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F-86036 Poiters CEDEX, France
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Abstract
Closed-loop turbulence control is a critical enabler of aero-
dynamic drag reduction, lift increase, mixing enhancement,
and noise reduction. Current and future applications have
epic proportion: cars, trucks, trains, airplanes, wind turbines,
medical devices, combustion, chemical reactors, just to name
a few. Methods to adaptively adjust open-loop parameters
are continually improving towards shorter response times.
However, control design for in-time response is challenged
by strong nonlinearity, by high-dimensionality and by time-
delays. Recent advances in the field of model identification
and system reduction, coupled with advances in control the-
ory (robust, adaptive, and nonlinear) are driving significant
progress in adaptive and in-time closed-loop control of fluid
turbulence. In this review, we provide an overview of critical
theoretical developments, highlighted by compelling exper-
imental success stories. We also point to challenging open
problems and propose potentially disruptive technologies of
machine learning and compressive sensing.
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1 Introduction
Taming turbulence for engineering goals is one of the old-
est and most fruitful academic and technological challenges.
One of the earliest examples are the feathers at the tail of an
arrow invented several thousand years ago. These feathers
stabilize the orientation of the arrow and make the trajectory
more predictable and increase its range. Meanwhile, mod-
ern turbulence control has applications of epic proportion.
Examples include drag reduction of road vehicles, airborne
transport, ships and submarines, drag reduction in pipes and
air-conditioning systems, lift increase of airfoils, efficiency in-
crease of harvesting wind and water energy, of heat transfer
and of chemical and combustion processes — just to name a
few examples.

Animal motion has inspired numerous technical ad-
vances in engineering flows [1]. The shape of sharks, dol-
phins and whales, for instance, yields a low drag per volume
[2]. It is not an accident that zeppelins and airplanes have
similar shapes. Dolphins are speculated to delay boundary

layer transition by a compliant skin. This form of transition
delay has been applied to submarines and is under active in-
vestigation. Under magnification, the skin of sharks exhibit
riblets [3]. Riblets have been found to reduce drag by up to
11 % in the laboratory [4]. In-flight tests of riblets on an Air-
bus passenger airplane have reduced fuel consumption by 2-
3 %. Some sharks decrease drag by ejecting lubricants during
high-speed chases of their pray. A similar skin-friction reduc-
tion is used in oil pipelines: one added polymer per 1 million
oil molecules reduces the drag by about 40 %. Eagles and
other birds have 5 feathers at the tip of their wings. These
feathers increase the lift by reducing the pressure short-cut
between the low pressure upper side and the higher pressure
lower side. Most modern passenger airplanes have winglets
for the same reason.

The environmental benefit of turbulence control can be
illustrated with an everyday example: automotive trans-
port. Today, the annual global CO2 emissions from cars ex-
ceed 22 billion tons and are expected to increase by 57% by
2030. A large portion of this emission is due to aerodynamic
drag [5, 6]. At a speed of 50 km/h the aerodynamic drag
accounts for 50% of the total resistance reaching 80% at 130
km/h. A drag reduction of around 25% is currently achiev-
able by active flow control [7]. Ad a speed of 120km/h, this
would reduce consumption by about 1.8 liter and would re-
duce CO2 by almost 2 kg per 100 km. In normal traffic, the
corresponding reductions are 0.15 liter in fuel and 0.73 kg in
CO2. For Europe, this drag reduction would mean a reduc-
tion of 23 million tonnes of CO2 emission in one year. To
mitigate pollution, the European government imposes strict
norms to car manufacturers. By 2020, the mean CO2 emis-
sion per vehicle must not exceed 95 gCO2/km. By 2025, the
limit is 75 gCO2/km.

Among the countless technologies that will benefit from
turbulence control, we highlight the potential benefits for en-
ergy and transportation. Increased lift and reduced drag due
to separation control and transition delay would result in
increased payloads and decreased runway requirements for
aircraft and improved efficiency in nearly all vehicles. Con-
sidering that transportation accounts for approximately 20%
of global energy consumption, a small improvement would
have a dramatic effect [8, 9, 10]. Active separation control
would also improve the safety of cargo trucks and trains in
strong cross-winds [11, 12, 13]. Hypersonic vehicles stand to
benefit from active control to prevent the undesirable ejection
of flames out of the combustion chamber, and subsequent
quenching. Finally, reducing the amount of turbulent fluctu-
ations on rotor blades would reduce vibration and improve
the life of rotor hubs on wind turbines and rotorcraft.

Strategies to control laminar and turbulent flow are clas-
sified in three categories [14]: aerodynamic shape optimiza-
tion, passive and active control. The first approach for in-
creasing flow performance is the optimization of the aerody-
namic shape. Potential flow theory, invented about 150 years
ago, provides a simple mathematical foundation. Meanwhile
adjoint-based shape optimization can be numerically per-
formed for the full Navier-Stokes equations. As a second
step, passive actuators may improve the performance. Such
a device represents a small change of the original configura-
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tion. One example are the turbulators on wings of passen-
ger airplanes to delay separation. Such passive devices may
come with the penalty of parasitic drag. An alternative are
active control devices, like fluidic vortex generators, which
may be turned on and off but require energy for their opera-
tion. One advantage is a large dynamic bandwidth, e.g. the
excitation of particular frequencies. Active control may be
performed in a predetermined open-loop manner, e.g. peri-
odic blowing and suction, independent of the flow state. The
largest gains are, of course, realized in a closed-loop manner
when the actuation is informed by the sensors recording the
flow state.

Up to the 1990’s, manufacturers have often seen ac-
tive control as a remedy for a flawed aerodynamic design
[15]. Hence, industrial interest has been correspondingly
low. Meanwhile, aerodynamic design and passive devices
are considered as maturely developed and active control is
pursued to further increase the performance, particularly for
off-design conditions. Three trends foster closed-loop con-
trol. First, the power and reliability of actuators and sensors
have dramatically increased, while the price is decreasing.
Second, a sophisticated control logic can be performed un-
der real-world conditions with increasing computer power
and the advancement of mathematical theories. Thirdly, the
experimental demonstrations of the benefits of closed-loop
over open-loop forcing has become overwhelming [see, e.g.,
16, 17].

Most literature on closed-loop flow control falls in one
of three categories: stabilization of laminar flow, adaptive
control of turbulence and model-free tuning of control laws.
For the first category, there exists a mature theory for the
stabilization of laminar flows with in-time closed-loop con-
trol. Early experimental examples are described in [18, 19]
while most studies are based on Direct Navier-Stokes (DNS)
solutions [see, e.g., 20, 21]. ’In-time’ means that the actua-
tion responds on a time-scale much smaller than the natural
time-scale. Most corresponding publications are based on a
linearization of the evolution equation. The employed evolu-
tion equation may be a white-box model, e.g. DNS discretiza-
tion, resolving all features of the flows, a gray-box model,
e.g. POD models, just describing the coherent structures, or
a black-box model, e.g. transfer functions, representing only
the input-output behavior. The control logic based on white
box models are the most accurate. Gray-box and black-box
models are less accurate but allow online-capable control so-
lutions for experiments.

The second category is adaptive control of turbulence
usually based on a manipulation of periodic forcing. Most
experimental success stories belong to this class. ’Adaptive’
means that the change of the actuation parameter, like am-
plitude or frequency, is slow compared to the natural time-
scale. The third group consists of in-time control of turbulent
flows, for instance by tuning simple laws, e.g. opposition or
PID control [22]. The inherent nonlinearities of turbulence
pose a challenge for model-based in-time control.

Closed-loop control requires decisions on the hardware,
like the kind, number, location, and dynamic bandwidth of
actuators and sensors. Such decisions may be guided by
modern adjoint-based techniques for linearized equations,

i.e. for laminar flow. For turbulence, these decisions are
largely guided by engineering wisdom from the flow con-
trol processes and past experiments. The control laws may
be guessed based on the flow phenomenology. These aspects
will be touched in Sec. 2. The focus of this review is the con-
trol logic sketched in Fig. 1. This logic is based on model
complexity, e.g. model-free approaches (bottom right of this
figure), black-box (left), gray (middle) and white-box models
(right). Experimental flow control solutions require a delicate
compromise between simplicity and accuracy. Many plants
benefit from system reduction approaches. This spectrum of
models will be outlined in Sec. 3. The most complete model-
based control design techniques are available for linear mod-
els. These will be described in Sec. 4. The detailed review
of linear control theory may be surprising in a review about
control of nonlinear turbulence processes. We emphasize lin-
ear control for three reasons. First, it is a beautiful theory
showing clearly the effects of model accuracy and design pa-
rameters. Second, the prevention of turbulence, i.e. transition
control, can largely be done based on a linear theory. Third,
even some strongly nonlinear processes may be tamed with
linear control methods, if the nonlinearity is well understood.
Examples of such ’reducible’ nonlinear models are provided
in Sec. 5. Model-free approaches for ’non-reducible’ nonlin-
ear dynamics are reviewed in Sec. 6. In Sec. 7, we summarize
good practices of flow control and promising directions of
future research are discussed in Sec. 8.

This review focuses on modeling and control methods
for nonlinear dynamics associated with turbulent fluid flows.
Theoretical and computational aspects of optimal and robust
(linear) control are elaborated in [23]. A large spectrum of lin-
ear system approaches are presented in [24, 20, 21], and pe-
riodic excitation is reviewed in [25]. We illustrate the perfor-
mance of the methods by referring to select successful closed-
loop control studies. Preference is given to academic stud-
ies for simple geometries. There are additional books and
reviews in the related fields of flow control for wall flows
[26, 27, 28], for turbulent mixing [29, 30, 31], for turbulent jets
[32], for combustion [33], for cavity flows [34, 21], for bluff
bodies [35], and for actuators [36].

2 Turbulence control problem

Turbulence control comprises decisions on the flow control
plant, on the cost functional, on the actuation and sensing,
and, last but not least, on the control logic. The control
logic serves to minimize the cost functional under given con-
straints. For linear dynamics, there exist adjoint-based meth-
ods for the choice of the actuators [21] and the sensors [37].
For turbulent flows, the application of these methods is lim-
ited and the choice is generally based on experience and
engineering wisdom. In this section, we provide heuristics
for turbulence control decisions. Thereafter, a mathematical
foundation of the control logic is elaborated.
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fact, the gain in towing power corrected by the actuation en-
ergy is less efficient than for complete stabilization. A fourth
highly successful drag reduction strategy consist of an aero-
dynamic shaping of the dead-water region, so that the bluff
body and the wake are more streamlined [7].

For high-lift configurations, the potential solution can be
conjectured to yield the maximum achievable lift. Similarly,
the maximum achievable pressure recovery in diffusers can
also be estimated from the potential solution. Summarizing,
the hypothesis on achievable performance has not only a the-
oretical value. The answer may also guide the control strat-
egy.

Finally, we mention mixing enhancement and noise re-
duction problems in which the cost function explicitely de-
pends on the history of the fluid motion. For such La-
grangian control tasks, an intuition about achievable maxi-
mum mixing or the minimum noise emission is still in its
infancy.

3 Black-box, gray-box, and white-
box models

Regardless of the modeling strategy employed below, we as-
sume that we are able to actuate the flow with some input
variables b 2 RNb and we are able to measure features of the
flow with some output variables s 2 RNs . Once the inputs
and outputs are set, there are many choices for the model
that links them. For example, we may consider the full dis-
cretized Navier-Stokes equations as a high-dimensional non-
linear set of ordinary differential equations. Alternatively,
we may relate inputs to outputs through either a statisti-
cal description or a set of empirical basis functions. Recent
advances in dimensionality reduction techniques and turbu-
lence closures also have exciting implications for the future
of turbulence modeling and control.

