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ABSTRACT. This work develops compressed sensing strategies for computing
the dynamic mode decomposition (DMD) from heavily subsampled or com-
pressed data. The resulting DMD eigenvalues are equal to DMD eigenvalues
from the full-state data. It is then possible to reconstruct full-state DMD
eigenvectors using ¢1-minimization or greedy algorithms. If full-state snap-
shots are available, it may be computationally beneficial to compress the data,
compute DMD on the compressed data, and then reconstruct full-state modes
by applying the compressed DMD transforms to full-state snapshots.

These results rely on a number of theoretical advances. First, we estab-
lish connections between DMD on full-state and compressed data. Next, we
demonstrate the invariance of the DMD algorithm to left and right unitary
transformations. When data and modes are sparse in some transform basis,
we show a similar invariance of DMD to measurement matrices that satisfy
the restricted isometry property from compressed sensing. We demonstrate
the success of this architecture on two model systems. In the first example,
we construct a spatial signal from a sparse vector of Fourier coefficients with
a linear dynamical system driving the coefficients. In the second example, we
consider the double gyre flow field, which is a model for chaotic mixing in the
ocean.
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1. Introduction. Dynamic mode decomposition (DMD) is a powerful new tech-
nique introduced in the fluid dynamics community to isolate spatially coherent
modes that oscillate at a fixed frequency [54, 49, 52]. DMD differs from other
dimensionality reduction techniques such as the proper orthogonal decomposition
(POD) [37, 9, 30, 43], where modes are selected to minimize the ¢5-projection error
of the data onto modes. In particular, DMD results in spatial modes that are
constrained to each evolve at a single frequency and/or growth or decay rate in
time. Thus, DMD not only provides modes, but also a linear model for how the
modes evolve in time, in terms of these frequencies and growth/decay rates [60].

There are many immediate benefits to this formulation of coherent modes. First,
it is possible to extract coherent structures that are known to oscillate at a fixed
temporal frequency, which is common in fluid dynamics [64]. In addition, DMD
modes with zero frequency and zero growth rate are background modes, providing
efficient foreground/background separation in videos [25]. Finally, having a low-
order model that describes the evolution of DMD modes may be useful for closed-
loop feedback control.

The DMD is a data-driven and equation-free method that applies equally well
to data from experiments or simulations. An underlying principle is that even if
the data is high-dimensional, it may be described by a low-dimensional attractor
subspace defined by a few coherent structures. When the data is generated by a
nonlinear dynamical system, then the DMD modes are closely related to eigenvec-
tors of the infinite-dimensional Koopman operator [35, 41, 49, 12, 40]. In Ref. [63],
DMD has been shown to be equivalent to linear inverse modeling (LIM) [46, 47]
from climate science, under certain conditions, and it also has deep connections to
the eigensystem realization algorithm (ERA) [29, 33, 38].

DMD has been used to study various fluid experiments [53, 55], shock turbulent
boundary layer interaction [26], the cylinder wake [4], and foreground/background
separation in videos [25]. In the context of fluid dynamics, DMD typically relies on
time-resolved, full-state measurements of a high-dimensional fluid vector field. For
complex, turbulent flows, it may be prohibitive to collect data across all spatial and
temporal scales required for this analysis.

The present work leverages tools from compressed sensing [20, 14, 16, 15, 7, 8] to
facilitate the collection of considerably fewer measurements, resulting in the same
dynamic mode decomposition, as illustrated in Figure 2. This reduction in the num-
ber of measurements may have a broad impact in situations where data acquisition
is expensive and/or prohibitive. In particular, we envision these tools being used
in particle image velocimetry (PIV) to reduce the data transfer requirements for
each snapshot in time, increasing the maximum temporal sampling rate. Other ap-
plications include ocean and atmospheric monitoring, where individual sensors are
expensive. Even if full-state measurements are available, the proposed method of
compressed DMD will be computationally advantageous in many situations where
there is low-rank structure in the high-dimensional data.

1.1. Previous work on sparsity in dynamics. There are a few examples of prior
work utilizing sparsity for the dynamic mode decomposition. In [32], a sparsity-
promoting variant of the dynamic mode decomposition was introduced whereby an
f1-penalty term on the number of DMD modes balanced the tradeoff between the
number of modes and the quality of the DMD representation. Other algorithms have
been developed to obtain only a fixed number of modes, but these have involved
global minimization techniques that may not scale with large problems [18].
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In [5, 65, 6, 27], compressed sensing has been used to design non-time resolved
sampling strategies motivated by particle image velocimetry (PIV) of a fluid velocity
field; in [65, 27], this sampling is specifically used to compute DMD utilizing sparsity
of mode coefficients in time. These experimental methods are based on the fact that
temporally sparse signals may be sampled considerably less often than suggested
by the Shannon-Nyquist sampling frequency [44, 56].

In [57], compressed sensing is paired with the theory of linear dynamical sys-
tems to obtain higher temporal sampling resolution and accurate reconstruction of
video MRI. Their work is based on prior studies relating compressed sensing, linear
dynamical systems, and video MRI [50, 45]. Incoherent measurements are used to
estimate an underlying snapshot matrix of hidden-Markov states, as well as an em-
bedding from this low-dimensional attractor into the high-dimensional image pixel
space. For the first part, they use system identification based on Hankel matrices
and minimal realization theory [29]. Based on the heavy use of Hankel matrices in
ERA, and the established connections between DMD and ERA it will be interesting
to see how the present work connects to [57] in the future.

1.2. Contribution of this work. This work deviates from the prior studies com-
bining compressed sensing and DMD [32, 65], in that we utilize sparsity of the
spatial coherent structures to reconstruct full-state DMD modes from few measure-
ments. This method results in full-state DMD modes from spatially compressed or
subsampled measurements using compressed sensing. The eigenvalues of the DMD
on compressed data are shown to be equivalent to the full-state DMD eigenvalues
under some conditions, so that we obtain the same low-dimensional DMD model to
advance mode coefficients.

