
Fast Computation of FTLE Fields for Unsteady Flows:
A Comparison of Methods

Steven L. Brunton & Clarence W. Rowley

This paper presents new, efficient methods for computing finite-time Lyapunov exponent (FTLE)
fields in unsteady flows. The methods approximate the particle flow map to eliminate redundant
particle integrations in neighboring flow map calculations. Two classes of flow map approxima-
tions are investigated based on composition of intermediate flow maps; unidirectional approxima-
tion constructs a time-T map by composing a number of smaller time-h maps, while bidirectional
approximation constructs a flow map by composing both positive and negative-time maps. The
unidirectional method is shown to be fast and accurate, although it is memory intensive. The
bidirectional method is also fast and uses significantly less memory; however, it is prone to large
error which is aligned with the opposite-time Lagrangian coherent structures. The algorithms are
implemented and compared on three example fluid flows: the double gyre, a low Reynolds number
pitching flat plate, and unsteady ABC flow.

Lagrangian coherent structures (LCS) are hy-
perbolic material lines or surfaces that provide
a useful analogue of invariant manifolds for un-
steady flow fields. LCS are often determined as
ridges of the field of finite-time Lyapunov expo-
nent (FTLE) that satisfy an additioanl hyperbol-
icity criterion. However, FTLE fields are expen-
sive to compute due to the large number of parti-
cle trajectories which must be integrated to con-
struct a particle flow map. Moreover, it is often
necessary to compute a sequence of FTLE fields
in time to visualize unsteady events. The meth-
ods presented here streamline the computation
of a sequence of FTLE fields by removing redun-
dant trajectory integrations between neighboring
particle flow maps, which are necessary to com-
pute the FTLE field. There are two categories
of methods which approximate the particle flow
map. The unidirectional method composes inter-
mediate flow maps of the same time direction, and
the bidirectional method composes intermediate
flow maps of opposite time directions. It is shown
that the unidirectional method is both fast and
accurate, providing orders of magnitude compu-
tational savings over the standard method, when
computing a sequence of FTLE fields in time to
visualize the coherent structures of an unsteady
flow.

I. INTRODUCTION

Coherent structures are important for understanding
and modeling the underlying physical mechanisms of
complex fluid flows [1]. In particular, Lagrangian coher-
ent structures (LCS) are defined using particle trajec-
tories and are Galilean-invariant, unlike Eulerian crite-
ria [2]. LCS are hyperbolic material lines or surfaces [3],
and ridges of the finite-time Lyapunov exponent (FTLE)
field provide candidate material lines. Ridges of the
FTLE field are LCS if and only if the Lagrangian rate

of strain is nonzero along the ridge, distinguishing true
hyperbolic material lines from regions of high shear [3].
A ridge of the FTLE field can refer to either a curvature
or second derivative ridge, although the latter is more
convenient for practical computation [4]. LCS extend
the notion of invariant manifolds from dynamical sys-
tems theory to unsteady flows. FTLE fields provide a
measure of the stretching between nearby particles in a
given flow and are important in determining transport
mechanisms and separatrices in unsteady flows.

The theory and computation of finite-time Lyapunov
exponents (FTLE), also known as direct Lyapunov ex-
ponents (DLE), is a relatively modern development [3,
4], with extensions to 3-dimensional [5, 6] and n-
dimensional [7] flows. FTLE analysis has been widely
applied in a number of branches of fluid mechanics,
including fluid transport [8–10], bio-propulsion [11–13],
flow over airfoils [14–16], plasmas [17], and geophysical
flows [18, 19].

Because FTLE analysis is particularly useful for un-
steady flows, it is often necessary to compute a sequence
of FTLE fields in time to visualize an unsteady event.
As flows become more complex, computations become
increasingly expensive. In particular, FTLE calculations
are expensive because a large number of particle trajec-
tories must be integrated in order to obtain a particle
flow map, often from stored velocity fields. When com-
puting a sequence of FTLE fields in time, it is possible
to speed up the computation considerably by eliminating
redundant particle integrations. One approach that has
been developed uses adaptive mesh refinement to reduce
the number of integrations [20–23].

The approach here is to construct an approximate flow
map by composing intermediate flow maps from FTLE
field calculations at neighboring times. The first class
of flow map approximation, denoted bidirectional com-
position, constructs a flow map by composing interme-
diate flow maps which are aligned in both positive and
negative-time. The second class, denoted unidirectional
composition, composes intermediate flow maps which are
all aligned in the same time direction. The methods are

2

compared using analytic estimates for accumulated er-
ror and computation time as well as benchmarks on a
number of example flows.

A. Main Results

In this paper we demonstrate that the unidirectional
method is both fast and accurate, although it re-
quires significantly more memory than the bidirectional
method. Orders of magnitude speed-up may be achieved
over the standard method, and computational improve-
ment scales with the desired time resolution of the FTLE
animation.

The bidirectional method suffers from significant er-
ror. In particular, the errors in the positive-time LCS
(pLCS) align with the negative-time LCS (nLCS) and
vice versa. To understand this coherent error, we pro-
vide an error analysis for both methods, and uncover
an important relationship between the pLCS and nLCS,
which correspond to finite-time unstable and stable man-
ifolds, respectively. In particular, in the neighborhood of
a time-dependent saddle, particles near the pLCS flow
into particles near the nLCS in positive time.

II. STANDARD COMPUTATION OF FTLE

Consider a time-dependent velocity field u on Rn and
a particle trajectory x(t) which satisfies

ẋ = u (x(t), t) . (1)

The velocity field, u, may be an unsteady solution of the
Navier-Stokes equation, although it is only assumed that
u is at least C0 in time and C1 in space. However, to ex-
tract Lagrangian coherent structures from the Hessian of
the FTLE field, u must be C2 in space [4]. The velocity
field may be analytically defined, but is more often ob-
tained from experiments or direct numerical simulation
which produce velocity field data at discrete snapshots
over a finite range of time. A method of computing finite-
time Lyapunov exponents (FTLE) on a finite amount of
discrete velocity field data has been developed [3, 4].