The choice of model affects nearly every downstream
control decision. There are many factors and tradeoffs that
must be balanced when deciding on a modeling strategy.
These include the accuracy of the model, execution time,
generality in other parameter regimes, spatial-temporal res-
olution relative to disturbances, and the up-front cost to ac-
quire such a model. For example, direct numerical simula-
tion (DNS) is unparalleled at descriptive resolution, general-
ity, and accuracy, but current computational capabilities are
decades away from real-time execution for in-time control
strategies. Reduced-order models based on data from DNS
or experiments provide real-time capable models, but these
models are expensive to create and may only work for a small
range of training parameters. Fortunately, it may be possible
to leverage physical intuition about the structure of the un-
derlying modes, often in terms of linear combinations of full
flow fields, to modify the models with addit ional terms and
extend their predictive range. Black-box models based on
input–output data are typically faster to generate and require
less measured data, but they lack the physical interpretation
that goes with having an underlying modal representation.

Figure 4 outlines a model hierarchy for control design,
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Figure 4: Model hierarchy for control design based on [74].

following a classification of N. Wiener [74] and extending it
to include model-free approaches. These classifications are
generally based on the system resolution of the model. Some
control laws can be analytically derived from the Navier-
Stokes equations. One example is energy-based control to
stabilize a flow (see Sec. 5.2). We refer to this control-design
as “ultra-white”. An expanded view of the various models
and modal decompositions is shown in Fig. 5. This section is
not meant to be exhaustive, but rather include methods that
have either been applied with recent success or methods that
have particular promise in the future.

3.1 State-space models
In one of the most general frameworks, we will have a state
a 2 RNa and a nonlinear function f advancing the state for-
ward in time, along with a nonlinear output function m:

ȧ = f(a, b; µ), (2a)

s = m(a, b; µ). (2b)

In the following, we explore possible state-spaces for a
(Sec. 3.2) and dynamic models for f (Sec. 3.3). Here the dy-
namics are assumed to be continuous, and in general the flow
state a in the Navier-Stokes equation is twice continuously
differentiable in space and once continuously differentiable
in time. The bifurcation parameters µ may change the qual-
itative nature of the solutions, and the flow field may not
always be continuously differentiable in µ. These parame-
ters include the Reynolds number and Mach number, among
others.

The nonlinear dynamics in Eq. (2) may be linearized at
a steady fixed point as, where f(as,0; µ) = 0, away from
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Figure 1: Turbulence control roadmap. For details, see text and the coming sections.

2.1 The flow control plant and associated
goals

In the sequel, flow is assumed to be within or around a steady
boundary with small unsteady actuators and sensors. Aca-
demic flow control configurations strive at geometric sim-
plicity for enhanced reproducibility and for ’clean’ under-
standable physical mechanisms. Examples include free shear
flows from a bluff body, a mixing layer or a jet and wall-
bounded flows in a channel or over a flat plate. Cavity noise,
suppression of aeroelastic oscillation and flame-holder com-
bustion serve as examples for multi-physics flows.

Configurations of industrial importance tend to be ge-
ometrically far more complex, like the flow around a car,
truck, train, airplane or wind-turbine. Internal flows in pipes,
diffusers, combustors, mixers, air-conditioning systems and
buildings are further examples. Each of these configurations
could profit from closed-loop control and the range of poten-
tial applications has epic proportion (see Fig. 2). Yet, many
flows with complex geometries can locally be approximated

by the above mentioned academic configurations. Thus, a
working flow control experience on simple test cases is ad-
vantageous in the design of efficient control for industrial
purposes.

The aerodynamic performance of transport vehicles and
wind-turbines is based on a force optimization, like drag re-
duction, lift increase or reduction of fluctuations to prevent
early material fatigue. Examples are transportation trucks
(PACCAR), airplane wings, wind turbine blades, helicopter
rotor hubs and reduction in structural loads. Combustors,
heat exchangers and chemical mixers profit from mixing en-
hancement. Noise reduction is a common request for greener
transport systems. Many of the above applications can be
idealized to aim at the stabilization of an unstable fixed point
or periodic orbit, which we may refer to as instability suppres-
sion. Some internal flows require an improved destabilization,
like the mixing enhancement in a combustor.

Most control objectives can be formalized in a rigorous
mathematical manner. Drag reduction, for instance, reduces
by definition the necessary propulsion or towing power. The
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Figure 2: Applications of closed-loop turbulence control. (a) Homogeneous grid turbulence, with permission of T. Corke
and H. Nagib, (b) turbulent jet from Bradshaw, Ferris & Johnson 1964 [38], (c) Karman vortex street behind a mountain, photo
by Bob Cahalan, NASA GSFC, (d) coherent structures in a mixing layer from Brown & Roshko 1974 [39], (e) thunderstorm,
(f) automobile in a wind tunnel, photo by Robert G. Bulmahn, (g) high-speed train, (h) cargo ship, (i) passenger jet, (j) Blue
angles fighter jets, (k) automobile engine, (l) turbo jet engine, (m) aircraft engines, (n) wind turbines, (o) heat exchanger
flow (p) rotating mixer, (q) air conditioner, (r) chocolate mixing, (s) total artificial heart. Images (e) and (g)-(n) are from
http://pixabay.com. Images (c), (f) and (q)-(s) are from https://commons.wikimedia.org. Images (o) and (p) were made
using the COMSOL Multyphysicsr software and are provided courtesy of COMSOL.

optimal drag reduction may be defined by the maximum
energetic benefit, i.e. the saving in towing power subtract-
ing the investment in actuation power. Note that any well-
defined control problem requires a penalization of the actua-
tion power.

Many experimental studies demonstrate that the control
is effective for a well-defined operating condition in a noise-
free wind-tunnel environment. Engineering applications re-
quire additional effectiveness for the intended operating en-
velope, including various oncoming velocities, a range of an-
gles of attack, free-stream turbulence, just to provide few ex-
amples. Ideally, robustness of the control is included upfront
in an objective comprising a range of operating conditions,

like in linearH∞ control (see Sec. 4.4). At minimum, the level
of robustness needs to be assessed after a single point opti-
mization of actuation. An understanding of the turbulence
control mechanisms provides a first hint on the expectable
level of robustness.

2.2 Linear dynamics

Turbulence is known as the last unsolved problem of classi-
cal mechanics, largely because the effects of nonlinearity are
next to impossible to predict from first principles. Hence,
turbulence control can be seen as an even more Herculean
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nonlinear problem as not only the unforced state needs to be
predicted but also the effect of a small actuation. Fortunately,
there exist a number of configurations for which a linear dy-
namics has been shown to be a good working assumption.
Examples include the following cases.
• Transition delay. The transition of a laminar into a turbu-

lent boundary layer is associated with a dramatic rise of
skin friction. Hence, engineering applications include
transition delay with closed-loop control. The laminar
state may still be stabilized based on a linearized model.
Evidently, stabilization of a laminar flow has benefits for
numerous other configurations.

• Drag reduction in wall turbulence. At high Reynolds num-
bers, active control at the wall does not have the author-
ity to stabilize the the laminar boundary layer. Yet, up to
11% drag reduction can be achieved with stationary ri-
blets which mitigate sweeps in the viscous sublayer [4].
Over 20% drag reduction can be obtained with linear ac-
tive control [40]. Arguably, linear control is applicable
because the sweep prevention in the viscous sublayer is
an effectively laminar process, like transition control.

• The in-time actuation response to large scale coherent struc-
tures may be described a linear model — extending the
examples of drag reduction in wall turbulence. Physi-
cally, such a locally linear model may be derived under
similar conditions as URANS simulations, i.e. if the ef-
fect of the unresolved stochastic velocity component on
the dynamically resolved coherent structures is roughly
represented by a temporally constant eddy viscosity. An
example is the mean-field model for oscillatory fluctua-
tions of turbulence (see Sec. 5.3).

• Adaptive control may be subject to a limited linear con-
trol. For instance, the change of cost function may
respond linearly to small changes of the amplitude
and frequency of periodic forcing. This is an implicit
working assumption of extremum seeking control (see
Sec. 6.2). Thus, tracking may be based on locally linear
dynamics.

• Another recently discovered example of linear dynam-
ics is the ensemble-averaged actuation response of a turbu-
lent shear flow [41]. The practical relevance of this ob-
servation still needs to be explored. Studies of forced
nonlinear chaotic systems indicate that the ensemble-
averaged effect of a Heaviside actuation may be de-
scribed by linear system while the amplitude depen-
dency is far from linear [42]. Moreover, the ensemble
averaged response may constitute a small portion of the
fluctuation energy and may not be very relevant for the
control goal.

2.3 Turbulence control mechanisms
In the following, common principles of turbulence control
are outlined. A control principle is understood as a phe-
nomenological rationale based on a simplified physical actu-
ation mechanism. A simple principle has a low-dimensional
plant mimicking relevant aspects of turbulence control, in-
cluding linear and nonlinear dynamics.

We start with stabilizing control. A very simple example
is opposition control. Let

da

dt
= a+ b

be a plant with the unstable fixed point a = 0 and actua-
tion b. Evidently, the control law b = −2a will ’oppose’ the
natural evolution and stabilize the fixed point. A number of
flow control configurations mimic this behavior. Let us con-
sider Tollmien-Schlichting waves over a wall. The wall shall
have a membrane of which the vertical motion can be con-
trolled. A positive or negative wall-normal velocity fluctua-
tion of a Tollmien-Schlichting wave can be counteracted by a
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Figure 3: Heuristics of turbulence control

turbulence presents a tour de force trough the control strate-
gies and methods, we will elaborate in later sections.

2.3 Actuators and sensors
The choice of the actuators and sensors, their number, lo-
cation, frequency range and amplitude level has a decisive
effect on the maximum performance of the control logic.
Actuators may include zero-net mass flux actuators, piezo-
electric actuators, Festo-valves (intermittent blowing), syn-
thetic jets [17], plasma actuators, and roughness elements on
the wall. [13] offers an excellent summary. Similarly, sensors
may measure velocity, pressure, skin-friction, temperature in
various frequency resolutions.

Up to this day, the choice of the actuators and sensors in
experiments is based on engineering experience and on the
hypothetical actuation mechanism which shall be exploited.
For instance, the sensors are placed before the actuator of
the actuator shall counteract upstream perturbations. The
sensors are placed downstream of the actuator, if actuation
mechanism exploits the excited structures. For opposition
control, sensors and actuators should be at a similar loca-
tion. For phasor control, it is important that the actuators
are at a high-receptitivity point for the oscillatory instability,
e.g. a point of geometric separation and the sensors can mea-
sure a clean oscillation. The number of rules could easily be

extended. For linear dynamics, sophisticated mathematical
methods have been developed for actuator and sensor place-
ment. For nonlinear dynamics, heuristic methods for the op-
timization of sensor placement exist [? ]. In this survey, we
focus on the control logic.
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extended. For linear dynamics, sophisticated mathematical
methods have been developed for actuator and sensor place-
ment. For nonlinear dynamics, heuristic methods for the op-
timization of sensor placement exist [? ]. In this survey, we
focus on the control logic.
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4.4.1 Balanced model reduction

4.5 H1 robust vs. H2 optimal control

Now that we have established conditions enabling
arbitrary pole placement of the closed-loop system,
we must now decide on where to place them.

4.5.1 H2 optimal control: Linear quadratic Gaus-
sian (LQG)

We may often modify Eq. (2) with the addition of
white noise disturbance wd and measurement noise
wn:

d

dt
a = Aa + Bb + wd, (14a)

s = Ca + Db + wn. (14b)

Each of these noise inputs has a different co-
variance matrix: E(wdw

T
d ) = Vd and E(wnwT

n ) =
Vn, where E(·) is the expectation value. [This is
not precise enough... really need E(wd(t)wd(⌧)T ) =
Vd�(t � ⌧).]

Linear-quadratic regulator (LQR):

J =

Z 1

0
aT Qa + bT Rb dt. (15a)

The optimal control law is b = �Kra, where Kr =
R�1BT X and X is the unique solution to the alge-
braic Riccati equation:

AT X + XA � XBR�1BT X + Q = 0. (16a)

A dual Riccati equation is solved for the observer
gain Kf = Y CT Vn:

Y AT + AY � Y CT V �1
n CY + Vd = 0. (17a)

The so-called Kalman filter Kf is chosen to mini-

mize E
⇣
(a � â)T (a � â)

⌘
given known covariance

Vd and Vn.
[Note: Kalman published his famous Kalman

filter in a journal of Fluid Engineering.]
[Decent stability margins for LQR, but no guar-

anteed stability margins for LQG (famous Doyle pa-
per)].