These results highlight the ability to perform DMD with significantly less data
acquisition when the data and modes are sparse in some transform basis. If full-state
snapshots are available, it is also possible to pre-compress the data, compute DMD
on the compressed data, and then reconstruct full-state DMD modes as a linear com-
bination of the original full-state data. Performing the DMD on compressed data
requires significantly less computational overhead when compared with traditional
DMD, because the most expensive step, computing a singular value decomposition
(SVD), is performed on a much smaller data matrix. These methods are described
in Section 3.3 as various paths we can take in Figure 2, depending on the available
of full-state or compressed initial data.

Our results rely on a number of theoretical advances that may be useful more
broadly. First, we establish connections between DMD on full-state and compressed
data. We then show that DMD is invariant to left and right unitary transformations
of the data. This implies that the DMD computed in the spatial domain, Fourier
domain, or in a POD coordinate system will all be closely related, since these
coordinate systems are related by unitary transformations. We then show that
when data and modes are sparse in some basis, we obtain a similar invariance of
the DMD when our measurement matrix and sparse basis satisfy the restricted
isometry property.

The methods in this paper are illustrated on two examples that are relevant to
fluid mechanics. However, we believe that there is broad applicability of compressed
sensing techniques and dynamic mode decomposition in dynamical systems more
generally.
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2. Background. Dynamic mode decomposition is a method of modal extraction
from full-state snapshot data that results in spatial-temporal coherent structures
oscillating with a fixed frequency and damping rate. This theory has recently been
generalized and extended to a larger class of datasets [63], and it is discussed in
Sec. 2.1.

The present work is centered around the use of compressed sensing to compute the
dynamic mode decomposition from very few spatial measurements. In compressed
sensing, a high-dimensional signal may be reconstructed from few measurements as
long as the signal is sparse in some transform basis. We discuss compressed sensing
in Sec. 2.2.

2.1. Dynamic mode decomposition (DMD). The dynamic mode decomposi-
tion (DMD) is a new tool in dynamical systems that has been introduced in the fluid
dynamics community [54, 49, 52]. The DMD provides the eigenvalues and eigen-
vectors of the best-fit linear system relating a snapshot matrix and a time-shifted
version of the snapshot matrix at some later time.

Consider the following data snapshot matrices:

X=|x0 X1 * Xpm—1|, X' =|x1 X2 -+ Xp
| | | |

Here, x;, € R™ is the k' snapshot, and typically n > m. x is often the state of
a high-dimensional dynamical system, such as a fluid flow. We consider snapshots
that are spaced evenly in time, and we also allow for these measurements to be
discrete-time samples of a continuous-time signal, so that x, = x(kAt).

The dynamic mode decomposition involves the decomposition of the best-fit lin-
ear operator A relating the matrices above:

X'~AX. (1)

The system X’ = AX is generally underdetermined for n > m, and A is the least-
squares solution, which is chosen to minimize the Frobenius norm of || X’ — AX]||g.
In the atypical case when Eq. (1) is overdetermined (e.g., m > n), it is possible
to solve for A as a minimum-norm solution [63]. When ambiguous, we may refer
to A in Eq. (1) as Ax. It is important to note that Eq. (1) may not be exactly
satisfied by the data, and exact equality is not required at any step in the results
that follow, hence the least-squares solution.

In practice, the matrix A may be extremely large, making it difficult or impossible
to store in memory and analyze. However, DMD seeks the dominant eigenvectors
of A, corresponding to non-zero eigenvalues, of which there are at most m when
n > m. Thus it is possible to analyze a low-rank projection of A onto modes
defined by the singular value decomposition (SVD) of X. The eigendecomposition
of this projected matrix is then used to reconstruct full-state DMD modes. The
exact DMD algorithm proceeds as follows:

Algorithm 1. The method of exact DMD was recently defined [63], and it is re-
peated here for convenience. The exact DMD algorithm is given by the following:

1. Collect data X, X’ and compute the SVD of X:
X =UXV* (2)

In general, U and V are square unitary matrices of sizes n x n and m x m,
respectively. The rank of the SVD is r < m, and so we only keep the first r
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columns of U and V and the first r X r terms in X¥; thus U and V become
rectangular matrices. In practice, even if the matrix has full column rank m,
one may choose to truncate the SVD at r < m, either at some pre-determined
cutoff threshold or at an optimal threshold for noise reduction [22].

2. Compute the least-squares fit A that satisfies X’ = AX and project onto
POD/PCA modes U:

A =UAU=U*X'VE L (3)

If the matrix U contains all m left-singular vectors of X arranged as columns,
then A is projected so that it acts on the range of X. However, in practice, U
may be truncated, in which case A is projected onto the leading POD modes

of X. R
3. Compute the eigen-decomposition of A:

AW = WA. (4)

A are the DMD eigenvalues.
4. Compute the DMD modes ®:

& =XV 'W. (5)

It is proven in [63] (Theorem 1) that the diagonal elements of A are eigenvalues
of A with corresponding eigenvectors given by columns of ®.

Remark 1. The first three steps in the algorithm above are identical to those in [52].
However, the last step differs in the computation of DMD modes. In [52], the modes
are given by ® = UW. In [63], this formula ® = UW is still used to compute
modes corresponding to zero eigenvalues. The new definition of exact DMD has
the benefit that modes ® are in the column space of X', whereas traditional DMD
modes are in the column space of X (i.e., they are a linear combination of POD
modes U). In many fluid systems, the column space of X’ and X are either close or
identical, because the system is sampled on an attractor, so that either convention
may be used to compute DMD modes. None of the major theoretical results in this
paper depend on defining DMD modes using Eq. (5) instead of ® = UW. However,
we use the definition in Eq. (5) to be consistent with [63].

The data X, X’ may come from a nonlinear system
Xpy1 = f(xz),

in which case the DMD modes are related to eigenvectors of the infinite-dimensional
Koopman operator K which acts as the pull-back operator on observable func-
tions [35, 1, 49, 40]. In particular, K acts on observable functions g as:

Kg(xx) = g(f(xk)) = g(Xk+1)-

The connection between DMD and the Koopman operator justify the application
of this method in a variety of contexts. We may interpret DMD as a model reduction
technique if data is acquired from a high-dimensional model, or a method of system
identification if the data comes from measurements of an uncharacterized system.
In the latter case, the resulting DMD model is data-driven and may be used in
conjunction with equation-free methods [34]. The hierarchy of structure in the data
is illustrated in Figure 1. Recently, the assumption of evenly spaced snapshots was
relaxed, so that the columns of X may be sampled at any times, as long as the
columns of X’ are sampled a fixed At later [63].
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Xpt1 = Axg,

Linear dynamics

Xp+1 = f(xk)

( Nonlinear dynamics

X=|x0 X1 " Xm-1

\Data ‘ ‘ ‘

FIGURE 1. Schematic of various assumptions of dynamic structure
underlying data X, X'.