Computing an FTLE field typically involves four steps.
First, a grid of particles X0 ⊂ Rn is initialized over the
domain of interest. The particles are advected (i.e., inte-
grated) with the flow from initial time 0 to final time T ,
resulting in a time-T particle flow map, ΦT0 , defined as:

ΦT0 : Rn → Rn; x(0) 7→ x(0) +
∫ T

0

u(x(τ), τ)dτ. (2)

Next, the flow map Jacobian, DΦT0 is computed, usu-
ally by finite-differencing, to obtain the Cauchy-Green
deformation tensor,

∆ =
(
DΦT0

)∗
DΦT0 (3)

where ∗ denotes transpose. Finally, the largest eigen-
value, λmax, of this symmetric tensor is extracted and
synthesized into an FTLE field:

σ(ΦT0 ; x0) =
1
|T |

log
√
λmax(∆(x0)). (4)

The bottleneck in this procedure is the large number of
particle integrations required to obtain the particle flow
map, ΦT0 . Moreover, if the velocity field is time-varying,
it is necessary to compute a sequence of FTLE fields in
time to visualize unsteady events, as shown schematically
in Fig. 1.

Exact Flow

Redundant

Essential

ΦT
0

Φh+T
h

Φ2h+T
2h

Φ3h+T
3h

Time

3h2hh0 T

FIG. 1: The standard method for computing a sequence of
FTLE fields. Flow maps Φkh+T

kh for k ∈ {0, 1, 2, 3} are shown
(solid black arrow). Essential (blue) and redundant (red) par-
ticle integrations are outlined in dashed ovals.

III. FLOW MAP APPROXIMATION

As seen in Fig. 1, the standard method of computing a
sequence of FTLE fields involves inefficient re-integration
of particles. The unidirectional and bidirectional meth-
ods outlined below streamline the computation of neigh-
boring FTLE fields by approximating the time-T flow
map, Φt0+Tt0 , which can be written as:

Φt0+Tt0 = ΦtNtN−1
◦ · · · ◦ Φt2t1 ◦ Φt1t0 (5)

where tN = t0 + T .
Because the flow maps are obtained numerically on

a discrete grid of points, X0 ⊂ Rn, it is necessary to
interpolate the maps at points x /∈ X0. Consider a flow
map Φ : Rn → Rn, and the same flow map restricted to
X0, Φ|X0 : X0 → Rn. The interpolation operator I takes
the discrete map Φ|X0 and returns the interpolated map,
IΦ : Rn → Rn, which approximates Φ on Rn:

I : Φ|X0 7→ IΦ. (6)

Here we use the shorthand IΦ , I (Φ|X0). We now
obtain an approximation to the flow map in Eq. (5):

Φ̃t0+Tt0 (X0) = IΦtNtN−1
◦ · · · ◦ IΦt2t1 ◦ Φt1t0(X0)

≈ Φt0+Tt0 (X0)
(7)

The bidirectional method approximates the time-T flow
map Φt0+Tt0 by first integrating backward to a reference

3

time, t = 0, then interpolating forward through a previ-
ously computed time-T map, ΦT0 , and finally integrating
forward to time t0 + T . The unidirectional method ap-
proximates the time-T flow map by composing a num-
ber of smaller time flow maps, Φti+hti , which all have the
same time direction. Additionally, the chain rule may be
applied to each of the methods, resulting in an approxi-
mation to the flow map Jacobian, DΦt0+Tt0 .

A. Bidirectional Composition

Bidirectional approximation eliminates redundancy
from neighboring FTLE field computations by using the
information from a known flow map at a given time, ΦT0 ,
to calculate an approximation to the flow map at future
times, Φt0+Tt0 . First, X0 is integrated backward from t0 to
the reference time 0. The distorted grid Φ0

t0(X0) is then
flowed forward through the interpolated map, IΦT0 , and
finally integrated forward an amount t0 to the desired
time t0 + T :

Φt0+Tt0 = Φt0+TT ◦ IΦT0 ◦ Φ0
t0 . (8)

The flow ΦT0 is stored as a reference solution to compute
an approximation to the flow map at later times Φ̃kh+Tkh ≈
Φkh+Tkh by

Φ̃kh+Tkh = Φkh+TT ◦ IΦT0 ◦ Φ0
kh k ∈ Z (9)

This is referred to as bidirectional method (a), and is
shown in Fig. 2:

Exact Flow Map

Integrate

Approximate

 Flow Map

Interpolate

Integrate

Time

3h2hh0 T

ΦT
0

FIG. 2: Schematic for bidirectional method (a). Given a
known flow map ΦT

0 (solid black arrow), it is possible to ap-

proximate the flow map at later times Φ̃kh+T
kh (dashed black

arrow) by integrating backward in time to t = 0 (red arrow),
flowing forward through the interpolated map IΦT

0 which was
already computed (blue double arrow), and integrating tra-
jectories forward to the correct final time (green arrow).

Instead of using ΦT0 as the reference solution for every
future time, it is convenient to use the new approximate
flow map Φ̃kh+Tkh as the reference solution for the next
iteration, Φ̃(k+1)h+T

(k+1)h :

Φ̃(k+1)h+T
(k+1)h = Φ(k+1)h+T

kh+T ◦ IΦ̃kh+Tkh ◦ Φkh(k+1)h. (10)

Errors will compound more quickly since approximate
flow maps are used as the reference solutions for later
approximations. However, fewer total integration steps
are required, since the reference map advances with every
iteration. This is referred to as bidirectional method (b),
and is shown in Fig. 3.

