller to track a reference lift, r, by
varying the pitch angle. The system is now given by

ẋ = Ax+Bu

y = Cx+Du,
(23)

where (A,B,C,D) is a state-space representation of Theodorsen’s lift model, given by Eq. (18). The output is a
lift measurement, y = CL, and the input is pitch acceleration, u = α̈. The controller input is y− r, the error signal.

We now design a robust controller using H∞ loop-shaping design. In this control design method, one chooses a
desired loop transfer function, L = GK, where G(s̄) = C(s̄I −A)−1B+D is the transfer function for the unsteady
aerodynamic system, and K is the controller. We choose the desired loop gain to be

Ld =
240(s̄+ 2)
s̄2(s̄+ 40)

, (24)

shown in Figure 6 (b). This loop transfer function is a double integrator (as is the aerodynamic system G, at low
frequencies), adjusted to have a slope of about 1 near the crossover frequency, which we choose to be 10 rad/s b/U .
Given this desired loop transfer function, H∞ loop-shaping provides a robust controllerK. As shown in Figure 6 (b),
the resulting loop gain L = GK is close to the desired shape, Ld, but with a larger phase margin at crossover. We
include an actuator model, Ga = 250/(s̄+ 250), in the loop to impose actuator roll-off at high frequency, since the
plant has a non-zero D matrix.

Figure 6 (a) shows the performance of the controller in response to a unit step in the commanded lift coefficient
at time τ = 0. Figure 7 demonstrates the controller for an aggressive reference tracking scenario with the addition of
a disturbance, d, and sensor noise, n. Both d and n are stochastic processes; we assume that they are uncorrelated
zero-mean white-noise Gaussian processes with variance W = 1.0 and V = 10−4, respectively. The reference lift
signal is a sequence of pseudo-random ramp-hold maneuvers. The middle plot shows the noisy error signal, y−r+n
that is sent to the controller, along with the true error, ∆CL = CL − r. The bottom plot shows the control signal,
α̈. Note that the error remains small throughout the maneuver, and the measurement noise is attenuated by the
controller.

6. Summary

In this paper, a generalized Theodorsen model is developed and cast into a low-dimensional, state-space repre-
sentation. Using a number of rational function approximations for Theodorsen’s transfer function C(s̄) from Jones
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Figure 7: Controller performance on an aggressive maneuver. (top) Lift coefficient during maneuver. (middle) Noisy measurement,
CL − r + n, and tracking error, CL − r. (bottom) Control input

(1938), Vepa (1977), Venkatesan and Friedmann (1986), and Breuker et al. (2008), we obtain a corresponding
minimal state-space representation for Theodorsen’s lift model, given by Eq. (18) for pure pitch, Eq. (19) for pure
plunge, and Eq. (21) for combined pitch and plunge. We also develop a new approximation for Theodorsen’s trans-
fer function based on balanced truncation of a frequency-response data model. The state-space lift models retain
the positive attributes of Theodorsen’s model, in that they are parameterized by pitch axis and have physically
meaningful states that isolate the effect of quasi-steady and added-mass forces, as well as the effect of the wake.
A state-space realization for Wagner’s indicial response function φ(τ) is also included. However, because of the
equivalence of Wagner’s function, φ(τ), with Theodorsen’s function, C(s̄), via Laplace transform, we have focused
on developing state-space representations of Theodorsen’s model.

Additionally, a method is presented to obtain empirical added-mass and quasi-steady coefficients, C1 and C2, as
well as an empirical Theodorsen function, Ĉ(s̄), using either simulations or experiments. Correct coefficients C1 and
C2 guarantee agreement of the model in the limit of high and low frequency motions, and the function Ĉ(s̄) ensures
agreement at intermediate frequencies. An empirically determined Theodorsen’s model has been demonstrated for
a flat plate pitching at low Reynolds number, Re = 100.

Finally, a robust controller is developed based on the state-space form of Theodorsen’s model for a pitching
airfoil, Eq. (18). The resulting controller tracks a reference lift by varying the angle of attack while rejecting gust
disturbances and attenuating measurement noise. The use of modern control techniques, such as H2 and H∞
optimal control, and H∞ loop shaping, is a key motivation for developing these state-space representations for
Theodorsen’s model.

There are a number of interesting avenues for future research. Further investigation of the empirical Theodorsen
function, Ĉ(s̄), for various wing geometry and Reynolds numbers may provide insight into the fundamental unsteady
boundary layer physics at low Reynolds number. It will also be interesting to develop optimal controllers for
combined pitch and plunge motion for use in flight control. Finally, the state-space models developed here will
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provide a framework for incorporating additional unsteady phenomena, such as dynamic stall.
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