2.2. Compressed Sensing. Consider a signal x € R", which is sparse in some
orthogonal basis given by the columns of ¥, so that

x = Us, (6)

and s is a vector containing mostly zeros. The signal s is K-sparse if it has exactly
K nonzero elements.

Most natural signals are sparse in some basis. For example, natural images and
audio signals are sparse in Fourier or wavelet bases, resulting in a high-degree of
compressibility. If we take the Fourier or Wavelet transform of an image, most
of the coefficients will be small and can be neglected without resulting in much
loss of image quality. Truncating in Fourier or Wavelet bases is the foundation
of JPEG-2000 image compression and MP3 audio compression. Similarly, many
high-dimensional nonlinear PDEs have sparse solutions, allowing for accelerated
computational methods [51, 39].

The theory of compressed sensing [20, 14, 16, 15, 7, 8] suggests that instead of
measuring the high-dimensional signal x and then compressing, it is possible to
measure a low-dimensional subsample or random compression of the data and then
directly solve for the few non-zero coefficients in the transform basis. Consider the
measurements y € RP, with K <p < n:

y = Cx.

The measurement matrix C is often denoted by ® in the compressed sensing liter-
ature. However, ® is already used to represent DMD modes in Eq. (5).
If x is sparse in ¥, then we may solve the underdetermined system of equations

y = CWs (7)

for s and then reconstruct x. Since there are infinitely many solutions to this system
of equations, we seek the sparsest solution 8§,

§ = argmin ||s||o, such that y = CW¥s’. (8)
s/

However, this amounts to a brute force combinatorial search, which is infeasible
for even moderately large problems. Under certain conditions on the measurement
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matrix C, Eq. (8) may be relaxed to a convex ¢;-minimization [15, 20]:

§ = argmin ||s’||1, such that y = C¥s'. 9)
s/

Specifically, the measurement matrix C must be incoherent with respect to the
sparse basis ¥, so that rows of C are uncorrelated with columns of ¥. The incoher-
ence of the measurement matrix C with respect to the sparse basis ¥ is quantified
by the parameter p(C, ¥):

uw(C,¥) = ﬁ%lé}}\(ck,%ﬂv

where c¢j is the k-th row of the matrix C. When measurements are incoherent,
the matrix CW satisfies a restricted isometry property (RIP) for sparse vectors s,

(1= dx)lIsll < [Cs||3 < (1 + dx)lIsl3,

with restricted isometry constant dx [17]. The constant dx is defined as the small-
est number that satisfies the above inequality for all K-sparse vectors s. When dg
is small, then CW¥ acts as a near isometry on K-sparse vectors s. In practice, it
is extremely difficult to compute dx directly; moreover, the measurement matrix
C may be chosen to be random, so that it is more desirable to derive statistical
properties about the bounds on d for a family of measurement matrices C, rather
than to compute g for a specific C. Generally, increasing the number of measure-
ments will decrease the constant dx, improving the property of CW¥ to act isometry
on sparse vectors. In addition to taking incoherent measurements, we must take
on the order of K log(n/K) measurements to accurately determine the K nonzero
elements of the n-length vector s [13, 14, 7]. In this case, there are bounds on the
constant dx that guarantee exact signal reconstruction for noiseless data. A more
in-depth discussion of incoherence and the RIP can be found in [7, 17]. We will use
the fact that CW¥ acts as a near isometry on K-sparse vectors to combine sparsity
and dynamic mode decomposition for data with low-rank structure.

Typically a generic basis such as Fourier or wavelets is used to represent the sparse
signal s. The Fourier transform basis is particularly attractive for engineering pur-
poses since single-pixel measurements are incoherent, exciting broadband frequency
content. If a signal is K-sparse in the Fourier domain, we may then reconstruct the
full state from O(K log(n/K)) single-pixel measurements at random spatial loca-
tions. This is especially beneficial when individual measurements are expensive, for
example in ocean and atmospheric sampling, among other applications.

Another major result of compressed sensing is that Bernouli and Gaussian ran-
dom measurement matrices C will satisfy the RIP with high probability for a generic
basis ¥ [16]. There is also work describing incoherence with sparse matrices and
generalizations to the RIP [23]. Recent work has shown the advantage of pairing
compressed sensing with a data-driven POD/PCA basis, in which the data is op-
timally sparse [36, 10, 5, 6, 11]. The use of a POD/PCA basis results in a more
computationally efficient signal reconstruction from fewer measurements.

In addition to the ¢; minimization described in Eq. (9), there are a host of
greedy algorithms [61, 62, 42, 24] that iteratively determine the sparse solution to
the underdetermined system in Eq. (7). There has also been significant work on
compressed SVD and PCA based on the Johnson-Lindenstrauss (JL) lemma [31,
21, 48, 24]. The JL lemma is closely related to the RIP, and it states when it is
possible to embed a set of high-dimensional vectors in a low-dimensional space while
preserving the spectral properties.
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3. Compressive DMD. In this section, we combine ideas from compressed sens-
ing to compute the dynamic mode decomposition from a few spatially incoherent
measurements. In Sec. 3.1, we establish basic connections between the DMD on
full-state and compressed data. These connections facilitate the two main applied
results of this work:

1) It is possible to compute DMD on compressed data and reconstruct full-state
DMD modes through compressed sensing.  This will be referred to as the
compressed sensing dynamic mode decomposition (CSDMD).

2) If full-state measurements are available, it is advantageous to compress the
data, compute the compressed DMD, and then compute full-state DMD modes
by linearly combining snapshots according to the compressed DMD trans-
forms. This will be referred to as the compressed dynamic mode decomposi-
tion (CDMD).