Integrate

Approximate

Interpolate

Integrate

Time

Exact Flow Map

3h2hh0 T

ΦT
0

FIG. 3: Schematic for bidirectional method (b). As in Fig. 2,
a known flow map (solid black arrow) is used to approximate

the flow map at a later time Φ̃kh+T
kh (dashed black arrow).

The approximate flow map is used as the known map for the
next step (dashed black arrow).

B. Unidirectional Composition

The basis of the unidirectional method is to eliminate
redundant particle integrations by only integrating par-
ticle trajectories through a given velocity field a single
time. If a sequence of FTLE snapshots is desired at a
time spacing of h, for example as frames in an anima-
tion, then it is convenient to break up the time-T flow
map into smaller time-h flow maps, where T = kh:

Φ̃kh0 = IΦkh(k−1)h ◦ · · · ◦ IΦ2h
h ◦ Φh0 (11)

This method is called unidirectional because particle flow
maps of the same time direction are used, as opposed to
the bidirectional method which composes both positive-
time and negative-time flow maps.

Time

Exact Flow Map

. . .

3h2hh0 T+hT

Φh+T
h

FIG. 4: Schematic for unidirectional method. Time-h flow
maps (short blue arrows) are stored and composed to ap-
proximate the time-T flow map (long black arrow). The next
flow map only requires integrating one new time-h flow map
(green arrow).

The simplest approach is to compute a number of time-
h flow maps and store them in memory. Then, to con-
struct an approximate Φt0+Tt0 , it remains only to compose

4

the sequence of interpolated time-h flow maps. The next
iteration involves integrating one more time-h flow map
and composing the next sequence, as in Fig. 4.

To further improve efficiency by reducing the total
number of flow map compositions, it is possible to con-
struct a multi-tiered hierarchy of flow maps for reuse in
neighboring flow map constructions. With enough mem-
ory, it is possible to reduce the number of interpolated
compositions by increasing the number of tiers of flow
maps, each tier being constructed as the composition of
two of the flow maps in the next tier lower, as in Fig. 5.

Time

Exact Flow Map

. . .

. . .

. . .

. . .

3h2hh0

Φh+T
h

T h+T

FIG. 5: Schematic for unidirectional method with multiple
tiers. The bottom tier of time-h flow maps is computed as in
Fig. 4. Pairs are composed to form the next tier of time-2h
flow maps, and so on. This method requires more storage, but
fewer total compositions when computing a series of FTLE
fields for an animation.

C. Chain Rule of Compositions

As seen in Eq. (3), once the flow map Φt0+Tt0 is ob-
tained, it is necessary to compute the flow map Jacobian
in order to extract the FTLE. Applying the chain rule to
Eq. (5), it is possible to express the flow map Jacobian
as a product of the Jacobians of intermediate flow maps:

D(ΦtNt0)(x) = D
(

ΦtNtN−1
◦ · · · ◦ Φt2t1 ◦ Φt1t0

)
(x) (12)

= DΦtNtN−1

(
ΦtN−1
t0 (x)

)
× · · · ×DΦt1t0(x)

Applied to the bidirectional methods, this yields:

Φh+Th =Φh+TT ◦ ΦT0 ◦ Φ0
h

=⇒ DΦh+Th (x) =DΦh+TT

(
ΦT0 ◦ Φ0

h

)
(x)× (13)

×DΦT0
(
Φ0
h

)
(x) ◦DΦ0

h(x),

and applied to the unidirectional methods, this yields:

ΦT0 =ΦTT−h ◦ · · · ◦ Φ2h
h ◦ Φh0

=⇒ DΦT0 (x) =DΦTT−h
(
ΦT−h0 (x)

)
× · · · (14)

· · · ×DΦ2h
h

(
Φh0 (x)

)
×DΦh0 (x).

IV. COMPARISON OF METHODS

Each method from Section III is implemented and
tested on three example problems: the periodic double

gyre, 2D flow over a pitching flat plate at Reynolds num-
ber 100, and 3D unsteady ABC flow. These examples are
chosen because they cover a range of features including
2D and 3D vector fields, which are either defined analyti-
cally or obtained from data files from DNS on either open,
closed, or periodic domains. Each example problem is
discussed more in Appendix B, including details such as
how the velocity field is defined, and on what domain. In
the pitching plate example, velocity field snapshots are
all loaded up-front before applying the methods.

Table I summarizes the results comparing each method
on the three example fluid flows. In each comparison,
the standard, unidirectional and bidirectional methods
are used to compute a sequence of FTLE fields which are
frames in an unsteady animation. The flow map duration
used to compute an FTLE field is T , and the time-spacing
between neighboring FTLE fields is h, so the number
of animation frames per flow map duration is T/h. As
demonstrated in Section IV B, this is an upper bound on
the speed-up of the unidirectional method.

In each comparison, the unidirectional method is accu-
rate and offers the greatest speed-up over the standard
method. However, it also requires more memory than
any other method. The bidirectional method is fast and
uses less memory than the unidirectional method, but is
prone to large errors in the approximate flow map and
does not accurately reproduce the FTLE field.

Contour plots of the FTLE fields computed after
a number of iterations of each method are shown in
Fig. 6. The FTLE fields computed with the unidirec-
tional method agree with those computed using the stan-
dard method, as seen by comparing the first and sec-
ond columns of Fig. 6. FTLE fields computed using the
bidirectional method, shown in the third column, have
large errors. It is interesting to note that these errors are
aligned with coherent structures found in the opposite-
time FTLE field, shown in the fourth column. An anal-
ysis of this coherent error is provided in Section V.