4.5.2 Sensitivity, Complementary Sensitivity,
and Robustness

• S(⇣) - sensitivity function

• T (⇣) - complementary sensitivity function

• wr - reference tracking

4.5.3 H1 robust control

We will often set Ĉ = Kr and D̂ = 0, where
Kr is a linear-quadratic-regulator (LQR) gain ma-
trix. We may also choose Â and B̂ according to the
Kalman filter, resulting in a combined estimation-
based controller known as the linear-quadratic-
Gaussian (LQG). Because of the separation principle
for linear systems, it is possible to design an optimal
feedback control gain Kr and an optimal observer
separately, and they will be both stable and optimal
when combined.

The resulting controller, known more generally
as a H2 controller, optimally balances the effect of
Gaussian measurement noise with process distur-
bances. However, these controllers are known to
have arbitrarily poor robustness margins. Instead,
H1 robust controllers are used when robustness is
important.

Figure 4 shows the most general schematic for
closed loop feedback control, encompassing H2 and
H1 optimal control strategies. There are a number
of excellent books expanding on this theory [39, 40].

Here we discuss important theoretical results re-
garding the various types of optimal control: H1
robust control, and H2 LQG.

• Often times turbulence is considered a distur-
bance term in a slower dynamical system, such
as the rigid body equations of an aircraft, space
shuttle, or rocket. In this case, turbulent fluc-
tuations may be seen as inevitable and oper-
ating on a time scale that is faster than con-
troller bandwidth. Instead of trying to change
the nature of the turbulence itself, the controller
may be designed to obtain some other objective
while robustly managing the uncertain turbu-
lent disturbance.

• H2 is by far the more popular control paradigm
because of its simple mathematical formula-
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effect on the maximum performance of the control logic.
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various frequency resolutions.
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as a H2 controller, optimally balances the effect of
Gaussian measurement noise with process distur-
bances. However, these controllers are known to
have arbitrarily poor robustness margins. Instead,
H1 robust controllers are used when robustness is
important.

Figure 4 shows the most general schematic for
closed loop feedback control, encompassing H2 and
H1 optimal control strategies. There are a number
of excellent books expanding on this theory [39, 40].

Here we discuss important theoretical results re-
garding the various types of optimal control: H1
robust control, and H2 LQG.

• Often times turbulence is considered a distur-
bance term in a slower dynamical system, such
as the rigid body equations of an aircraft, space
shuttle, or rocket. In this case, turbulent fluc-
tuations may be seen as inevitable and oper-
ating on a time scale that is faster than con-
troller bandwidth. Instead of trying to change
the nature of the turbulence itself, the controller
may be designed to obtain some other objective
while robustly managing the uncertain turbu-
lent disturbance.

• H2 is by far the more popular control paradigm
because of its simple mathematical formula-
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Figure 3: Heuristics of turbulence control. Here s are the
sensor signals and b are the actuation signals.

Lower frequency forcing may also serve the same purpose
[49, 45]. Section 5.4 offers a least-order dynamical system
for such frequency cross-talk. In the discussed examples,
the actuation has a destructive frequency cross-talk with the
target instability. However, the frequency interaction may
also be constructive. In a mixing layer, the excitation of
Kelvin-Helmholtz vortices leads to earlier vortex pairing, i.e.
to the excitation of half the actuation frequency. The Kelvin-
Helmholtz instability — and thus the vortex pairing — may
be mitigated by the excitation of higher frequencies. With-
out a dynamic model, a careful observation of the flow with
respect to period forcing may provide insight into effective
control strategies. A sufficiently strong periodic forcing at
the right frequency may mitigate the target frequency. The
loop may be closed on a long time scale to tune the actuation
amplitude to the minimal level. Alternatively, in-time control
may destabilize the corresponding oscillator which mitigates
the target instability.

The present mechanisms are helpful concepts which can
explain many results from the literature and can potentially
guide new experiments. Yet, the binary categorization in sta-
bilizing and destabilizing control is an over-simplification.
For many control goals, like jet noise reduction, the enabling

mechanisms are far from being understood.
In the case of broad-band turbulence, no generic simple

recipes for the control law can be offered. Yet, we present a
highly promising machine-learning strategy in Sec. 6. Figure
3 summarizes all discussed control principles with associated
methods. The heuristics for closed-loop turbulence presents
a tour de force trough the control strategies and methods, we
will elaborate in later sections.

2.4 Actuators and sensors
The choice of the actuators and sensors, their number, lo-
cation, frequency range and amplitude level has a decisive
effect on the maximum performance of the control logic.
Actuators may include zero-net mass flux actuators [50, 51,
52], piezo-electric actuators [53, 54], Festo-valves (intermit-
tent blowing), synthetic jets [55, 56, 57, 58], plasma actua-
tors [59, 60, 61, 62, 63, 64, 65], microelectromechanical sys-
tems (MEMS) [66, 67, 68, 69, 70, 71, 72], and roughness el-
ements on the wall. Excellent overviews are presented in
[55, 36]. Similarly, sensors may measure velocity, pressure,
skin-friction, and temperature in various frequency resolu-
tions. These are described in text books of experimental fluid
mechanics.

Up to this day, the choice of the actuators and sensors in
experiments is based on engineering experience and on the
hypothetical actuation mechanism which shall be exploited.
For instance, the sensors are placed before the actuator if the
actuation shall counteract upstream perturbations. The sen-
sors are placed downstream of the actuator, if the actuation
mechanism exploits the excited structures. For opposition
control, sensors and actuators should be at a similar loca-
tion. For phasor control, it is important that the actuators
are at a high-receptivity point for the oscillatory instability,
e.g. a point of geometric separation where the sensors can
measure a clean oscillation. The number of rules could easily
be extended. For linear dynamics, sophisticated mathemat-
ical methods have been developed for actuator and sensor
placement, although optimal placement remains elusive. For
nonlinear dynamics, heuristic methods for the optimization
of sensor placement exist [21]. In this survey, we focus on the
control logic.

2.5 Achievable performance
An important, yet challenging question in turbulence control
is the achievable performance. Evidently, any investment in
improving a control strategy may be measured in terms of
the achievable additional performance. We constrain the dis-
cussion to aerodynamic problems. The minimum skin fric-
tion in a channel flow is conjectured to be associated with the
steady Poiseuille profile. Similarly, the minimum drag of a
cylinder wake may also be conjectured to be associated with
the steady solution. In fact, most drag reduction strategies
are formulated as minimization of the fluctuation energy.
Yet, control studies of the cylinder wake exhibit two other po-
tentially desirable flow states. One is the potential solution
which is approximated in compliant wall actuation by [73].
Interestingly, Choi [35] reports a better performing optimal
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control when the cost function for drag reduction contains
the difference between the controlled flow and potential so-
lution as opposed to the drag itself. Another solution is closer
to the Kirchhoff solution and is achieved by high-frequency
forcing [74]. In fact, the drag of high-frequency forcing may
even be lower than for the completely stabilized wake [75].
Yet, both solutions require a significant actuation energy. In
fact, the gain in towing power corrected by the actuation en-
ergy is less efficient than for complete stabilization. A fourth
highly successful drag reduction strategy consist of an aero-
dynamic shaping of the dead-water region, so that the bluff
body and the wake are more streamlined [7].

For high-lift configurations, the potential solution can be
conjectured to yield the maximum achievable lift. Similarly,
the maximum achievable pressure recovery in diffusers can
also be estimated from the potential solution. Summarizing,
the hypothesis on achievable performance has not only a the-
oretical value. The answer may also guide the control strat-
egy.

Finally, we mention mixing enhancement and noise re-
duction problems in which the cost function explicitely de-
pends on the history of the fluid motion. For such La-
grangian control tasks, an intuition about achievable maxi-
mum mixing or the minimum noise emission is still in its
infancy.

3 Black-box, gray-box, and white-
box models

Regardless of the modeling strategy employed below, we as-
sume that we are able to actuate the flow with some input
variables b ∈ RNb and we are able to measure features of the
flow with some output variables s ∈ RNs . Once the inputs
and outputs are set, there are many choices for the model
that links them. For example, we may consider the full dis-
cretized Navier-Stokes equations as a high-dimensional non-
linear set of ordinary differential equations. Alternatively,
we may relate inputs to outputs through either a statisti-
cal description or a set of empirical basis functions. Recent
advances in dimensionality reduction techniques and turbu-
lence closures also have exciting implications for the future
of turbulence modeling and control.

The choice of model affects nearly every downstream
control decision. There are many factors and tradeoffs that
must be balanced when deciding on a modeling strategy.
These include the accuracy of the model, execution time,
generality in other parameter regimes, spatial-temporal res-
olution relative to disturbances, and the up-front cost to ac-
quire such a model. For example, direct numerical simula-
tion (DNS) is unparalleled at descriptive resolution, general-
ity, and accuracy, but current computational capabilities are
decades away from real-time execution for in-time control
strategies. Reduced-order models based on data from DNS
or experiments provide real-time capable models, but these
models are expensive to create and may only work for a small
range of training parameters. Fortunately, it may be possible
to leverage physical intuition about the structure of the un-
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Figure 4: Model hierarchy for control design based on [76].

derlying modes, often in terms of linear combinations of full
flow fields, to modify the models with additional terms and
extend their predictive range. Black-box models based on
input–output data are typically faster to generate and require
less measured data, but they lack the physical interpretation
that goes with having an underlying modal representation.

Figure 4 outlines a model hierarchy for control design,
following a classification of N. Wiener [76] and extending
it to include model-free and ultra-white approaches. These
classifications are generally based on the system resolution
of the model. Some control laws can be analytically derived
from the Navier-Stokes equations. One example is energy-
based control to stabilize a flow (see Sec. 5.2). We refer to
this control-design as “ultra-white”. An expanded view of
the various models and modal decompositions is shown in
Fig. 5. This section is not meant to be exhaustive, but rather
it includes methods that have either been applied with re-
cent success or methods that have particular promise in the
future.

3.1 State-space models
In one of the most general frameworks, we will have a state
a ∈ RNa and a nonlinear function f advancing the state for-
ward in time, along with a nonlinear output functionm:

d

dt
a = f(a, b;µ), (2a)

s = m(a, b;µ). (2b)

In the following, we explore possible state-spaces for a
(Sec. 3.2) and dynamic models for f (Sec. 3.3). Here the dy-
namics are assumed to be continuous, and in general the flow
state a in the Navier-Stokes equation is twice continuously
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differentiable in space and once continuously differentiable
in time. The bifurcation parameters µ may change the qual-
itative nature of the solutions, and the flow field may not
always be continuously differentiable in µ. These parame-
ters include the Reynolds number and Mach number, among
others.

The nonlinear dynamics in Eq. (2) may be linearized at
a steady fixed point as, where f(as,0;µ) = 0, away from
critical values of the bifurcation parameters. The linearized
model may also be converted into a frequency domain repre-
sentation, as explored in Sec. 4.

3.2 Kinematics: employed state spaces
There are numerous choices for the underlying state space in
Eq. (2), some of which are shown in the ’Kinematics’ column
of Fig. 5. This choice depends strongly on the availability
of measurements and the desired model resolution; more-
over, it should be considered whether or not the method is
data-driven or if it requires knowledge of the governing equa-
tions. The following represents a non-exhaustive set of pos-
sible state-spaces, defining a in Eq. (2). Note that many of
these state-spaces may be used in model-free approaches.

3.2.1 Full-resolution description (white-box)

A full description of a fluid flow may include a high-
resolution spatial or spectral discretization of the velocity
field

a = Du(x, t).