In both cases, the full-state and compressed DMD eigenvalues are equal. These two
approaches are described in Section 3.3 as various pathways to take in Figure 2,
depending on what the initial data is.

Next, in Sec. 3.2, we demonstrate the invariance of the DMD algorithm to left
or right unitary transformations of the data. We then discuss how the condition
of unitarity may be relaxed to a transformation satisfying a restricted isometry
property, as long as the data is sparse in a basis that is incoherent with respect to
the measurements. This strengthens the connection to compressed sensing. Full-
state DMD modes are then reconstructed from DMD modes on compressed data
using compressed sensing; in particular, we use the method of compressive sampling
matching pursuit (CoSaMP) [42].

3.1. DMD eigenvalues and eigenvectors on compressed data. It is possible
to either collect data X, X', or compressed data Y,Y’ where Y = CX, Y’ = CX'
and C € RP*™ is the measurement matrix.

Definition 3.1. We refer to X and X’ as the full-state snapshot matrices and Y
and Y’ as the compressed snapshot matrices.

Similar to Eq. (1) above, we seek to find a best-fit operator Ay that relates Y
and Y’ as

Y'~AYY. (10)

Again, note that exact equality in the expression above is not required, nor
is it likely to be satisfied by the data. We may also rely on the following three
assumptions of sparsity of data and incoherence of measurements.

Assumption 1. The columns of X and X’ are sparse in a transform basis ¥ so
that X = ¥S and X’ = ¥S’, where the columns of S, S’ are sparse (mostly zeros).

Assumption 2. The measurement matrix C is incoherent with respect to ¥ and
there are enough measurements (i.e., p > K log(n/K)) so that C¥ acts as a near
isometry on K-sparse vectors. In this case, there are bounds on the restricted
isometry constant dx that ensure, with high probability, that exact sparse signal
reconstruction is possible for noiseless data.

Remark 2. Under Assumptions 1 and 2, it is possible to reconstruct x from y =
Cx, and therefore X, X’ from Y,Y’ using compressed sensing. However, this is
laborious and inelegant.
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Assumption 3. In addition to sparsity of the columns of X and X', we may also
require each of the columns to be in the same sparse subspace of the basis ¥. The
POD modes Ux and the DMD modes ®x are then guaranteed to be in this sparse
subspace. This condition is reasonable when the dynamical system evolves on a
low-dimensional subspace.

Assumption 4. The measurement matrix C preserves the temporal information
encoded in X so that Vy Vi, Vx = Vx. Recall that the matrix Vy may be
truncated, so that it has size r x m. If the system has rank r = m, then Vy V3, will
be the identity matrix and the assumption is trivially satisfied. However, if r < m,
then the columns of Vx are required to be in the column space of Vy; of course,
this will only be approximately satisfied if there is measurement noise.

Lemma 3.2. If Assumption 4 holds, then the full-state and compressed DMD ma-
trices Ax from Eq. (1) and Ay from Eq. (10) are related as:

CAxUx = AyCUx. (11)

Proof. We first use Assumption 4 to derive a useful identity:
Y =CX
Uy¥yVy = CUx¥xVx
Vi Vx g = 2,'U%CUx
Vy V3 Vx 33! = Vy 2, U3 CUx

VxIx! = VyE,' U CUx. (12)
Then
CAxUx = C(X'VxZx'U%)Ux
=Y'VxEy!
=Y'(VyXy' Uy CUx)
= AyCUx.

O
The above lemma allows us to prove the following theorem, which establishes the
central connection between DMD on full and compressed data.

Theorem 3.3. Let ¢, be an eigenvector of Ax that lies in the column space of X.
Then Ce¢,, is an eigenvector of Ay with the same eigenvalue .

Proof. Since ¢, lies in the column space of X, we have UxU% @, = ¢,. Then
starting with Lemma 3.2, we find that
CAxUxUx = AyCUxUx
CAxUxUx¢, = AyCUxUx o,
CAx¢, = AyCo,
ACop, = AyCo,,

so C¢,, is an eigenvector of Ay with eigenvalue A. O
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For real data, it is likely that DMD eigenvectors of Ax will be approximately in
column space of X, since X and X’ will generally have similar column spaces; how-
ever, if there is measurement error, the two matrices will not have identical column
spaces. If C is chosen poorly, so that ¢, is in the null-space of C, then Theorem 3.3
applies trivially. Theorem 3.3 does not guarantee that every eigenvector ¢, of Ay
is the projection of an eigenvector of Ax through C. The rank r of X is guaranteed
to be less than or equal to m, the number of columns, when n > m. In many
cases, r is chosen by a threshold criteria to truncate noise [22], or to capture 99%
of the variance in X. If the noise-truncated rank r is equal to m, then it may be
necessary to collect more snapshots in order to adequately sample the attractor.
The assumption of low-rank structure is implicit in most dimensionality reduction
strategies. For compressed sensing DMD, we also require that there are at least as
many output measurements p as the rank r, so that p > r. As long as the columns
of X are not in the null-space of C and the rank of Y = CX is also r, then the r
nontrivial DMD eigenvalues Ay of Y, Y’ will be be equal to Ax. Similarly, the pro-
jected (compressed) DMD eigenvectors are related to full-state DMD eigenvectors
as described in Theorem 3.3.

Corollary 1. Given Assumptions 1-4, we may reconstruct ¢, from the eigenvector
¢, = Cop, = C¥¢, from Theorem 5.3 by compressed sensing.

Remark 3. Even starting with full-state measurements X, X', it is beneficial to
compress, compute the DMD, and reconstruct the modes according to:

Px = X'Vy I, ' Wy. (13)

We refer to this as compressed DMD, as opposed to the compressive-sampling DMD
above. Under certain conditions, compressed DMD is equivalent to DMD.

Theorem 3.4. If Assumption / holds and the column space of X' is contained in
that of X, then the compressed DMD modes are DMD modes.

Proof. By assumption, we have Ux U5 X’ = X’. Together with Eq. (12), which
follows from Assumption 4, this allows us to write

Ax®x = (X'VxI3'UR)(X'Vy 2, Wy)
= X'(VyE{' Uy CUx) Uk X' Vy 2, Wy
=X'VyE,/ UL CX'VyEL' Wy
=X'Vy 3, ' UL Y Vy I, Wy
= X'VyE Ay Wy
=X'Vy I, ' WyAy
= ®xAy.