A. Example - Double Gyre

Figure 7 shows the L2 and L∞ error of the forward-
time FTLE field for the double gyre computed using the
standard method with T = 16, as time-step ∆t and grid
spacing ∆x are varied. At a given grid spacing, a ref-
erence FTLE field is computed using a sufficiently small
time-step, ∆t = 10−4, so that the FTLE field may be
considered exact. For small enough time-step ∆t ≈ .001,
the FTLE field error converges. All integrations are per-
formed using a fixed time-step, fourth order Runge-Kutta
scheme.

The flow map approximation methods are only faster
than the standard method when used to compute a se-
quence of FTLE fields in time, as in the construction
of frames for a movie. Figure 8 compares computation
time and L2 error vs. frame number (iteration #) for a
sequence of FTLE fields of the double gyre, computed us-

5

Problem Resolution T/h Frames Method Memory (GB) Speed-up Accurate

Double Gyre 1024× 512 15 30 Standard .05 1 Yes

Unidirectional .36 10 Yes

Bidirectional .14 6.2 No

Pitching plate 1024× 512 15 30 Standard .48 1 Yes

Unidirectional .70 8.2 Yes

Bidirectional .50 5.4 No

Pitching plate 600× 300 150 192 Standard .48 1 Yes

Unidirectional 1.8 67 Yes

Bidirectional .48 54 No

ABC flow 1283 20 40 Standard .48 1 Yes

Unidirectional 2.6 6.8 Yes

Bidirectional .73 7.3 No

TABLE I: Comparison of methods on various examples fluid flows. The unidirectional method both fast and accurate, but
requires more memory than the other methods, providing one or two orders of magnitude computational improvement over the
standard method.

ing the standard, unidirectional, and bidirectional meth-
ods. Each iteration produces an FTLE field which is a
single frame in an animation of the unsteady FTLE field.
In this example, the flow map duration is T = 16, the
time spacing between each FTLE field is h = 1, and the
time-step of integration is ∆t = .01. The multi-tier uni-
directional method uses four tiers.

The first FTLE field takes roughly the same time to
compute using each of the methods. However, for sub-
sequent iterations, the unidirectional and bidirectional
methods are significantly faster. The computation time
of bidirectional method (a) increases with the number of
iterations, k, because integrating back from t = kh to
the reference time t = 0 becomes more costly as k in-
creases, as seen in Fig. 3. After T/2h = 8 iterations of
bidirectional method (a), it is advantageous to compute a
new reference flow map using the standard method. This
explains the breaks in the solid red curve in part (b) of
Fig. 8, as the bidirectional method is exact at these itera-
tions. Bidirectional method (b) overcomes this increasing
cost vs. iteration by using the flow map from the current
iteration as the reference flow map at the next iteration.
However, using an approximate flow map to compute the
next approximation causes bidirectional method (b) to
accumulate error more quickly than method (a). The
unidirectional method is both the fastest and most accu-
rate method in this comparison.

B. Computational Resources

Again, consider a sequence of time-T flow maps spaced
h apart, as might be required for an unsteady visualiza-
tion. When there are many integration time-steps of size
∆t between each neighboring flow map, i.e. ∆t � h,
then the added cost of flow map composition becomes
relatively small compared with the cost of integrating a

time-h flow map.
All methods take about the same amount of time

to compute the first FTLE field in the sequence. For
subsequent iterations, the standard method involves
(T/h) × (h/∆t) integration steps for each new FTLE
field, whereas the unidirectional method only requires
h/∆t integration steps, and bidirectional method (b) re-
quires 2h/∆t integration steps. Assuming ∆t � h, the
speed-up of the unidirectional method over the standard
method will increase as the number of frames in the an-
imation per flow map duration, T . In other words, as
∆t/h→ 0, the computation of Φt0+Tt0 using the unidirec-
tional method is T/h times faster than using the standard
method, and twice as fast as the bidirectional method.

In the examples above, all intermediate flow maps were
stored in memory until no longer useful for future com-
putations. Regardless of any parameters of the FTLE
field animation, the standard and bidirectional methods
must store a fixed number of flow maps. The standard
method stores the single flow map Φt0+Tt0 , while the bidi-
rectional method stores three maps: Φ0

t0 , ΦT0 , and Φ̃t0+Tt0 .
The unidirectional method, however, stores every inter-
mediate time-h flow map Φkh(k−1)h, of which there are
T/h. Therefore, the memory requirement of the unidi-
rectional method scales linearly with the upper-bound on
its speed-up, T/h.

The memory usage of the unidirectional method scales
with the dimension of the flow D, the spatial resolu-
tion R, and the possible computational speed up of the
method S, given by T/h:

Memory (GB) ∼ S ×D ×RD (15)

=
8 B/double
10243 B/GB

× T

h
×D ×RD (16)

For example, a series of two dimensional, high-definition
(1920 × 1080 resolution) FTLE fields may be computed

6

!"#$%%&'()* !"+$%,-./.01)*.2-(3 !"4$%5./.01)*.2-(3 !"6$%&'()*%!27728.*19*.:1$

!;#$%%<2=>31%?@01

!;+$%%A.*)B.-C%A3(*1

!;4$%%A.*)B.-C%A3(*1

!;6$%%,-8*1(/@%D5"

FIG. 6: Graphical comparison of each method on four examples: (top row) positive-time FTLE of double gyre, (second row)
positive-time FTLE of 2D pitching plate, (third row) negative-time FTLE of 2D pitching plate, (bottom row) negative-time
FTLE of 3D ABC flow. Each figure shows the FTLE field after a number of iterations of the given method. The number of
iterations k was chosen so that kh ≈ T to magnify the effect of bidirectional error. The column of FTLE fields calculated
using unidirectional composition, (C2), agree well with the exact FTLE fields computed using the standard method, (C1).
The column of FTLE fields calculated using bidirectional composition, (C3) all have significant error which is aligned with the
opposite-time coherent structures. The opposite-time FTLE fields are shown in the rightmost column, (C4), for comparison
with the bidirectional method. FTLE fields computed for positive-time flow maps are blue and those computed for negative-time
flow maps are red.

using the unidirectional method with up to 100× speed
up using approximately 3.1 GB of RAM. A three dimen-
sional FTLE field with resolution 512× 256× 64 may be
computed with up to 100× speed up with approximately
19 GB of RAM.