Here, D is a discretization operator, resulting in a high-
dimensional state vector representation of a continuous field.
Such descriptions are the basis of white-box models, which
describe every relevant feature of the flow. These represen-
tations are typically very high dimensional, sometimes ex-
ceeding the capacity of computer memory. For example, a
high Reynolds number three-dimensional unsteady flow will
exhibit important spatial structures that span many orders
of magnitude in scale. The Reynolds number can be esti-
mated from the ratio between the largest-scale structures to
the smallest structures in the flow. Thus, for a generic ge-
ometry, the state dimension will scale with Re9/4, along with
the memory cost [77, 78, 79]. The computational cost will
scale with Re3 because of the addition of multiple temporal
scales, which generally scale with Re3/4. For a channel flow,
the scaling may even be worse with Reynolds number, as Re3

in space and Re4 in space and time [80, 81]. If a spatial dis-
cretization is required with 1000 elements in each direction,
then a three-dimensional simulation will contain 109 states
for every flow variable (velocity, pressure, etc.).

The highest-order fully-resolved simulation to date is
a wall-bounded turbulent channel flow with Reτ = 5200
(Reynolds number based on the friction velocity), containing
2.4×1011 states [81]. This simulation is about 3.5 times larger
than the previous record holder [82], and it uses slightly over
3/4 of a million processors in parallel. Even with Moore’s
law, it will take nearly 40 years for this type of computa-
tion to become a lightweight ’laptop’ computation [83], and

decades longer before being useful for in-time control, since
the parallel code takes 7 real seconds per simulated time-
step, as benchmarked in [81]. However impressive and use-
ful for design and optimization, it is unclear that this level of
resolution is even necessary for many control applications.

3.2.2 Modal representation (gray-box)

Instead of resolving every detail of the flow field at all scales,
it is often possible to represent most of the relevant flow fea-
tures in terms of a much lower dimensional state. This state
represents the amplitudes of modes, or coherent structures
that are likely to be found in the flow of interest. Galerkin
models based on modal expansions constitute one class of
gray-box models, which resolve the coherent structures of
the white-box models while accounting for small scale fluc-
tuations with sub-scale closures.

The proper orthogonal decomposition (POD) is one of
the earliest and most successful modal representations used
in fluids [84, 85], resulting in dominant spatially coher-
ent structures. POD benefits from a physical interpretation
where modes are ordered hierarchically in terms of the en-
ergy content that they capture in the flow. There are numer-
ous methods to compute POD, and the snapshot POD [86]
is efficient when a limited number of well-resolved full-
state measurements are available from simulations or exper-
iments. Snapshot POD is based on the singular value de-
composition (SVD) [87, 88, 89, 90], which is both numerically
stable and efficient. POD is known under other names: Prin-
cipal components analysis (PCA) [91], the Hotelling transfor-
mation [92], Karhunen–Loève decomposition [93], and em-
pirical orthogonal func tions [94]. POD has been widely used
for flow control, as in the case of using proportional feed-
back control to reduce turbulent fluctuations around a turret
for aero-optic applications [95]. Extensions of POD specif-
ically designed for closed-loop feedback control, known as
balanced proper orthogonal decomposition (BPOD) [96, 97],
will be discussed in Sec. 4.5.3.

A recent technique, known as dynamic mode decompo-
sition (DMD) combines features of the POD and the discrete
Fourier transform (DFT). The resulting spatial-temporal co-
herent structures oscillate in time at fixed frequencies, pos-
sibly with growth or decay [98, 99, 100, 101]. Like POD,
DMD is a snapshot based method, making it appealing for
simulations and experiments alike. DMD requires time-
resolved snapshots of the same quality as needed for a
Fourier transform, although recent methods have investi-
gated sub-Nyquist sampled DMD [102]. Finally, DMD has
a strong connection to the Koopman operator, which is an in-
finite dimensional linear operator describing the evolution of
an observable function of a nonlinear dynamical system on a
manifold [103, 104, 105, 100, 106, 107].

It is also possible to construct a modal representation
of growing and decaying features in the flow based on sta-
bility modes of the linearized Navier-Stokes equation and
linearized adjoint equations [108, 109, 110, 111]. The least
damped part of the spectrum determines the coherent struc-
tures and their transient dynamics. Although completeness
of the stability modes of the linearized Navier-Stokes equa-
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d

dt
a = Aa + Bb + wd, (14a)

s = Ca + Db + wn. (14b)

Each of these noise inputs has a different co-
variance matrix: E(wdw

T
d ) = Vd and E(wnwT

n ) =
Vn, where E(·) is the expectation value. [This is
not precise enough... really need E(wd(t)wd(⌧)T ) =
Vd�(t � ⌧).]

Linear-quadratic regulator (LQR):

J =

Z 1

0
aT Qa + bT Rb dt. (15a)

The optimal control law is b = �Kra, where Kr =
R�1BT X and X is the unique solution to the alge-
braic Riccati equation:

AT X + XA � XBR�1BT X + Q = 0. (16a)

A dual Riccati equation is solved for the observer
gain Kf = Y CT Vn:

Y AT + AY � Y CT V �1
n CY + Vd = 0. (17a)

The so-called Kalman filter Kf is chosen to mini-

mize E
⇣
(a � â)T (a � â)

⌘
given known covariance

Vd and Vn.
[Note: Kalman published his famous Kalman

filter in a journal of Fluid Engineering.]
[Decent stability margins for LQR, but no guar-

anteed stability margins for LQG (famous Doyle pa-
per)].

4.5.2 Sensitivity, Complementary Sensitivity,
and Robustness

• S(⇣) - sensitivity function

• T (⇣) - complementary sensitivity function

4.5.3 H1 robust control

We will often set Ĉ = Kr and D̂ = 0, where
Kr is a linear-quadratic-regulator (LQR) gain ma-
trix. We may also choose Â and B̂ according to the
Kalman filter, resulting in a combined estimation-
based controller known as the linear-quadratic-
Gaussian (LQG). Because of the separation principle

Turbulent
System

Feedback
Controller

w J

b s

Figure 2: General framework for feedback control.
The input to the controller are the system measure-
ments s, and the controller outputs an actuation sig-
nal b. The exogenous inputs w may refer to a refer-
ence state r, disturbances d or sensor noise n. The
output cost function z may measure any cost associ-
ated with inaccuracy of reference tracking, expense
of control, etc.

for linear systems, it is possible to design an optimal
feedback control gain Kr and an optimal observer
separately, and they will be both stable and optimal
when combined.

The resulting controller, known more generally
as a H2 controller, optimally balances the effect of
Gaussian measurement noise with process distur-
bances. However, these controllers are known to
have arbitrarily poor robustness margins. Instead,
H1 robust controllers are used when robustness is
important.

Figure 2 shows the most general schematic for
closed loop feedback control, encompassing H2 and
H1 optimal control strategies. There are a number
of excellent books expanding on this theory [39, 40].

Here we discuss important theoretical results re-
garding the various types of optimal control: H1
robust control, and H2 LQG.

• Often times turbulence is considered a distur-
bance term in a slower dynamical system, such
as the rigid body equations of an aircraft, space
shuttle, or rocket. In this case, turbulent fluc-
tuations may be seen as inevitable and oper-
ating on a time scale that is faster than con-
troller bandwidth. Instead of trying to change
the nature of the turbulence itself, the controller
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4 Linear model-based control

Many results in closed-loop turbulence control are
specific to linear systems. For example, one may sta-
bilize an unstable steady-state and delay the transi-
tion to turbulence, as in the boundary layer or chan-
nel flow. In this case, the laminar solution becomes
unstable for post-critical Reynolds numbers, but it
may be stabilized by feedback control.

Such work has encompassed a significant mod-
eling effort (see Sec. 3) to describe the relevant low-
order fluid mechanisms. Performance issues such as
bandwidth, disturbance rejection, and noise atten-
uation must be balanced with robustness to model
uncertainty and time-delays. For this reason, there
has been a recent push to move away from H2 op-
timal control techniques (LQR, Kalman estimation,
LQG, etc.) to the robust H1 controllers [32, 33, 34,
35]. These controllers penalize the worse-case sce-
nario error and provide robust performance. In addi-
tion, significant effort has gone into the design and
modeling of sensor and actuators, along with their
placement in the flow.

There are many instances when linear control
strategies may have significant and direct impact for
nonlinear turbulent flows, even away from laminar
fixed-point solutions:

1. In mean-field models, exciting one oscillatory
mode with linear control may kill other oscilla-
tory modes [36, 37],

2. ensemble averages of turbulent flow responses
may be linear, as in Colonius’s experimental jet
noise study ,

3. Dusek’s jet simulation at Re=100,

4. transient control of separation for fully turbu-
lent boundary layer [38].

4.1 Linearized input–output dynamics

Often, we are interested in linearizing Eq. (1) about
a steady fixed point as or periodic orbit, leading to
a linear system of equations:

d

dt
a = Aa + Bb, (2a)

s = Ca + Db. (2b)

where each of the (A, B, C, D) depend on the lin-
earization point as and bifurcation parameter �.
This approximation will be approximately valid
near fixed points and away from critical values of
the bifurcation parameter where det df/d� = 0.

It is possible to represent the state-space model
in Eq. (2) as a transfer function P (⇣) in the frequency
domain (in terms of a Laplace variable ⇣):

P (⇣) = C (⇣I � A)�1 B + D. (3a)

4.2 Model-based open loop control

• What it would look like to design the ideal sys-
tem, invert plant dynamics, etc.

• Why this would be a terrible idea (in many
cases)...

4.3 Dynamic feedback controllers

Given linear dynamics of the form in Eq. (2), we of-
ten want a feedback controller based on full-state
feedback: b = �Kra. For example, if the system is
controllable, then the poles of the closed-loop system
may be placed arbitrarily by choice of Kr.

d

dt
a = Aa � BKra (4a)

= (A � BKr) a. (4b)

However, full-state measurements of a are ei-
ther infeasible or prohibitively expensive, and so an
estimate â may be obtained from measurements s.
This is of course, only if the system of equations (2)
is observable. An observer dynamical system may be
constructed as follows:

d

dt
â = Aâ + Bb + Kf (s � ŝ), (5a)

ŝ = Câ + Db (5b)

[(typically D = 0 for this problem...)] which leads
to

d

dt
â = (A � KfC) â + Kfs + (B � KfD) b.(6a)

The full-state estimate â will converge to an esti-
mate of the true state a if the eigenvalues of A �
KfC are stable.
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3 Black, grey, and white-box models

Regardless of the modeling strategy below, we as-
sume that we are able to actuate the flow with some
input variables b 2 Rp and we are able to measure
features of the flow with some output variables s 2
Rq. Once the inputs and outputs are set, there are
many choices for the model that links them. For ex-
ample, we may consider the full discretized Navier-
Stokes equations as a high-dimensional nonlinear
set of ordinary differential equations. Alternatively,
we may relate inputs to outputs through either a sta-
tistical description or a set of empirical basis func-
tions. Recent advances in dimensionality reduction
techniques and turbulence closures have exciting
implications for the future of turbulence control.

3.1 State-space models

In the most general framework, we will have a state
a 2 RNa and a nonlinear function advancing the
state forward in time, along with a nonlinear output
function:

ȧ = f(a, b;�), (1a)
s = g(a, b). (1b)

Here we have assumed continuous dynamics, and
in general the Navier-Stokes equation is twice con-
tinuously differentiable in space and once continu-
ously differentiable in time. Notice that there is a set
of parameters � that may change the qualitative na-
ture of solutions; we call these bifurcation parameters.

3.2 Employed state spaces

1. Velocity field (a = u(x, t)),

2. modal coefficients of a Galerkin expansion,

3. sensor signals a = s,

4. sensor signals + time delay coordinates, ideally
with ⌧ given by C(⌧) = 0, where C is the auto-
correlation function,

5. sensor signals + derivatives (a = (s, ṡ)).
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Figure 1: Model hierarchy for control design.

3.3 Phenomenological classification

3.3.1 Classification based on system resolution

Figure ?? outlines a model hierarchy for control de-
sign, following a classification of N. Wiener [15] and
extending it by model-free approaches.

1. White-box models, e.g. a Navier-Stokes dis-
cretization resolve all flow physics and nonlin-
earities. Problems for real-time implementa-
tions are the computational load and full state
estimation.