Thus, the columns of ®x are eigenvectors of Ax, making them DMD modes (as
well as compressed DMD modes). O

Remark 4. It is important to note that neither Lemma 3.2 nor Theorem 3.3
require exact equality in Egs. (1) and (10). However, often X’ ~ AxX, where
Ax = X'XT 2 X'Vx 25 U%. In this case, we require that (CX)" ~ XTC*, which
holds either when C satisfies the Johnson-Lindenstrauss theorem, or X = ¥S and
CVW satisfies the restricted isometry property, as in the next section.
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3.2. Invariance of DMD to unitary transformations. In this section, we show
that the dynamic mode decomposition is invariant to left and right unitary trans-
formations of the data X and X’. We first assume that we have an n X n unitary
measurement matrix C with the number of measurements p equal to n. We will
then relax the condition of C being a square unitary measurement matrix, and in-
stead require that our data is sparse in some basis and the p < n measurements
are incoherent with respect to that basis.

This section relies on the fact that the singular value decomposition of Y = CX
is related to the singular value decomposition of X = UXV™* if C is unitary:

Y = CUZV* (14)

Now CU are the left-singular vectors of Y. Similarly, if Y = XP for unitary P,
then Y = UXV*P. This is discussed in more detail in the Appendix.

Theorem 3.5. The DMD eigenvalues and eigenvectors are invariant to right-
transformations P of the columns of X and X' if P is unitary.

Proof. Let P be a m X m unitary matrix that acts on the columns of X and X’ as:
Y = XP, and Y’ = X'P. The four steps of the exact DMD algorithm proceed as:
1. Y=UXV'P }
2. Ay =U'YP'VE ' =UX'VE~! = Ax
3. AyWy = Wy Ay is equivalent to AxWx = WxAx, so that Wy = Wx
and AY = AX
4. &y = Y'P*VE 'Wy = &x.
Therefore, the DMD eigenvalues and eigenvectors are invariant to right-unitary
transformations of the data. 0

Corollary 2. The DMD eigenvalues and eigenvectors are invariant to permutations
of the columns of X and X', since a permutation matriz P is unitary.

Theorem 3.6. The DMD eigenvalues are invariant to left-transformations C of
data X if C is unitary, and the resulting DMD modes are projected through C.

Proof. Again, let Y = CX and Y’ = CX’. Exact DMD proceeds as follows:
1. Y =CUXV*
2. Ay =UC*'Y'VE = UX'VE~! = Ax
3. The eigendecomposition (Ay,Wy) is equal to (Ax,Wx) since Ay = Ax.
4. y = Y'VEIW = Cox.
Therefore, the DMD modes ®y are the projection of ®x through C: &y = C®x.
O

Corollary 3. The DMD computed in the spatial domain is related to the DMD
computed in the Fourier domain or in a coordinate system defined by principle
components. Both the discrete Fourier transform F and the principal component
coordinate transformation U are unitary transformations, and so Theorem 3.6 ap-
plies with C = F or C = U, respectively. The DMD eigenvalues will be unchanged,
and the DMD eigenvectors will be projected into the new coordinates.

Now we may consider data X, X’ that are sparse in some basis ¥, and relax
the condition that C is unitary. Instead, C must be incoherent with respect
to the sparse basis, so that the product CW¥ satisfies a restricted isometry property
with small constant dg. This allows us to compute DMD on the compressed data
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FIGURE 2. Schematic of compressive-sampling and compressed
DMD as they relate to data X, X’ and compressed data Y,Y’.
C is a projection down to measurements that are incoherent with
respect to sparse basis.

(Y,Y') = (CX,CX’) = (C¥S,C¥S’) and reconstruct full-state DMD modes by
compressed sensing on Py = CPx = C¥Pg. The invariances above persist if C¥
acts as an isometry on sparse vectors and the columns of X, X’ are sparse in V.
This can be verified by working through the method of snapshots in the Appendix
on the compressed data.

3.3. Various approaches and algorithms. There are a number of algorithms
that arise from various paths in Figure 2 depending on what data we have access
to. The primary paths are: Path 1B (compressed DMD) and Path 2B (compressed
sensing DMD). A schematic of the data flow is shown in Fig. 3.

Path 1: We start with full-state data X, X'.

Option A. Compute DMD to obtain (Ax, ®x).
Option B. Compress data first:
(i) Compress X, X’ to Y,Y".
(ii) Compute DMD to obtain (Ay, ®y) and Wy.
(iii) Reconstruct by = X'Vy2§1WY.
(iv) [alternative to (iii)] Perform ¢;-minimization on ®y = C¥®g to recon-
struct g and then construct x = Vdbg.

Path 2: We only have compressed data Y,Y".

Option A. First reconstruct X, X’ using compressed sensing.
(i) Perform ¢;-minimization on Y = C®¥S to solve for S, and hence X (same
for X').
(ii) Compute DMD on X (or S).
Option B. Compute DMD on compressed data and only reconstruct r» modes
using compressed sensing.
(i) Compute DMD on Y, Y’ to obtain (Ay, ®y)
(ii) Perform ¢;-minimization on @y to solve ®y = CUPg for Pg and Px.



COMPRESSED SENSING AND DMD 13

Path 1B
Yes Compress Data
Full-State Data? >
Y =CX
Patnzp | i

\ 4
Compute DMD Compute DMD

on on

Compressed Data Compressed Data

Y

Reconstruct Modes Reconstruct Modes

/1 - minimization

b — X/ —1
on &y = CT&g x =X VyEy W

Compressive
Sampling DMD

]
]
1
]
1
1
]
]
1
]
1
]
]
1
]
' \ 4
]
1
1
]
]
1
]
1
]
1
1
]
1
]

Compressed DMD

FIGURE 3. [New Figure| Flow-chart illustrating compressed DMD
and compressed sensing DMD.