In the double gyre and ABC flow examples, the veloc-
ity field is defined analytically, according to Eqns. (B2)
and (B5). Thus, in these two examples, the velocity field
is calculated analytically at every time, and no velocity
fields need to be stored in data files. However, in the

pitching plate example, velocity fields are obtained from
data files which are the output of a direct numerical sim-
ulation. Because loading velocity fields which are stored
on disk is slow, it is important to minimize the number
of file loads. In the pitching plate example, all of the
velocity fields are loaded up-front and stored in memory
throughout the computation. However, velocity fields are
often too large to store them all in memory, for example
in large 2D or 3D simulations, so that subsequent itera-
tions of the methods require re-loading the same velocity

7

!"
!#

!"
!$

!"
!%

!"
!!

!"
"

!"
!

!"
!!&

!"
!!"

!"
!&

!"
"

'()*+,-*.+/0-1

2
%
+3
44
5
4+
6
5
4)

+

+

!%789#

%&98!%7

&!%8%&9

!"%#8&!%

%"#78!"%#

!"
!#

!"
!$

!"
!%

!"
!!

!"
"

!"
!

!"
!!&

!"
!!"

!"
!&

!"
"

'()*+,-*.+/0-1

2
!
+3
44
5
4+
6
5
4)

+

+

!%789#

%&98!%7

&!%8%&9

!"%#8&!%

%"#78!"%#

!"#

!$#

FIG. 7: Convergence tests for L2 and L∞ error of the FTLE
field vs. integration step and grid spacing on double-gyre.

field data from previous iterations. In practice, although
loading data files is time consuming, it represents a frac-
tion of the cost of particle integration.

V. ERROR ANALYSIS

This aim of this section is to explain why the method of
unidirectional composition is accurate while bidirectional
composition is prone to large errors. Moreover, why are
the errors in the bidirectional method found in regions of
high FTLE of the opposite-time flow map, as illustrated
in the third and fourth columns of Fig. 6?

For a given particle in a flow, larger finite-time Lya-
punov exponent indicates greater stretching between
neighboring particles and more sensitive dependence on
initial conditions. Thus, the trajectories of particles with
large FTLE are more sensitive to errors in their initial
conditions.

The set Σα(Φ), defined as the set of points x with
FTLE above a threshold value α,

Σα(Φ) = {x | σ(Φ; x) > α}, (17)

is the collection of points where error will magnify the
most through the map Φ. The flow map approximations
above all involve composing intermediate flow maps,

Φ2 ◦ Φ1, (18)

so it is important to know which points flow into Σα(Φ2)
through the map Φ1. In other words, we want to describe
the set Φ−1

1 (Σα(Φ2)) = {x | Φ1(x) ∈ Σα(Φ2)}, and this
is the subject of Section V A.

! " #! #" $! $" %!
#!

!"

#!
!&

#!
!%

#!
!$

#!
!#

'()*+(,-./0
1
$
/2
**
-
*

/

/

3.,4,*)5(,-.+6/78,.96)/(,)*:

3.,4,*)5(,-.+6/7;<6(,!(,)*:

=,4,*)5(,-.+6/7+:

=,4,*)5(,-.+6/7>:

! "# "! $# $! %#

"#
$

"#
%

"#
&

'()*+(,-./0

1
-
2
3
4
(+
(,
-
.
/5
,2
)
/6
7
8

/

/

9(+.:+*:

;.,:,*)<(,-.+=/67,.>=)/(,)*8

;.,:,*)<(,-.+=/624=(,!(,)*8

?,:,*)<(,-.+=/6+8

?,:,*)<(,-.+=/6@8

!"#

!$#

FIG. 8: Comparison of methods for computing the FTLE field
of the double gyre with resolution 1024× 512. Each method
is iterated to compute a sequence of 30 FTLE fields in time.
(a) Computational time vs. Iteration, and (b) L2 error vs.
Iteration.

If the flow map Φ2 is defined on a regular grid X0, it is
necessary to pass trajectories of Φ1 through the interpo-
lated map I(Φ2|X0). This is the source of error in the flow
map approximations, and this error is significant when
the trajectories of Φ1 pass into the set Σα(Φ2), where
FTLE is large. Using a nearest neighbor interpolation
the interpolation error becomes particularly simple:

Φ2(Φ1(x)) ≈ I(Φ2|X0)(Φ1(x)) = Φ2(Φ1(x) + ε) (19)

where x ∈ X0, and ε is the difference between Φ1(x) and
its nearest neighbor in X0. However, each approximate
method has been tested with nearest neighbor, linear and
bicubic spline interpolations with no significant qualita-
tive change in results. The propagation of interpolation
error using unidirectional and bidirectional composition
is the subject of section V B.

A. Accumulation of Particles

The main result of this section is that particles near
the positive-time LCS (pLCS) flow into particles near
the negative-time LCS (nLCS) in forward time, and vice-
versa. This is consistent with the fact that pLCS and
nLCS correspond to finite-time unstable and stable man-

8

ifolds, respectively, and is observed in Figs. 9 and 10 for
the pitching plate and double gyre examples.