2. Grey-box models, e.g. reduced-order models
for coherent structure dynamics, may enable a
real-time control in experiments and state esti-
mation. However, acceptable accuracy is only
achieved for one of few dominant frequencies
and few known nonlinear mechanisms.

3. Black-box models, e.g. transfer functions, have
similar dynamic bandwidth as grey-box mod-
els. A black-box model may be derived for
grey-box models and vice versa. One ad-
vantage of black-box models are easy experi-
mental identification, particularly for weakly-
nonlinear dynamics.

4. Model-free approaches, e.g. based on qualita-
tive steady state maps, are generally restricted
to existing one or few-parametric open-loop
control.

3.4 Approaches to system reduction (grey-
box models)

1. Response surfaces (on the level of black-box
models are model-free approaches).

4

4 Linear model-based control

Many results in closed-loop turbulence control are
specific to linear systems. For example, one may sta-
bilize an unstable steady-state and delay the transi-
tion to turbulence, as in the boundary layer or chan-
nel flow. In this case, the laminar solution becomes
unstable for post-critical Reynolds numbers, but it
may be stabilized by feedback control.

Such work has encompassed a significant mod-
eling effort (see Sec. 3) to describe the relevant low-
order fluid mechanisms. Performance issues such as
bandwidth, disturbance rejection, and noise atten-
uation must be balanced with robustness to model
uncertainty and time-delays. For this reason, there
has been a recent push to move away from H2 op-
timal control techniques (LQR, Kalman estimation,
LQG, etc.) to the robust H1 controllers [32, 33, 34,
35]. These controllers penalize the worse-case sce-
nario error and provide robust performance. In addi-
tion, significant effort has gone into the design and
modeling of sensor and actuators, along with their
placement in the flow.

There are many instances when linear control
strategies may have significant and direct impact for
nonlinear turbulent flows, even away from laminar
fixed-point solutions:

1. In mean-field models, exciting one oscillatory
mode with linear control may kill other oscilla-
tory modes [36, 37],

2. ensemble averages of turbulent flow responses
may be linear, as in Colonius’s experimental jet
noise study ,

3. Dusek’s jet simulation at Re=100,

4. transient control of separation for fully turbu-
lent boundary layer [38].

4.1 Linearized input–output dynamics

Often, we are interested in linearizing Eq. (1) about
a steady fixed point as or periodic orbit, leading to
a linear system of equations:

d

dt
a = Aa + Bb, (2a)

s = Ca + Db. (2b)

where each of the (A, B, C, D) depend on the lin-
earization point as and bifurcation parameter �.
This approximation will be approximately valid
near fixed points and away from critical values of
the bifurcation parameter where det df/d� = 0.

It is possible to represent the state-space model
in Eq. (2) as a transfer function G(⇣) in the fre-
quency domain (in terms of a Laplace variable ⇣):

G(⇣) = C (⇣I � A)�1 B + D. (3a)

4.2 Model-based open loop control

• What it would look like to design the ideal sys-
tem, invert plant dynamics, etc.

• Why this would be a terrible idea (in many
cases)...

4.3 Dynamic feedback controllers

Given linear dynamics of the form in Eq. (2), we of-
ten want a feedback controller based on full-state
feedback: b = �Kra. For example, if the system is
controllable, then the poles of the closed-loop system
may be placed arbitrarily by choice of Kr.

d

dt
a = Aa � BKra (4a)

= (A � BKr) a. (4b)

However, full-state measurements of a are ei-
ther infeasible or prohibitively expensive, and so an
estimate â may be obtained from measurements s.
This is of course, only if the system of equations (2)
is observable. An observer dynamical system may be
constructed as follows:

d

dt
â = Aâ + Bb + Kf (s � ŝ), (5a)

ŝ = Câ + Db (5b)

[(typically D = 0 for this problem...)] which leads
to

d

dt
â = (A � KfC) â + Kfs + (B � KfD) b.(6a)

The full-state estimate â will converge to an esti-
mate of the true state a if the eigenvalues of A �
KfC are stable.
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dt
a = Aa + Bb + wd, (14a)

s = Ca + Db + wn. (14b)

Each of these noise inputs has a different co-
variance matrix: E(wdw

T
d ) = Vd and E(wnwT

n ) =
Vn, where E(·) is the expectation value. [This is
not precise enough... really need E(wd(t)wd(⌧)T ) =
Vd�(t � ⌧).]

Linear-quadratic regulator (LQR):

J =

Z 1

0
aT Qa + bT Rb dt. (15a)

The optimal control law is b = �Kra, where Kr =
R�1BT X and X is the unique solution to the alge-
braic Riccati equation:

AT X + XA � XBR�1BT X + Q = 0. (16a)

A dual Riccati equation is solved for the observer
gain Kf = Y CT Vn:

Y AT + AY � Y CT V �1
n CY + Vd = 0. (17a)

The so-called Kalman filter Kf is chosen to mini-

mize E
⇣
(a � â)T (a � â)

⌘
given known covariance

Vd and Vn.
[Note: Kalman published his famous Kalman

filter in a journal of Fluid Engineering.]
[Decent stability margins for LQR, but no guar-

anteed stability margins for LQG (famous Doyle pa-
per)].

4.5.2 Sensitivity, Complementary Sensitivity,
and Robustness

• S(⇣) - sensitivity function

• T (⇣) - complementary sensitivity function

4.5.3 H1 robust control

We will often set Ĉ = Kr and D̂ = 0, where
Kr is a linear-quadratic-regulator (LQR) gain ma-
trix. We may also choose Â and B̂ according to the
Kalman filter, resulting in a combined estimation-
based controller known as the linear-quadratic-
Gaussian (LQG). Because of the separation principle

Turbulent
System

Feedback
Controller

w J

b s

Figure 2: General framework for feedback control.
The input to the controller are the system measure-
ments s, and the controller outputs an actuation sig-
nal b. The exogenous inputs w may refer to a refer-
ence state r, disturbances d or sensor noise n. The
output cost function z may measure any cost associ-
ated with inaccuracy of reference tracking, expense
of control, etc.

for linear systems, it is possible to design an optimal
feedback control gain Kr and an optimal observer
separately, and they will be both stable and optimal
when combined.

The resulting controller, known more generally
as a H2 controller, optimally balances the effect of
Gaussian measurement noise with process distur-
bances. However, these controllers are known to
have arbitrarily poor robustness margins. Instead,
H1 robust controllers are used when robustness is
important.

Figure 2 shows the most general schematic for
closed loop feedback control, encompassing H2 and
H1 optimal control strategies. There are a number
of excellent books expanding on this theory [39, 40].

Here we discuss important theoretical results re-
garding the various types of optimal control: H1
robust control, and H2 LQG.

• Often times turbulence is considered a distur-
bance term in a slower dynamical system, such
as the rigid body equations of an aircraft, space
shuttle, or rocket. In this case, turbulent fluc-
tuations may be seen as inevitable and oper-
ating on a time scale that is faster than con-
troller bandwidth. Instead of trying to change
the nature of the turbulence itself, the controller
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for linear systems, it is possible to design an optimal
feedback control gain Kr and an optimal observer
separately, and they will be both stable and optimal
when combined.

The resulting controller, known more generally
as a H2 controller, optimally balances the effect of
Gaussian measurement noise with process distur-
bances. However, these controllers are known to
have arbitrarily poor robustness margins. Instead,
H1 robust controllers are used when robustness is
important.

Figure 2 shows the most general schematic for
closed loop feedback control, encompassing H2 and
H1 optimal control strategies. There are a number
of excellent books expanding on this theory [39, 40].

Here we discuss important theoretical results re-
garding the various types of optimal control: H1
robust control, and H2 LQG.

• Often times turbulence is considered a distur-
bance term in a slower dynamical system, such
as the rigid body equations of an aircraft, space
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tuations may be seen as inevitable and oper-
ating on a time scale that is faster than con-
troller bandwidth. Instead of trying to change
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3 Black-box, grey-box, and white-
box models

Regardless of the modeling strategy employed below, we as-
sume that we are able to actuate the flow with some input
variables b 2 RNb and we are able to measure features of the
flow with some output variables s 2 RNs . Once the inputs
and outputs are set, there are many choices for the model
that links them. For example, we may consider the full dis-
cretized Navier-Stokes equations as a high-dimensional non-
linear set of ordinary differential equations. Alternatively,
we may relate inputs to outputs through either a statisti-
cal description or a set of empirical basis functions. Recent
advances in dimensionality reduction techniques and turbu-
lence closures have exciting implications for the future of tur-
bulence modeling and control.

The choice of model affects nearly every downstream
control decision. There are many factors and tradeoffs that
must be balanced when deciding on a modeling strategy.
These include the accuracy of the model, execution time,
generality in other parameter regimes, spatial-temporal res-
olution relative to disturbances, and the up-front cost to ac-
quire such a model. For example, direct numerical simula-
tion (DNS) is unparalleled at descriptive resolution, general-
ity, and accuracy, but current computational capabilities are
decades away from real-time execution for in-time control
strategies. Reduced-order models based on data from DNS
or experiments provide real-time capable models, but these
models are expensive to create and may only work for a small
range of training parameters. Fortunately, it may be possi-
ble to leverage physical intuition about the structure of the
underlying modes, often in terms of linear combinations of
full flow fields, to modify the models with additional terms
to extend their predictive range. Black-box models based on
input–output data are typically faster to generate and require
less measured data, but they lack the physical interpretation
that goes with having an underlying modal representation.

Figure 4 outlines a model hierarchy for control design,
following a classification of N. Wiener [18] and extending it
to include model-free approaches. These classifications are
generally based on the system resolution of the model. An
expanded view of the various models and modal decompo-
sitions is shown in Fig. 5. These methods are not meant to be
exhaustive, but rather include methods that have either been
applied with recent success or methods that have particular
promise in the future.

3.1 State-space models
In one of the most general frameworks, we will have a state
a 2 RNa and a nonlinear function f advancing the state for-
ward in time, along with a nonlinear output function g:

ȧ = f(a, b; µ), (2a)

s = g(a, b). (2b)

Here the dynamics are assumed to be continuous, and in
general the flow state a in the Navier-Stokes equation is
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Figure 4: Model hierarchy for control design, based
on [18].

twice continuously differentiable in space and once contin-
uously differentiable in time. The bifurcation parameters µ
may change the qualitative nature of the solutions, and the
flow field is not necessarily continuously differentiable in µ.
These parameters include the Reynolds number and Mach
number, among others.

The nonlinear dynamics in Eq. (2) may be linearized at
a steady fixed point as, where f(as,0; µ) = 0, away from
critical values of the bifurcation parameters. The linearized
model may also be converted into a frequency domain repre-
sentation, as explored in Sec. 4.

3.2 Kinematics: employed state spaces
There are numerous choices for the underlying state space in
Eq. (2), some of which are shown in the “Kinematics” column
of Fig. 5. This choice depends strongly on the availability
of measurements and the desired model resolution; more-
over, it should be considered whether or not the method is
data-driven or if it requires knowledge of the governing equa-
tions. The following represents a non-exhaustive set of pos-
sible state-spaces, defining a in Eq. (2). Note that many of
these state-spaces may be used in model-free approaches.

3.2.1 Full-resolution description (white-box)

A full description of a fluid flow may include a high-
resolution spatial or spectral discretization of either the ve-
locity field (a = u(x, t)) or the vorticity field (a = !(x, t) ,
r⇥u(x, t)). Such descriptions are the basis of white-box mod-
els, which describe every relevant feature of the flow. These

8

Kinematics,

3 Black-box, grey-box, and white-
box models

Regardless of the modeling strategy employed below, we as-
sume that we are able to actuate the flow with some input
variables b 2 RNb and we are able to measure features of the
flow with some output variables s 2 RNs . Once the inputs
and outputs are set, there are many choices for the model
that links them. For example, we may consider the full dis-
cretized Navier-Stokes equations as a high-dimensional non-
linear set of ordinary differential equations. Alternatively,
we may relate inputs to outputs through either a statisti-
cal description or a set of empirical basis functions. Recent
advances in dimensionality reduction techniques and turbu-
lence closures have exciting implications for the future of tur-
bulence modeling and control.