As a general rule, if full data X, X’ is available, Path 1B (i)-(iii) is the most
efficient option. This is because the most expensive step, consisting of an SVD on
full data, is replaced by an SVD on compressed data; the computational cost of the
SVD is reduced from O(nm?) (full SVD) to either O(pm?) (if p > m) or O(mp?)
(if p < m). We refer to this as compressed DMD. If only the compressed data
Y,Y’ is available, Path 2B is more computationally efficient than Path2A, since
there will be fewer DMD modes than columns of Y and Y’, resulting in fewer ¢;
minimization problems. We refer to this as compressed sensing DMD. Path 2 is,
in general, quite computationally expensive, especially for large problems, because
of the /1-minimization. However, when full-state data is unavailable, such as for
examples in ocean or atmospheric sampling problems, the cost of compressed sensing
is secondary, since the alternative is a prohibitively expensive NP-hard brute force
search for DMD modes. Note that alternative (iv) in Path 1B is presented for
completeness, although it is not recommended because of the unnecessary expense
of ¢1-minimization when full-state data is available.
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FiGure 4. Tllustration of the dynamical system in Example 1.
K = 5 Fourier coefficients are driven with a random linear dy-
namical system, resulting in the spatial dynamics shown. Fif-
teen point sensors are placed randomly in space. For video, see
http://faculty.washington.edu/sbrunton/simulations/csdmd/Torus.mp4.

4. Results. We illustrate the above methods on two example problems that are
relevant for fluid dynamics. In the first example, we construct a spatially evolving
system that has sparse dynamics in the Fourier domain. In the second example, we
consider the time-varying double-gyre, which has been used as a model for ocean
mixing. Both examples are coded in Matlab, using the built-in svd command,
which is based on LAPACK routines [2]. In each example, the sparse basis W is the
two-dimensional inverse discrete Fourier transform (iDFT2) matrix.

4.1. Example 1: Sparse linear system in Fourier domain. This system is
designed to test to compressive DMD algorithms in a well-controlled numerical
experiment. We impose sparsity by creating a system with K = 5 non-zero 2D
spatial Fourier modes; all other modes are exactly zero. It is also possible to allow
the other Fourier modes to be contaminated with Gaussian noise and impose a very
fast stable dynamic in each of these directions. We then define a stable linear, time-
invariant dynamical system on the K modes. This is done by randomly choosing
a temporal oscillation frequency and small but stable damping rate for each of the
modes independently. In this way, we construct a system in the spatial domain
that is a linear combination of coherent spatial Fourier modes that each oscillate
at a different fixed frequency. Table 1 contains the specific values for this example.
Figure 4 shows a snapshot of this system at t = 2. We see the five large Fourier
mode coeflicients generate distinct spatial coherent patterns. Figure 5 shows the five
Fourier modes (real and imaginary parts) that contribute to the spatial structures
in Figure 4.

This example is constructed to be an ideal test case for compressed sampling
dynamic mode decomposition. The linear time-invariant system underlying these
dynamics is chosen at random, so the data matrix X will contain significant energy
from many of the modes. Therefore, POD does not separate the spatial modes,
as shown in Figure 6. Instead, POD extracts structures based on their variance in
the data. Since POD is invariant to permutation of the columns, the underlying
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TABLE 1. Parameters of system in for Example 1, visualized in
Figure 4. Individual modes are obtained by constructing an oscil-
lating and decaying Fourier mode (with eigenvalue A = d + iw),
#(I1,J) = e = e (cos(wt) + isin(wt)), and taking the real part
of the inverse Fourier transform: z(t) = real (F ! (&)).

15

Mode I J d = Real()) | w =Imag(\) | Initial
# (z-wavenumber) | (y-wavenumber) | (damping) | (frequency) | Condition
1 2 2 20.0880 17803 05357
2 1 3 20.0524 8.2214 0.9931
3 6 2 20.0258 9.7120 20.5434
4 1 5 20.0637 6.8953 0.4914
) 3 6 -0.0175 7.1518 -2.0610

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
Real

& D e Ph &

R P @ W

FIGURE 5. Spatial-temporal coherent modes corresponding to non-
zero Fourier modes.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
N2 AN (-9 _ \
C\\\ @“ Sy 4 {?/ ~

Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

FIGURE 6. POD modes obtained from data. Energetic modes mix
the underlying Fourier modes.

temporal structure is not reflected in the POD structures. Since each of our Fourier
modes is oscillating at a fixed and distinct frequency, this is ideal for dynamic
mode decomposition, which isolates the spatially coherent Fourier modes exactly,
as shown in Figure 7.

In the case of no background noise, the compressed sensing DMD algorithm
(Path 2B in Sec. 3.3) works extremely well, as seen in the mode reconstruction in
Figures 8. Additionally, the method of compressed DMD (Path 1B in Sec. 3.3)
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Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
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FicURE 7. DMD modes correctly isolate spatially coherent modes.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

QI EH
(ST QS (S

FicURE 8. Compressive-sampling DMD modes, using matching
pursuit. (Path 2B, Sec. 3.3)

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

QI EH
(ST QSIS

FIGURE 9. DMD modes from compressed data, using
®x = X'VE'Wy. (Path 1B, Sec. 3.3)

starting with full-state snapshots, compressing, performing DMD, and then recon-
structing using formula in Eq. (13) results in accurate reconstruction, shown in
Figure 9. Both compressive-sampling DMD and compressed DMD match the true

eigenvalues nearly exactly, as shown in Figure 10.

The X, X’ data matrices are obtained on a 128 x 128 spatial grid from times 0 to
2 in increments of At = 0.01, so that X € R16384x200 e yse p = 15 measurements;
randomly placed single-pixel measurements and measurements obtained by taking
the dot product of a Gaussian or Bernoulli random vector with the state vector x

all yield accurate DMD eigenvalues and modes.
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F1GURE 10. DMD modes captures dynamics faithfully.

TABLE 2. Accuracy of eigenvalues and modes for various DMD
methods in Example 1.