T = 0. (a) (b) (c) (d) (e) T = -5.

T = 0. T = 2.5 T = 5. T = 7.5 T = 10. T = 15. T = 3. T = 6. T = -5.

T = 0. T = 2.5 T = 5. T = 7.5 T = 10. T = 15. T = 3. T = 6. T = -5.

T = 0. T = 2.5 T = 5. T = 7.5 T = 10. T = 15. T = 3. T = 6. T = -5.

FIG. 9: Particle trajectories of the set Σ.14(Φ15
0) for the pitch-

ing flat plate. Particles near the pLCS are integrated forward
until they attract near the nLCS.

Figure 9 shows particles in the set Σ.14(ΦT0), defined
in Eq. (17), near the pLCS of the pitching plate example.
As the particles convect downstream, they attract onto
the nLCS. Compare with the first and last panel of the
second row of Figure 6 to see what the pLCS and nLCS
look like for this example. Similarly, Fig. 10 shows points
in Σ.3(Φ−T0) near the nLCS of the double gyre example
being integrated in negative time until they attract onto

the pLCS. Compare with the first and last panel of the
first row of Fig. 6 to see the pLCS and nLCS of the double
gyre.

The bottom panel of Fig. 10 is a zoom-in of the tan-
gle of particles near a time-dependent saddle point at
T = −10. A point x(t) is a time-dependent saddle if
it is at the transverse intersection of the pLCS and the
nLCS. It is numerically observed that these saddles me-
diate transport of particles near the pLCS into particles
near the nLCS in positive time.

Further, suppose that x(t) persists as a time dependent
saddle over a range of time t ∈ (t0−T−ε, t0+T+ε), where
ε > 0 ensures uniform hyperbolicity. The positive and
negative-time FTLE properties of this point establish an
exponential dichotomy which implies that x(t) is a time-
dependent hyperbolic trajectory [24]. This trajectory
now carries with it all of the regular theory about saddles,
including Hartman-Grobman and Stable/Unstable Man-
ifold Theorems. In particular, we may consider the pLCS
(resp. nLCS) to be the time-dependent stable (resp. un-
stable) manifold of x(t).

Applying the Lambda lemma, it follows that a disk
which intersects the pLCS transversely will attract arbi-
trarily C1 close to a disk on the nLCS in positive-time,
eventually. In the examples above, we observe a similar
phenomena, namely, that in the neighborhood of a time-
dependent saddle, the particles near the nLCS came from
particles near the pLCS at an earlier time.

Similarly, it is possible to flow particles with large
positive-time FTLE backward in time, and vice-versa,
resulting in a set which resembles a positive-time LCS
computed using a longer integration time. This is ob-
served in Fig. 11, where particles in Σ.3

(
Φ−15

0

)
are flowed

forward along Φ15
0 , resulting in a set which accumulates

on the nLCS of the longer-time flow Φ−15
15 .

B. Propagation of Interpolation Error

Consider the bidirectional composition of a positive-
time flow map ΦT with a negative-time flow map Φ−T ,
where error ε is introduced due to interpolation:

ΦT
(
Φ−T (x) + ε

)
≈ ΦT

(
Φ−T (x)

)
+ DΦT

(
Φ−T (x)

)
· ε

= x + DΦT
(
Φ−T (x)

)
· ε (20)

The composition error is largest for points x ∈ X0 where
DΦT

(
Φ−T (x)

)
is large. From Eqns. (3) and (4), we have

the following relationship:

‖DΦT (y)‖ ≥ eα|T | for y ∈ Σα(ΦT) (21)

where ‖A‖ = max
x

‖Ax‖2
‖x‖2

is the maximum singular value

of A. Thus, composition error is large at points x, where
y = Φ−T (x) is in the set Σα(ΦT), for large α and T .

Moreover, the results of the previous section indicate
that points x satisfying Φ−T (x) ∈ Σα(ΦT) originate in

9

T = -10. T = -15.

T = 0. (a) (b) (c) (d) (e) T = -5.T = 0. (a) (b) (c) (d) (e) T = -5.

T = -10. T = -15.(a)

(b)

FIG. 10: (top) Particle trajectories of the set Σ.3(Φ−15
0) for the double gyre. As particles on the nLCS are integrated backward

they begin to adhere to the pLCS. (bottom) The time-dependent saddle (intersection of pLCS and nLCS) at T = −10 is
blown-up to show the heteroclinic tangle.

the set Σβ(Φ−T) near the nLCS, in a neighborhood of
a time-dependent saddle. Therefore, it is seen that the
composition error will be largest at points x ∈ Σβ(Φ−T),
near the nLCS.

Now, consider the unidirectional composition of two
positive-time flow maps, with interpolation error ε:

ΦT
(
ΦT (x) + ε

)
≈ ΦT

(
ΦT (x)

)
+ DΦT

(
ΦT (x)

)
· ε

= Φ2T (x) + DΦT
(
ΦT (x)

)
· ε (22)

Here the error is largest for points x ∈ X0 where
DΦT

(
ΦT (x)

)
is large. Again, DΦT (y) is large when

y ∈ Σα(ΦT), for sufficiently large α and T .

In unidirectional composition, because the pLCS is re-
pelling in positive time, points x ∈ X0 must be exactly in
Φ−T

(
Σα(ΦT)

)
, or else they will repel away from the re-

gions where error is magnified. Similarly for bidirectional
composition, because the pLCS is attracting in negative
time, points will attract toward the regions where error
magnifies. For this reason, the unidirectional method
is robust to interpolation error, while the bidirectional
method amplifies this error.

10

T = 0. (a) (b) (c) (d) (e) T = -5.T = 0. (a) (b) (c) (d) (e) T = -5.