The choice of model affects nearly every downstream
control decision. There are many factors and tradeoffs that
must be balanced when deciding on a modeling strategy.
These include the accuracy of the model, execution time,
generality in other parameter regimes, spatial-temporal res-
olution relative to disturbances, and the up-front cost to ac-
quire such a model. For example, direct numerical simula-
tion (DNS) is unparalleled at descriptive resolution, general-
ity, and accuracy, but current computational capabilities are
decades away from real-time execution for in-time control
strategies. Reduced-order models based on data from DNS
or experiments provide real-time capable models, but these
models are expensive to create and may only work for a small
range of training parameters. Fortunately, it may be possi-
ble to leverage physical intuition about the structure of the
underlying modes, often in terms of linear combinations of
full flow fields, to modify the models with additional terms
to extend their predictive range. Black-box models based on
input–output data are typically faster to generate and require
less measured data, but they lack the physical interpretation
that goes with having an underlying modal representation.

Figure 4 outlines a model hierarchy for control design,
following a classification of N. Wiener [18] and extending it
to include model-free approaches. These classifications are
generally based on the system resolution of the model. An
expanded view of the various models and modal decompo-
sitions is shown in Fig. 5. These methods are not meant to be
exhaustive, but rather include methods that have either been
applied with recent success or methods that have particular
promise in the future.

3.1 State-space models
In one of the most general frameworks, we will have a state
a 2 RNa and a nonlinear function f advancing the state for-
ward in time, along with a nonlinear output function g:
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twice continuously differentiable in space and once contin-
uously differentiable in time. The bifurcation parameters µ
may change the qualitative nature of the solutions, and the
flow field is not necessarily continuously differentiable in µ.
These parameters include the Reynolds number and Mach
number, among others.

The nonlinear dynamics in Eq. (2) may be linearized at
a steady fixed point as, where f(as,0; µ) = 0, away from
critical values of the bifurcation parameters. The linearized
model may also be converted into a frequency domain repre-
sentation, as explored in Sec. 4.

3.2 Kinematics: employed state spaces
There are numerous choices for the underlying state space in
Eq. (2), some of which are shown in the “Kinematics” column
of Fig. 5. This choice depends strongly on the availability
of measurements and the desired model resolution; more-
over, it should be considered whether or not the method is
data-driven or if it requires knowledge of the governing equa-
tions. The following represents a non-exhaustive set of pos-
sible state-spaces, defining a in Eq. (2). Note that many of
these state-spaces may be used in model-free approaches.

3.2.1 Full-resolution description (white-box)

A full description of a fluid flow may include a high-
resolution spatial or spectral discretization of either the ve-
locity field (a = u(x, t)) or the vorticity field (a = !(x, t) ,
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a = Aa + Bb + wd, (14a)

s = Ca + Db + wn. (14b)

Each of these noise inputs has a different co-
variance matrix: E(wdw

T
d ) = Vd and E(wnwT

n ) =
Vn, where E(·) is the expectation value. [This is
not precise enough... really need E(wd(t)wd(�)T ) =
Vd�(t � �).]

Linear-quadratic regulator (LQR):

J =

� �

0
aT Qa + bT Rb dt. (15a)

The optimal control law is b = �Kra, where Kr =
R�1BT X and X is the unique solution to the alge-
braic Riccati equation:

AT X + XA � XBR�1BT X + Q = 0. (16a)

A dual Riccati equation is solved for the observer
gain Kf = Y CT Vn:

Y AT + AY � Y CT V �1
n CY + Vd = 0. (17a)

The so-called Kalman filter Kf is chosen to mini-

mize E
�
(a � â)T (a � â)

�
given known covariance

Vd and Vn.
[Note: Kalman published his famous Kalman

filter in a journal of Fluid Engineering.]
[Decent stability margins for LQR, but no guar-

anteed stability margins for LQG (famous Doyle pa-
per)].

4.5.2 Sensitivity, Complementary Sensitivity,
and Robustness

• S(�) - sensitivity function

• T (�) - complementary sensitivity function

4.5.3 H� robust control

We will often set Ĉ = Kr and D̂ = 0, where
Kr is a linear-quadratic-regulator (LQR) gain ma-
trix. We may also choose Â and B̂ according to the
Kalman filter, resulting in a combined estimation-
based controller known as the linear-quadratic-
Gaussian (LQG). Because of the separation principle
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Figure 2: General framework for feedback control.
The input to the controller are the system measure-
ments s, and the controller outputs an actuation sig-
nal b. The exogenous inputs w may refer to a refer-
ence state r, disturbances d or sensor noise n. The
output cost function z may measure any cost associ-
ated with inaccuracy of reference tracking, expense
of control, etc.

for linear systems, it is possible to design an optimal
feedback control gain Kr and an optimal observer
separately, and they will be both stable and optimal
when combined.

The resulting controller, known more generally
as a H2 controller, optimally balances the effect of
Gaussian measurement noise with process distur-
bances. However, these controllers are known to
have arbitrarily poor robustness margins. Instead,
H� robust controllers are used when robustness is
important.

Figure 2 shows the most general schematic for
closed loop feedback control, encompassing H2 and
H� optimal control strategies. There are a number
of excellent books expanding on this theory [39, 40].

Here we discuss important theoretical results re-
garding the various types of optimal control: H�
robust control, and H2 LQG.

• Often times turbulence is considered a distur-
bance term in a slower dynamical system, such
as the rigid body equations of an aircraft, space
shuttle, or rocket. In this case, turbulent fluc-
tuations may be seen as inevitable and oper-
ating on a time scale that is faster than con-
troller bandwidth. Instead of trying to change
the nature of the turbulence itself, the controller
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Gaussian measurement noise with process distur-
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garding the various types of optimal control: H�
robust control, and H2 LQG.

• Often times turbulence is considered a distur-
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4 Linear model-based control

Many results in closed-loop turbulence control are
specific to linear systems. For example, one may sta-
bilize an unstable steady-state and delay the transi-
tion to turbulence, as in the boundary layer or chan-
nel flow. In this case, the laminar solution becomes
unstable for post-critical Reynolds numbers, but it
may be stabilized by feedback control.

Such work has encompassed a significant mod-
eling effort (see Sec. 3) to describe the relevant low-
order fluid mechanisms. Performance issues such as
bandwidth, disturbance rejection, and noise atten-
uation must be balanced with robustness to model
uncertainty and time-delays. For this reason, there
has been a recent push to move away from H2 op-
timal control techniques (LQR, Kalman estimation,
LQG, etc.) to the robust H� controllers [32, 33, 34,
35]. These controllers penalize the worse-case sce-
nario error and provide robust performance. In addi-
tion, significant effort has gone into the design and
modeling of sensor and actuators, along with their
placement in the flow.

There are many instances when linear control
strategies may have significant and direct impact for
nonlinear turbulent flows, even away from laminar
fixed-point solutions:

1. In mean-field models, exciting one oscillatory
mode with linear control may kill other oscilla-
tory modes [36, 37],

2. ensemble averages of turbulent flow responses
may be linear, as in Colonius’s experimental jet
noise study ,

3. Dusek’s jet simulation at Re=100,

4. transient control of separation for fully turbu-
lent boundary layer [38].

4.1 Linearized input–output dynamics

Often, we are interested in linearizing Eq. (1) about
a steady fixed point as or periodic orbit, leading to
a linear system of equations:

d

dt
a = Aa + Bb, (2a)

s = Ca + Db. (2b)

where each of the (A, B, C, D) depend on the lin-
earization point as and bifurcation parameter �.
This approximation will be approximately valid
near fixed points and away from critical values of
the bifurcation parameter where det df/d� = 0.

It is possible to represent the state-space model
in Eq. (2) as a transfer function P (�) in the frequency
domain (in terms of a Laplace variable �):

P (�) = C (�I � A)�1 B + D. (3a)

4.2 Model-based open loop control

• What it would look like to design the ideal sys-
tem, invert plant dynamics, etc.

• Why this would be a terrible idea (in many
cases)...

4.3 Dynamic feedback controllers

Given linear dynamics of the form in Eq. (2), we of-
ten want a feedback controller based on full-state
feedback: b = �Kra. For example, if the system is
controllable, then the poles of the closed-loop system
may be placed arbitrarily by choice of Kr.

d

dt
a = Aa � BKra (4a)

= (A � BKr) a. (4b)

However, full-state measurements of a are ei-
ther infeasible or prohibitively expensive, and so an
estimate â may be obtained from measurements s.
This is of course, only if the system of equations (2)
is observable. An observer dynamical system may be
constructed as follows:

d

dt
â = Aâ + Bb + Kf (s � ŝ), (5a)

ŝ = Câ + Db (5b)

[(typically D = 0 for this problem...)] which leads
to

d

dt
â = (A � KfC) â + Kfs + (B � KfD) b.(6a)

The full-state estimate â will converge to an esti-
mate of the true state a if the eigenvalues of A �
KfC are stable.

6
W

hi
te

 b
ox

B
la

ck
 b

ox
G

ra
y 

bo
x

M
od

el
 f

re
e

Control design

Internal state and 
propagator

Discretization

O
pe

n 
lo

op
 b

as
ed

 co
nt

ro
l

Opposition
control

Navier-Stokes 
equation

N
on

lin
ea

r c
on

tro
l

Machine learning
control

Extremum 
seeking control

3 Black, grey, and white-box models

Regardless of the modeling strategy below, we as-
sume that we are able to actuate the flow with some
input variables b � Rp and we are able to measure
features of the flow with some output variables s �
Rq. Once the inputs and outputs are set, there are
many choices for the model that links them. For ex-
ample, we may consider the full discretized Navier-
Stokes equations as a high-dimensional nonlinear
set of ordinary differential equations. Alternatively,
we may relate inputs to outputs through either a sta-
tistical description or a set of empirical basis func-
tions. Recent advances in dimensionality reduction
techniques and turbulence closures have exciting
implications for the future of turbulence control.

3.1 State-space models

In the most general framework, we will have a state
a � RNa and a nonlinear function advancing the
state forward in time, along with a nonlinear output
function:

ȧ = f(a, b;�), (1a)
s = g(a, b). (1b)

Here we have assumed continuous dynamics, and
in general the Navier-Stokes equation is twice con-
tinuously differentiable in space and once continu-
ously differentiable in time. Notice that there is a set
of parameters � that may change the qualitative na-
ture of solutions; we call these bifurcation parameters.

3.2 Employed state spaces

1. Velocity field (a = u(x, t)),

2. modal coefficients of a Galerkin expansion,

3. sensor signals a = s,

4. sensor signals + time delay coordinates, ideally
with � given by C(�) = 0, where C is the auto-
correlation function,

5. sensor signals + derivatives (a = (s, ṡ)).
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Figure 1: Model hierarchy for control design.

3.3 Phenomenological classification

3.3.1 Classification based on system resolution

Figure ?? outlines a model hierarchy for control de-
sign, following a classification of N. Wiener [15] and
extending it by model-free approaches.

1. White-box models, e.g. a Navier-Stokes dis-
cretization resolve all flow physics and nonlin-
earities. Problems for real-time implementa-
tions are the computational load and full state
estimation.

2. Grey-box models, e.g. reduced-order models
for coherent structure dynamics, may enable a
real-time control in experiments and state esti-
mation. However, acceptable accuracy is only
achieved for one of few dominant frequencies
and few known nonlinear mechanisms.

3. Black-box models, e.g. transfer functions, have
similar dynamic bandwidth as grey-box mod-
els. A black-box model may be derived for
grey-box models and vice versa. One ad-
vantage of black-box models are easy experi-
mental identification, particularly for weakly-
nonlinear dynamics.

4. Model-free approaches, e.g. based on qualita-
tive steady state maps, are generally restricted
to existing one or few-parametric open-loop
control.