H Mode1 | Mode2 | Mode3 | Mode4 [ Mode5 |

2 || Standard | 1.635e-13 | 1.025 e-12 | 1.091e-12 | 6.238¢-13 | 1.676 e-13
v %
o) 1<
TE \ Compressed || 1.358 e-13 | 5.266e-12 | 7.597¢e-13 | 9.729¢-13 | 4.115¢-13
2
£ < .
19} I~
50 Compressive || 4 arg 13| 59660-12 | 7.597-13 | 9.720e-13 | 4.115¢-13
= Sampling
¢ | Standard | 1.219¢-13 | 4.566¢-13 | 1.227¢-13 | 1.661¢-11 | 1.370¢-12
— ~2
- Z_e_
E ||| Compressed || 7.333e-14 | 6.269¢-13 | 2.347¢-13 | 1.004e-11 | 5.727 e-12
la) 2
se_ n
= = | Compressive || o0 14| 7.0540-13 | 2.280¢.13 | 8.142¢-12 | 3.858 e-12
Sampling

The accuracy of the compressed and compressed sensing DMD methods in recon-
structing DMD modes and eigenvalues are summarized in Table 2. The accuracy
of the standard DMD method is also included, since this example was constructed
from a true low-rank linear model on FFT modes, providing an explicit solution.
Since the DMD modes in this example are in complex conjugate pairs, and since
these modes have a phase difference from the true FFT modes, we compare the
magnitudes. For each of the five modes, the correct FFT modal wavenumber is
identified, and all other wavenumbers are zero. The mode error in Table 2 arises
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TABLE 3. Computation time for DMD methods in Example 1.
Each method was run 1000 times to compute an average run-time.

Standard | Compressed | Compressed Sensing
DMD DMD DMD
| Time [s] || 1.254e-1 2.459 e-4 2.459 e-4
%
Speed-up 1 509.9 509.9
A | Time [s] || 1.463e-1 3.271e-3 1.130e-2
=
A Speed-up 1 44.73 12.95

from small differences in the magnitude of the single non-zero wavenumber. The
computational time of each method has also been benchmarked and summarized
in Table 3. For this example, the compressed sensing method is still faster than
standard DMD because of the sparsity of the solution vector.

When we add small to moderate amounts of background noise (2-5% RMS) in
the Fourier domain, a number of things change. The modes and frequencies are
still very well characterized by both methods of compressed DMD and compressive-
sampling DMD. However, the resulting DMD damping is often inflated; this effect
is more pronounced when the full-state DMD eigenvalues are strongly damped.
Recent results predict the change in DMD spectrum with small additive noise [3],
and our results appear to be consistent. There are currently efforts to understand
and correct for the effect of noise in the DMD computation [19, 28]. However, if
the goal of a DMD model is closed-loop feedback control, then one may desire some
controller robustness with respect to uncertain damping rates.

4.2. Example 2: Double gyre flow. The double gyre is a simple two-dimensional
model [59] that is often used to study mixing between ocean basins. The double-gyre
flow is given by the following stream-function

Y(x,y,t) = Asin (7 f(x,t)) sin(my)

15
f(z,t) = esin(wt)z® 4+ x — 2esin(wt)z, (15)
which results in the following time-periodic vector field
u= _% = —mAsin (7w f(z)) cos(my)
o (16)
v = o _ wAcos (7 f(x))sin(mr )ﬁ
- Or Y 4o

on the closed and bounded domain [0,2] x [0,1]. Typical parameter values are
A=0.1,w=27/10,e = 0.25.

Figure 11 illustrates the double gyre vector field, with color representing vorticity
and arrows showing the vector field. The vorticity field is highly compressible, in
that 99% of the Fourier coefficients may be zeroed with little effect on the recon-
structed vorticity field (panel c).

The datasets X, X’ are constructed by sampling the vorticity (curl of velocity
field) on a 512 x 256 spatial grid at times 0 to 10 with At = 0.05. The POD modes
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(b)

0.4

FIGURE 11. (a) Double gyre vector field overlaid onto vorticity for
t=0.2,e=025 A=0.1, w=2n/10. (b) Logarithmically scaled
Fourier coefficient magnitudes of the vorticity. (¢) Compressed
double gyre vorticity field using 1.0% of the Fourier coefficients.
(d) Top 1.0% largest magnitude Fourier coefficients.

for the double gyre data set are shown in Figure 12 (a). The DMD modes are shown
in Figure 12 (b). Taking 2500 single pixel measurements (i.e., constructing ¥ and
Y’ by sampling 2500 random rows of X and X'), which accounts for under 2% of
the total pixels, the reconstructed modes are shown in Figure 12 (¢) and (d). The
modes exhibit good agreement. Moreover, the compressive DMD eigenvalues are
close to the exact DMD eigenvalues, shown in Figure 13.

A quantitative comparison of the compressed DMD eigenvalues with the exact
DMD eigenvalues is provided in Fig. 14. Only the first five modes are shown, since
modes 6-9 are conjugate pairs with modes 1-4. The agreement between eigenvalues
is surprisingly close, even for p = 10 compressed measurements. The compressed
DMD eigenvalues continue to converge as the number of measurements p is in-
creased. It is interesting to note that the lower frequency modes have significantly
smaller errors in the eigenvalue approximations. Similar convergence plots of the
L? error of the compressed DMD modes are shown in Fig. 15.

The compressed sensing DMD method yields the same eigenvalues as the com-
pressed DMD algorithm, so Fig. 14 also applies to both methods. The convergence
plots of the L? error of the compressed sensing DMD modes are shown in Fig. 16
for increasing numbers of measurements p. The convergence of modes is much
slower than in compressed DMD, since full-state snapshots are not available for
reconstruction. However, this is consistent with results from the compressive sens-
ing literature. For the CoSaMP algorithm [42], we use 10 iterations and a desired
sparsity of K ~ p/4(1 4 log;qn — log, p), approximated from p ~ 4K log,q(n/K).

A benchmark comparison of the computational efficiency of the various algo-
rithms is provided in Fig. 17. The compressed DMD algorithm is 30-40 times faster
than the standard DMD algorithm for a small number of measurements (p = 10 to
p = 1250), although the method is only 13 times faster for p = 10000 measurements.
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Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3
Mode 4 Mode 5 Mode 5 Mode 6
Mode 7 Mode 8 Mode 9 Mode 7 Mode 8 Mode 9
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Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3
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FIGURE 12. Modal decompositions for the double gyre: (a) POD
modes, (b) DMD modes, (¢) compressed DMD modes (Path 1B,
Sec. 3.3), and (d) compressive-sampling DMD modes using match-
ing pursuit (Path 2B, Sec. 3.3). Parts (c) and (d) use p = 2500.