FIG. 11: Particle trajectories of the set Σ.3(Φ−15
0) for the double gyre. Particles on the nLCS are flowed forward, shown in (a),

resulting in a longer time nLCS, shown in (b).

VI. CONCLUSIONS

A number of methods have been developed for the
efficient computation of finite-time Lyapunov exponent
(FTLE) fields in unsteady flows. In particular, the meth-
ods speed up the computation of a sequence of FTLE
fields in time, used for frames of a movie, by approximat-
ing the particle flow map using information from neigh-
boring times. The methods fall into two categories of
flow map approximation based on composition of inter-
mediate flow maps of the same time direction (unidirec-
tional) or of both positive and negative-time directions
(bidirectional). The main result is that the unidirectional
method is both fast and accurate, and the computational
savings over the standard method are proportional to the
number of FTLE fields being computed per time T . The
unidirectional method provides one or two orders of mag-
nitude computational savings over the standard method
on the three example flows, as summarized in Table I.

The bidirectional methods are also fast, and use less
memory than the unidirectional methods; however, bidi-
rectional methods suffer from large errors which are con-
centrated along regions where the opposite-time FTLE
field is large, in the vicinity of time-dependent saddle
points. This coherent error was unexpected, but is ex-
plained by dynamical systems theory, since particles close
to the pLCS near a time-dependent saddle will map into
particles close to the nLCS in positive time. This result
extends the relevance of Lagrangian coherent structure
analysis to near identity particle maps in general.

The fast methods are implemented on three example
velocity fields, chosen to represent typical fluid flows, and
compared on the basis of computation time, accuracy and
memory usage. The results of the method comparisons
are summarized in Table I and Fig. 6. The unidirec-
tional algorithm works well on 2D and 3D domains with
either compact or spatially periodic domains. For open
domains, as in the example of the pitching plate in a free
stream velocity, the unidirectional method accurately

computes the negative-time FTLE fields corresponding
to the attracting set, or nLCS. However, error is intro-
duced when computing the positive-time FTLE field, as
particle trajectory information is lost downstream of the
FTLE domain. This loss of information is not a problem
when computing the nLCS because trajectory informa-
tion upstream of the plate is well approximated using uni-
form flow. In experiments, however, velocity field data
is often only available on a limited domain, which might
correspond to the FTLE domain. In this case, the uni-
directional and standard methods will produce matching
positive-time FTLE fields.

There are a number of future directions which might
arise from this work. First, FTLE algorithms lend them-
selves to parallelization, so it is conceivable that with
further optimization, it will be possible to obtain real-
time FTLE visualizations for interesting problems. It
would also be interesting to extend the above methods
to incorporate adaptive mesh refinement (AMR) as well
as complex domain geometries. Additionally, it is impor-
tant to more precisely determine how and when parti-
cles near the pLCS flow into particles near the nLCS in
positive-time.

Appendix A: Notation

• X0 ⊂ Rn - Discrete particle grid,

• Φba - Particle flow map from time t = a to time
t = b,

• Φ̃ - Approximation to the particle flow map Φ,

• Φ|X0 - Flow map restricted to a discrete grid X0,

• I(Φ|X0) - Interpolant of the flow map Φ|X0 , defined
on a discrete grid X0,

• IΦ , I(Φ|X0) - Shorthand for interpolation,

11

• DΦ - The Jacobian of the flow map Φ,

• ∆ - The Cauchy-Green deformation tensor,

• σ(Φ; x) - FTLE for flow Φ at the point x,

• pLCS - Positive-time Lagrangian coherent struc-
ture, or repelling material line. A ridge of the
FTLE field σ(Φt0+Tt0 , X0) is a pLCS if and only if
it has nonzero Lagrangian rate of strain,

• nLCS - Negative-time Lagrangian coherent struc-
ture or attracting material line. A ridge of the
FTLE field σ(Φt0−Tt0 , X0) is a nLCS if and only if
it has nonzero Lagrangian rate of strain,

• Σα(Φ) = {x | σ(Φ; x) > α} - Set of particles with
FTLE above a given threshold α; for α sufficiently
large, this set represents a neighborhood of the
dominant LCS ridges,

• St - Strouhal number, defined as St = fA
U∞

where f
is frequency, A is amplitude and U∞ is free stream
velocity.

Appendix B: Example Velocity Fields

A summary of the attributes of each example velocity
field is given in Table 2. Below is a description of how to
compute the given velocity fields and an image of each
corresponding FTLE field.

Double Gyre

The double gyre is an analytically defined velocity field
which is time-periodic on the closed and bounded do-
main, [0, 2]× [0, 1]. The stream-function is

ψ(x, y, t) = A sin (πf(x, t)) sin(πy)

f(x, t) = ε sin(ωt)x2 + x− 2ε sin(ωt)x
(B1)

which yields the following vector field

u = −∂ψ
∂y

= −πA sin (πf(x)) cos(πy)

v =
∂ψ

∂x
= πA cos (πf(x)) sin(πy)

df

dx

(B2)

The positive-time FTLE field for the double gyre is
shown in Fig. 12. The light blue ridges are regions with
high FTLE, and are candidates for repelling pLCS.

Pitching Flat Plate

The second example is the unsteady velocity field of
a flat plate pitching in a uniform flow at low Reynolds

FIG. 12: FTLE field for double gyre, Eq. (B2), with A =
.1, ω = 2π/10, ε = .25, T = 15.

number, Re = 100. The plate pitches about its leading
edge according to the following angle of attack motion:

α(t) = αmax sin(2πft) (B3)

with maximum angle of attack, αmax = 20◦, and fre-
quency f = .4. The Strouhal number, St, is a dimen-
sionless pitching frequency given by:

St =
fA

U∞
= .274 (B4)

where A = 2 sin(20◦) is the amplitude of the plate’s ex-
cursion, and U∞ = 1 is the free stream velocity of the
uniform flow.