3.4 Approaches to system reduction (grey-
box models)

1. Response surfaces (on the level of black-box
models are model-free approaches).

4

4 Linear model-based control

Many results in closed-loop turbulence control are
specific to linear systems. For example, one may sta-
bilize an unstable steady-state and delay the transi-
tion to turbulence, as in the boundary layer or chan-
nel flow. In this case, the laminar solution becomes
unstable for post-critical Reynolds numbers, but it
may be stabilized by feedback control.

Such work has encompassed a significant mod-
eling effort (see Sec. 3) to describe the relevant low-
order fluid mechanisms. Performance issues such as
bandwidth, disturbance rejection, and noise atten-
uation must be balanced with robustness to model
uncertainty and time-delays. For this reason, there
has been a recent push to move away from H2 op-
timal control techniques (LQR, Kalman estimation,
LQG, etc.) to the robust H� controllers [32, 33, 34,
35]. These controllers penalize the worse-case sce-
nario error and provide robust performance. In addi-
tion, significant effort has gone into the design and
modeling of sensor and actuators, along with their
placement in the flow.

There are many instances when linear control
strategies may have significant and direct impact for
nonlinear turbulent flows, even away from laminar
fixed-point solutions:

1. In mean-field models, exciting one oscillatory
mode with linear control may kill other oscilla-
tory modes [36, 37],

2. ensemble averages of turbulent flow responses
may be linear, as in Colonius’s experimental jet
noise study ,

3. Dusek’s jet simulation at Re=100,

4. transient control of separation for fully turbu-
lent boundary layer [38].

4.1 Linearized input–output dynamics

Often, we are interested in linearizing Eq. (1) about
a steady fixed point as or periodic orbit, leading to
a linear system of equations:

d

dt
a = Aa + Bb, (2a)

s = Ca + Db. (2b)

where each of the (A, B, C, D) depend on the lin-
earization point as and bifurcation parameter �.
This approximation will be approximately valid
near fixed points and away from critical values of
the bifurcation parameter where det df/d� = 0.

It is possible to represent the state-space model
in Eq. (2) as a transfer function G(�) in the fre-
quency domain (in terms of a Laplace variable �):

G(�) = C (�I � A)�1 B + D. (3a)

4.2 Model-based open loop control

• What it would look like to design the ideal sys-
tem, invert plant dynamics, etc.

• Why this would be a terrible idea (in many
cases)...

4.3 Dynamic feedback controllers

Given linear dynamics of the form in Eq. (2), we of-
ten want a feedback controller based on full-state
feedback: b = �Kra. For example, if the system is
controllable, then the poles of the closed-loop system
may be placed arbitrarily by choice of Kr.

d

dt
a = Aa � BKra (4a)

= (A � BKr) a. (4b)

However, full-state measurements of a are ei-
ther infeasible or prohibitively expensive, and so an
estimate â may be obtained from measurements s.
This is of course, only if the system of equations (2)
is observable. An observer dynamical system may be
constructed as follows:

d

dt
â = Aâ + Bb + Kf (s � ŝ), (5a)

ŝ = Câ + Db (5b)

[(typically D = 0 for this problem...)] which leads
to

d

dt
â = (A � KfC) â + Kfs + (B � KfD) b.(6a)

The full-state estimate â will converge to an esti-
mate of the true state a if the eigenvalues of A �
KfC are stable.
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Ĉ

=
K

r
an

d
D̂

=
0

,
w

he
re

K
r

is
a

lin
ea

r-
qu

ad
ra

tic
-r

eg
ul

at
or

(L
Q

R
)

ga
in

m
a-

tr
ix

.W
e

m
ay

al
so

ch
oo

se
Â
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dt
a = Aa + Bb + wd, (14a)

s = Ca + Db + wn. (14b)

Each of these noise inputs has a different co-
variance matrix: E(wdw

T
d ) = Vd and E(wnwT

n ) =
Vn, where E(·) is the expectation value. [This is
not precise enough... really need E(wd(t)wd(�)T ) =
Vd�(t � �).]

Linear-quadratic regulator (LQR):

J =

� �

0
aT Qa + bT Rb dt. (15a)

The optimal control law is b = �Kra, where Kr =
R�1BT X and X is the unique solution to the alge-
braic Riccati equation:

AT X + XA � XBR�1BT X + Q = 0. (16a)

A dual Riccati equation is solved for the observer
gain Kf = Y CT Vn:

Y AT + AY � Y CT V �1
n CY + Vd = 0. (17a)

The so-called Kalman filter Kf is chosen to mini-

mize E
�
(a � â)T (a � â)

�
given known covariance

Vd and Vn.
[Note: Kalman published his famous Kalman

filter in a journal of Fluid Engineering.]
[Decent stability margins for LQR, but no guar-

anteed stability margins for LQG (famous Doyle pa-
per)].

4.5.2 Sensitivity, Complementary Sensitivity,
and Robustness

• S(�) - sensitivity function

• T (�) - complementary sensitivity function

4.5.3 H� robust control

We will often set Ĉ = Kr and D̂ = 0, where
Kr is a linear-quadratic-regulator (LQR) gain ma-
trix. We may also choose Â and B̂ according to the
Kalman filter, resulting in a combined estimation-
based controller known as the linear-quadratic-
Gaussian (LQG). Because of the separation principle

Turbulent
System

Feedback
Controller

w J

b s

Figure 2: General framework for feedback control.
The input to the controller are the system measure-
ments s, and the controller outputs an actuation sig-
nal b. The exogenous inputs w may refer to a refer-
ence state r, disturbances d or sensor noise n. The
output cost function z may measure any cost associ-
ated with inaccuracy of reference tracking, expense
of control, etc.

for linear systems, it is possible to design an optimal
feedback control gain Kr and an optimal observer
separately, and they will be both stable and optimal
when combined.

The resulting controller, known more generally
as a H2 controller, optimally balances the effect of
Gaussian measurement noise with process distur-
bances. However, these controllers are known to
have arbitrarily poor robustness margins. Instead,
H� robust controllers are used when robustness is
important.

Figure 2 shows the most general schematic for
closed loop feedback control, encompassing H2 and
H� optimal control strategies. There are a number
of excellent books expanding on this theory [39, 40].

Here we discuss important theoretical results re-
garding the various types of optimal control: H�
robust control, and H2 LQG.

• Often times turbulence is considered a distur-
bance term in a slower dynamical system, such
as the rigid body equations of an aircraft, space
shuttle, or rocket. In this case, turbulent fluc-
tuations may be seen as inevitable and oper-
ating on a time scale that is faster than con-
troller bandwidth. Instead of trying to change
the nature of the turbulence itself, the controller
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Dynamics,

3 Black-box, grey-box, and white-
box models

Regardless of the modeling strategy employed below, we as-
sume that we are able to actuate the flow with some input
variables b 2 RNb and we are able to measure features of the
flow with some output variables s 2 RNs . Once the inputs
and outputs are set, there are many choices for the model
that links them. For example, we may consider the full dis-
cretized Navier-Stokes equations as a high-dimensional non-
linear set of ordinary differential equations. Alternatively,
we may relate inputs to outputs through either a statisti-
cal description or a set of empirical basis functions. Recent
advances in dimensionality reduction techniques and turbu-
lence closures have exciting implications for the future of tur-
bulence modeling and control.

The choice of model affects nearly every downstream
control decision. There are many factors and tradeoffs that
must be balanced when deciding on a modeling strategy.
These include the accuracy of the model, execution time,
generality in other parameter regimes, spatial-temporal res-
olution relative to disturbances, and the up-front cost to ac-
quire such a model. For example, direct numerical simula-
tion (DNS) is unparalleled at descriptive resolution, general-
ity, and accuracy, but current computational capabilities are
decades away from real-time execution for in-time control
strategies. Reduced-order models based on data from DNS
or experiments provide real-time capable models, but these
models are expensive to create and may only work for a small
range of training parameters. Fortunately, it may be possi-
ble to leverage physical intuition about the structure of the
underlying modes, often in terms of linear combinations of
full flow fields, to modify the models with additional terms
to extend their predictive range. Black-box models based on
input–output data are typically faster to generate and require
less measured data, but they lack the physical interpretation
that goes with having an underlying modal representation.

Figure 4 outlines a model hierarchy for control design,
following a classification of N. Wiener [18] and extending it
to include model-free approaches. These classifications are
generally based on the system resolution of the model. An
expanded view of the various models and modal decompo-
sitions is shown in Fig. 5. These methods are not meant to be
exhaustive, but rather include methods that have either been
applied with recent success or methods that have particular
promise in the future.

3.1 State-space models
In one of the most general frameworks, we will have a state
a 2 RNa and a nonlinear function f advancing the state for-
ward in time, along with a nonlinear output function g:

ȧ = f(a, b; µ), (2a)

s = g(a, b). (2b)

Here the dynamics are assumed to be continuous, and in
general the flow state a in the Navier-Stokes equation is
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Figure 4: Model hierarchy for control design, based
on [18].

twice continuously differentiable in space and once contin-
uously differentiable in time. The bifurcation parameters µ
may change the qualitative nature of the solutions, and the
flow field is not necessarily continuously differentiable in µ.
These parameters include the Reynolds number and Mach
number, among others.

The nonlinear dynamics in Eq. (2) may be linearized at
a steady fixed point as, where f(as,0; µ) = 0, away from
critical values of the bifurcation parameters. The linearized
model may also be converted into a frequency domain repre-
sentation, as explored in Sec. 4.

3.2 Kinematics: employed state spaces
There are numerous choices for the underlying state space in
Eq. (2), some of which are shown in the “Kinematics” column
of Fig. 5. This choice depends strongly on the availability
of measurements and the desired model resolution; more-
over, it should be considered whether or not the method is
data-driven or if it requires knowledge of the governing equa-
tions. The following represents a non-exhaustive set of pos-
sible state-spaces, defining a in Eq. (2). Note that many of
these state-spaces may be used in model-free approaches.

3.2.1 Full-resolution description (white-box)

A full description of a fluid flow may include a high-
resolution spatial or spectral discretization of either the ve-
locity field (a = u(x, t)) or the vorticity field (a = !(x, t) ,
r⇥u(x, t)). Such descriptions are the basis of white-box mod-
els, which describe every relevant feature of the flow. These
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ȧ = f(a, b; µ), (2a)

s = g(a, b). (2b)

Here the dynamics are assumed to be continuous, and in
general the flow state a in the Navier-Stokes equation is

Bl
ac

k 
bo

x

Data

Navier-Stokes equations

G
ra

y 
bo

x
W

hi
te

 
bo

x
U

ltr
a

w
hi

te
M

od
el

 
fr

ee

I/O

C
ontrollers

ROM

CFD

Figure 4: Model hierarchy for control design, based
on [18].

twice continuously differentiable in space and once contin-
uously differentiable in time. The bifurcation parameters µ
may change the qualitative nature of the solutions, and the
flow field is not necessarily continuously differentiable in µ.
These parameters include the Reynolds number and Mach
number, among others.

The nonlinear dynamics in Eq. (2) may be linearized at
a steady fixed point as, where f(as,0; µ) = 0, away from
critical values of the bifurcation parameters. The linearized
model may also be converted into a frequency domain repre-
sentation, as explored in Sec. 4.

3.2 Kinematics: employed state spaces
There are numerous choices for the underlying state space in
Eq. (2), some of which are shown in the “Kinematics” column
of Fig. 5. This choice depends strongly on the availability
of measurements and the desired model resolution; more-
over, it should be considered whether or not the method is
data-driven or if it requires knowledge of the governing equa-
tions. The following represents a non-exhaustive set of pos-
sible state-spaces, defining a in Eq. (2). Note that many of
these state-spaces may be used in model-free approaches.

3.2.1 Full-resolution description (white-box)

A full description of a fluid flow may include a high-
resolution spatial or spectral discretization of either the ve-
locity field (a = u(x, t)) or the vorticity field (a = !(x, t) ,
r⇥u(x, t)). Such descriptions are the basis of white-box mod-
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Controller

Figure 5: Schematic illustrating popular choices at the various levels of kinematic and dynamic description of
the turbulent system P , and choices for designing the controller K.

or the vorticity field

a = D!(x, t) , Dr⇥ u(x, t).