Compressed sensing DMD is faster than DMD for a small number of measurements
(p < 300), though it rapidly becomes inefficient, as is generally the case with com-
pressed sensing. However, if full-state measurements are unavailable, the additional
computational cost may be justified to approximate full-state DMD modes.

All results in Figs. 14-17 use p randomly placed single-pixel measurements. We
have also investigated Gassian random compression (i.e., >>C=randn(p,n) ; in Mat-
lab) and uniform random compression (i.e., >>C=rand(p,n) ; in Matlab) of the data
X, which yield similar results. Although the compressed measurements are chosen
randomly in this work, there are recent studies that investigate optimal sensor place-
ment for improved sparse approximation [11]. Compressed sensing works well with
random measurements, because aliasing effects is highly unlikely.

DMD has been widely used for data generated by fluid dynamical systems, be-
cause of the ability to isolate spatially coherent modes that oscillate at a fixed
frequency in time. For example, in [64], DMD modes are used to understand in-
teractions between the shear layer and wake behind a finite-thickness flat plate.
Recently, DMD has also been effectively used to find background structures by
identifying DMD modes corresponding to A = 1 (in discrete time) [25]. The DMD
analysis on the double gyre flow identifies such a coherent background mode, cor-
responding to Mode 5. Without the DMD analysis, it would be unclear that this is
coherent and unchanging in time.
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FI1GURE 15. Convergence of compressed DMD modes for increas-
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Ficure 16. Convergence of compressed sensing DMD modes for
increasing number of measurements p in Example 2.

5. Discussion. In this work we have developed a new method that leverages com-
pressed sensing to compute the dynamic mode decomposition (DMD) for spatially
subsampled or compressed data. There are two key advances resulting from this
work. First, it is possible to reconstruct full-state DMD modes from heavily sub-
sampled or compressed data using compressed sensing. This is called compressive-
sampling DMD, and is illustrated in Sec. 3.3 and Figs. 2-3 as Path 2B. Second, if
full-state snapshots are available, it is possible to first compress the data, perform
DMD, and then reconstruct by taking a linear combination of the snapshot data,



COMPRESSED SENSING AND DMD 23

10
——DMD
3 [| —*— Compressed DMD
107 4 —A— Compressive Sampling DMD
10° £
o 10" L v
£ i
= &_—’A’M
0
10° a—4
107" .
-2
10 i i R S R S | i i ool i i I S S
10' 10° 10° 10*

Number of sensors, p

F1GUurRE 17. Algorithm run-time plotted against the number of
measurements p in Example 2. Compressed DMD is between 13
and 40 times faster than standard DMD on this example.

determined by the DMD on compressed data. This is denoted by compressed DMD,
and is explained in Path 1B in Sec. 3.3 and Figs 2-3. The theory relies on relation-
ships between DMD on full-state and compressed data established in Sec. 3.1. We
also show that DMD is invariant to left and right unitary transformations. We then
relax this condition and use the restricted isometry property that is satisfied when
incoherent measurements are applied to a signal that is sparse in some basis.

Both of these methods are demonstrated to be effective on two example prob-
lems with relevance to fluid dynamics and oceanographic/atmospheric sciences. In
the first example, a low-order linear dynamical system is evolved on a few Fourier
coeflicients, establishing a high-dimensional, time-varying spatial flow with under-
lying low-rank patterns. In the second example, we consider the double gyre flow,
which is a model for ocean mixing. The accurate and efficient reconstruction of the
DMD eigenvalues and modes are demonstrated on both examples using few spatial
measurements and compressed /compressive-sampling DMD.

There are a number of interesting directions that arise from this work. First,
it will be a natural extension to apply these methods to high-dimensional systems
in fluid dynamics and to oceanographic/atmospheric measurements. The reduced
burden of spatial sampling may also allow for increased temporal sampling rates in
particle image velocimetry (PIV), similar to recent advances in MRI [50, 45, 57].
In PIV, the data transfer from camera to RAM is a limiting factor, although one
may envision compressing the full-state data before transferring to memory. It is
also important to characterize and address the effect of noise on DMD (3, 19, 28],
both full-state and compressed. The success of the compressed DMD method, even
for very few measurements p, suggests that further theoretical developments are
required, based on random matrix theory. Providing error bounds and theoretical
limits for compressed DMD will be the subject of ongoing research. Finally, it may
be possible to combine the spatial compressed sensing strategy advocated here with
the temporal sampling strategy in [65] for greater efficiency gains.
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Appendix: SVD and Unitary transformations. In this appendix we demon-
strate that left or right-multiplication of a data matrix X by a unitary transforma-
tion preserves all of the terms in the singular value decomposition except for the
corresponding left or right unitary matrix U or V, respectively. These matrices are
simply multiplied by the new unitary transformation.

5.1. Method of snapshots. Typically when computing the SVD of a large data
matrix X € R, with n > m, we use the method of snapshots [58]. In this
method, we compute the m x m matrix X*X and solve the following eigendecom-
position:

XX = VE*V*
= X'XV=V¥’
With V and X computed, it is possible to construct U:
U=XVx!

Thus, we have the singular value decomposition: X = Ux¥x V. We have added
the subscript X to denote that the U, X, and V are computed from X.
5.2. Left unitary transformation. Now consider the data matrix Y = CX,
where C is unitary. We find that

Y'Y =X*C*CX = X*X,
so the compressed data has the same eigendecompositon and results in the same
Vx and ¥x. Now, constructing Uy, we have:

Uy = YVxIi' = CXVxE(!' = CUx.
Therefore, we have the following singular value decomposition: Y = CUx¥xV%.
In other words, CUx are the new left-singular vectors.
5.3. Right unitary transformation. Similarly, consider Y = XP*, where P is
a unitary matrix. We find
Y'Y = PX*XP* = PVx XX ViP*.
This results in the following eigendecomposition:
Y YPVx = PVxX%.
Therefore, Vy = PVx and 3y = Xx. It is then possible to construct Uy:
Uy = YPVxIy! = XVx 33! = Ux.

The singular value decomposition Y = UxXx V5 P* has PVx as the new right-
singular vectors.
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