The motion of the plate is enforced using the multi-
domain immersed boundary method of Taira & Colo-
nius [25], using a second-order Adams-Bashforth time-
stepper. The output of the direct numerical simulation
(DNS) is a time-sequence of velocity fields spaced .05
apart in non-dimensional time units. Each velocity field
snapshot is defined on five nested grids. The finest grid
covers a 4 × 4 domain and the coarsest grid covers a
64 × 64 domain, non-dimensionalized by chord length.
Each grid has resolution 200×200. This provides a large
computational domain for integrating particle trajecto-
ries. Velocity fields from the DNS are stored on disk and
are loaded for use in FTLE field computations.

FIG. 13: FTLE field for a pitching flat plate at Re = 100,
St = .274, and T = −15.

The negative-time FTLE field for the pitching plate
is shown in Fig. 13. The regions with large FTLE are

12

Problem Dimension Boundary Conditions Velocity Field Time Periodic

Double Gyre 2D Closed Analytic Yes

Pitching plate 2D Open Data files (DNS) Yes

ABC flow 3D Periodic Analytic No

TABLE II: Attributes of each example problem.

colored red and yellow to indicate that they are candi-
dates for attracting nLCS. In this example, regions of
large FTLE clearly outline the wake and separated flow
around the plate.

Unsteady ABC Flow

The unsteady ABC flow is a 3D flow which is aperiodic
in time, has spatially periodic boundary conditions, and
whose velocity field is defined analytically as follows

ẋ = (A+
1
2
t sin(πt)) sin z + C cos y

ẏ = B sinx+ (A+
1
2
t sin(πt)) cos z

ż = C sin y +B cosx

(B5)

All FTLE fields are computed on the periodic cube
X,Y, Z ∈ [0, 1), where x = 2πX, y = 2πY , and z = 2πZ.

The negative-time FTLE field for the unsteady ABC
flow is shown in Fig. 14. Ridges of the FTLE field that
are candidates for the attracting nLCS are colored in red
and yellow.

FIG. 14: FTLE field for a unsteady ABC flow with A =
√

3,
B =

√
2, C = 1 and T = −8.

[1] P. Holmes, J. L. Lumley, and G. Berkooz, Turbulence,
coherent structures, dynamical systems and symmetry,

Cambridge Monographs in Mechanics (Cambridge Uni-

13

versity Press, 1996).
[2] G. Haller, J. Fluid Mech. 525, 1 (2005).
[3] G. Haller, Physics of Fluids 14, 1851 (2002).
[4] S. Shadden, F. Lekien, and J. Marsden, Physica D 212,

271 (2005).
[5] M. Green, C. Rowley, and G. Haller, J. Fluid Mech. 572,

111 (2007).
[6] G. Haller, Physica D 149, 248 (2001).
[7] F. Lekien, S. Shadden, and J. Marsden, Journal of Math-

ematical Physics 48 (2007).
[8] H. Salman, J. S. Hesthaven, T. Warburton, and

G. Haller, Theor. Comput. Fluid. Dyn. 21, 39 (2007).
[9] E. Franco, D. N. Pekarek, J. Peng, and J. O. Dabiri, J.

Fluid Mech. 589, 125 (2007).
[10] S. Shadden, K. Katija, M. Rosenfeld, J. Marsden, and

J. O. Dabiri, J. Fluid Mech. 593, 315 (2007).
[11] J. Peng and J. O. Dabiri, The Journal of Experimental

Biology 211, 2669 (2008).
[12] M. M. Wilson, J. Peng, J. O. Dabiri, and J. D. Eldgredge,

J. Phys.: Condens. Matter 21 (2009).
[13] M. Green, Ph.D. thesis, Princeton University (2009).
[14] D. Lipinski, B. Cardwell, and K. Mohseni, J. Phys. A:

Math. Theor. 41 (2008).
[15] S. Brunton, C. Rowley, K. Taira, T. Colonius, J. Collins,

and D. Williams, 46th AIAA Aerospace Sciences Meeting

and Exhibit (2008).
[16] S. Brunton and C. Rowley, 47th AIAA Aerospace Sci-

ences Meeting and Exhibit (2009).
[17] K. Padberg, T. Hauff, F. Jenko, and O. Junge, New Jour-

nal of Physics 9 (2007).
[18] F. Lekien, Ph.D. thesis, California Institute of Technol-

ogy (2003).
[19] F. Lekien, C. Coulliette, A. Mariano, E. Ryan, L. Shay,

G. Haller, and J. Marsden, Physica D 210, 1 (2005).
[20] C. Garth, F. Gerhardt, X. Trichoche, and H. Ha-

gen, IEEE Transactions on Visulization and Computer
Graphics 13, 1464 (2007).

[21] C. Garth, A. Wiebel, X. Trichoche, K. Joy, and
G. Scheuermann (IEEE-VGTC, 2008), vol. 27.

[22] F. Sadlo and R. Peikert, IEEE Transactions on Visuliza-
tion and Computer Graphics 13 (2007).

[23] K. Shi, H.-P. Seidel, H. Theisel, T. Weinkauf, and H.-
C. Hege, IEEE Computer Graphics and Applications pp.
24–36 (2008).

[24] S. Wiggins, Introduction to applied nonlinear dynami-
cal systems and chaos, Texts in Applied Mathematics
(Springer-Verlag, 2000).

[25] T. Colonius and K. Taira, Comput. Methods Appl. Mech.
Engrg. 197, 2131 (2008).