Here, D is a discretization operator, resulting in a high-
dimensional state vector representation of a continuous field.
Such descriptions are the basis of white-box models, which
describe every relevant feature of the flow. These representa-
tions are typically very high dimensional, sometimes exceed-
ing the capacity of computer memory. For example, a high
Reynolds number three-dimensional unsteady flow will ex-

hibit important spatial structures that span many orders of
magnitude in scale. The Reynolds number is, roughly speak-
ing, the ratio of the largest-scale structures to the smallest
structures in the flow. Thus, for a generic geometry, the state
dimension will scale with Re3, along with the memory cost.
The computational cost will scale with Re4 because of the ad-
dition of multiple temporal scales [21, 22]. If a spatial dis-
cretization is required with 1000 elements in each direction,
then a three-dimensional simulation will contain 109 states
for every flow variable (velocity, pressure, etc.).
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Figure 5: Schematic illustrating popular choices at the various levels of kinematic and dynamic description of the turbulent
system P , and choices for designing the controllerK.

tion has only been shown for geometrically simple configura-
tions [112, 113], it is generally assumed and has also been nu-
merically corroborated. For Stokes eigenmodes, arising from
a linearization around vanishing flow, completeness and or-
thogonality can be shown for a large class of boundary con-
ditions [114].

In many fluid systems, large transient energy growth
may be experienced, even in linearly stable systems, because

of non-normality of the evolution operator [115, 116]. One
feature of non-normality can be large transient growth due
to the destructive interference of nearly parallel eigenvectors,
even with very similar eigenvalues. This phenomena may be
especially pronounced in shear flows, such as channel flows,
and is important for flow control.

The modal decompositions discussed above are approx-
imations based on data snapshots of the full system, most
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likely from a white-box model or experiments. We then
have many of the same problems as in the white-box models:
since the data may be exceedingly large, even simple tasks
such as computing the inner product of velocity fields are
cumbersome. Fortunately, the expense to compute a modal
decomposition is a one-time upfront cost during the train-
ing phase, and resulting reduced-order models are generally
much faster in the execution phase. There is a new software
package in Python, called modred from ’model reduction’,
that efficiently computes various modal decompositions and
reduced-order models for systems with large data [117].

The oldest class of gray-box models are based on vor-
tex representations starting with Helmholtz’s vortex laws in
1869. Von Kármán’s kinematic model [118] of the vortex
street is one famous example. Some of these vortex models
have been used for control applications. The Föppl (1906)
vortex model of the cylinder wake has, for instance, been
used to design a controller stabilizing the wake [119]. Suh’s
vortex model [120] of a recirculation zone has been used for
flatness-based control targeting mixing enhancement [121].
Most vortex models, however, are of hybrid nature, i.e. vor-
tices are continually produced, merged or removed. This
implies that the dimension of the state space as well as the
meaning of the coordinates continually changes. Such hy-
brid models are a challenge for almost all control methods.
We shall not pause to elaborate these Lagrangian gray box
models as there exist excellent textbooks on the topic [see,
e.g., 122, 123, 124] and the control applications are sparse.

3.2.3 Input–output (black-box)

Models that are built purely on input–output data are re-
ferred to as black-box models because they are opaque with
respect to the underlying structure of the fluid. However,
what black-box models lack in flow resolution, they make
up for in rapid identification and low-overhead implementa-
tion. These models may be based on a state space comprised
of the sensor and actuator signals

a =
[
sT , bT

]T
,

a time-history of sensor signals using time-delay coordinates

a =
[
s(t)T , s(t− τ)T , s(t− 2τ)T , · · · , b(t)T , · · ·

]T
,

or these signals and their derivatives

a =

[
sT , bT ,

d

dt
sT ,

d

dt
bT , · · ·

]T
.

3.3 Dynamics: classification by system res-
olution

Some of the modal representations above are fundamentally
linked to a dynamic model. For instance, DMD results in
spatial-temporal coherent structures along with a low-order
model for how these modes oscillate and/or grow or decay.
Likewise, BPOD results in a balanced linear model. For other
representations, it is necessary to build a model on top of

the data separately. The various methods to determine f in
Eq. (2) are illustrated in Fig. 5 under the ’Dynamics’ column.

3.3.1 White-box models

For white-box models, the discretized Navier-Stokes equa-
tions are used to resolve all flow physics and nonlineari-
ties. When appropriate, e.g. near a fixed point or periodic
orbit, the linearized Navier-Stokes equations may be used.
As discussed earlier, there are significant hurdles to real-
time implementation of these models based on the compu-
tational load. In addition, full-state estimation may be re-
quired when using a white-box model to control an exper-
iment where measurements are limited. Estimation may be
statistical, such as linear stochastic estimation (LSE) [125, 126,
127, 128, 129, 130, 131, 132], or dynamic, as in the Kalman fil-
ter [133, 134, 135, 136]. However, these models are able to
accurately capture important dynamic events, such as bifur-
cations, which define the phenomenological landscape.

There are a variety of methods in computational fluid
dynamics (CFD), including the finite element method, spec-
tral elements, finite volumes, finite differences, immersed
boundaries, point-vortex methods, and many more. As the
Reynolds number increases, DNS becomes prohibitively ex-
pensive, and it is necessary to use turbulence models for
smaller scale fluctuations. Finding turbulence closures to
these models is an active field of research, and common
methods include Reynolds averaged Navier-Stokes (RANS)
and large eddy simulations (LES). These may be thought of
as off-white box models, since they still resolve many orders
of magnitude in scale. However, these models must be used
with caution and experience.

3.3.2 Gray-box models

Reduced-order models may be obtained in terms of the dy-
namic interaction of coherent structures, such as those ob-
tained through POD, BPOD, DMD, or global stability analy-
sis. The resulting models enable real-time control in exper-
iments since the computational burden is limited and state
estimation is often feasible based on limited measurements.
However, acceptable accuracy is typically only achieved
near the training parameters, for one or a few dominant
frequencies, and for a few known nonlinear mechanisms.
More robust mathematical reduced-order models may be ob-
tained for simple geometries from Hilbert space considera-
tions without advance data, but at the price of a significantly
increased dimension [137, 138].

Galerkin projection of the Navier-Stokes equations onto
a modal basis is a common technique to obtain non-
linear reduced-order models. The ’traditional’ Galerkin
method [139] requests the same orthogonal modes for the
expansion and as test functions for the projection. POD-
Galerkin models are the most prominent corresponding ex-
ample in fluid mechanics [140]. Although BPOD has an as-
sociated linear model, it is possible to use BPOD modes for a
nonlinear Galerkin projection. Gray-box models will be dis-
cussed in more detail in Secs. 4 and 5.
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3.3.3 Black-box models

Transfer functions and state-space models identified purely
from input–output data (i.e. measurements of the sensor and
actuation history) are black-box models. They have similar
dynamic bandwidth as gray-box models, and in fact may
have identical input–output characteristics. However, results
and predictions lack the clear interpretation available when
model states represent modal amplitudes, as is the case with
gray-box models. A black-box model may be derived from
a gray-box model, and the opposite may also be true if ad-
ditional snapshot information is available. For example, it
may be possible to relate the internal model states with linear
combinations of the flow snapshots, resulting in a gray-box
model. A major advantage of black-box models is easy ex-
perimental identification, particularly for linear and weakly-
nonlinear dynamics.

There are many techniques available to obtain black-
box models, and a full exploration is outside the scope of
this review. However, the eigensystem realization algorithm
(ERA) [141, 142] is a promising algorithm that produces bal-
anced models from input–output data. Other methods are
discussed in [143, 144].

The ERA, discussed more in Sec. 4.5.4, results in a linear
state-space model based on impulse response data; i.e. sen-
sor measurements in response to an impulsive delta function
input in the actuation. The impulse response of a multiple-
input, multiple-output (MIMO) system will be given by h(t),
a function of time with Ns rows and Nb columns. It is possi-
ble to predict the sensor measurements s(t) in response to an
arbitrary input signal b(t) for linear systems by convolution
of the actuation signal with the impulse response:

s(t) = s(0) +

∫ t

0

h(t− τ)b(τ)dτ. (3)

The notion of convolution may be extended for generic non-
linear systems, such as in Eq. (2), by a Volterra series [145,
146, 147]. To simplify notation, we consider a single-input,
single-output (SISO) system:

s(t) = s(0) +

N∑

k=1

∫ t

0

· · ·
∫ t

0

hk(t− τ1, · · · , t− τk) (4)

×b(τ1) · · · b(τk)dτ1 · · · dτk.

The functions hk are called Volterra kernels, and there are
existence and uniqueness theorems for a large class of non-
linear systems [148]. There are also uses of Volterra series in
geometric control theory [149]. Notice that the first integral
in Eq. (4) for k = 1 is the linear impulse response from Eq. (3).

As a simple example to demonstrate Volterra series, con-
sider a SISO system with linear dynamics and a quadratic
output nonlinearity1:

d

dt
a = Aa+Bb

s = (Ca)2 .

1This example was adapted from notes by Nicholas R. Gamroth.

The output s(t) is the square of the convolution in Eq. (3):

s(t) = s(0) +

(∫ t

0

h1(t− τ)b(τ)dτ

)2

,

= s(0) +

∫ t

0

∫ t

0

h1(t− τ1)h1(t− τ2)b(τ1)b(τ2)dτ1dτ2,

= s(0) +

∫ t

0

∫ t

0

h2(t− τ1, t− τ2)b(τ1)b(τ2)dτ1dτ2.

Here, h2(t − τ1, t − τ2) = h1(t − τ1)h1(t − τ2), so that static
output nonlinearities have simple higher order kernels.

Volterra series have been used with back-stepping and
boundary control of PDEs for fluid flow control [150]. They
have also been used for general fluid modeling [151], to cap-
ture aerodynamic and aeroelastic phenomena [152, 153, 154],
and to model and control plasma turbulence [155, 156, 157].

Support vector machines (SVMs) [158, 159, 160] are
a new class of supervised nonlinear models that have a
tremendous amount of potential for the control of complex
dynamical systems. SVMs are supervised models that take
input data into a high-dimensional nonlinear feature space,
which may then be mapped back down to inputs. They are
related to the Volterra series above. Knowledge of the kernel
is a central part of the algorithm, and in practice, a suite of
kernels may be tested to optimize model performance. SVMs
have not penetrated the turbulence control literature signifi-
cantly, but we expect this method to become more prominent
in fluids in the future.

3.3.4 Model-free approaches

Model-free approaches do not rely on any underlying model
description relating inputs to outputs. Instead, these ap-
proaches are often based on qualitative steady state maps
and are generally restricted to existing one or few-parameter
open-loop control. Steady-state maps typically assume
working periodic control and the maps relate input param-
eters to outcomes in some objective function. However, re-
cent methods allow the identification of controllers using ma-
chine learning and adaptive control.

4 Linear model-based control
Many results in closed-loop turbulence control are specific
to linear systems. For example, one may stabilize an un-
stable steady-state and delay the transition to turbulence in
the boundary layer or channel flow. In this case, the steady
(laminar) solution, which becomes unstable for post-critical
Reynolds numbers, may be stabilized by feedback control.

Such work has encompassed a significant modeling ef-
fort (see Sec. 3) to describe the relevant low-order flow mech-
anisms to be suppressed or utilized. Performance issues such
as bandwidth, disturbance rejection, and noise attenuation
must be balanced with robustness to model uncertainty and
time-delays in sensing, actuation, or computation. For this
reason, there has been a recent push to move away from
H2 optimal control techniques (LQR, Kalman estimation,
LQG, etc.) to the robust H∞ controllers [161, 162, 163, 164].
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These controllers guarantee robust performance by penaliz-
ing worst-case performance in the design process. Progress
has also been made in the design and modeling of sensors
and actuators [36], along with their placement in the flow.

There are many instances when linear control strategies
may have significant and direct impact for nonlinear turbu-
lent flows, even away from steady fixed-point solutions. For
example, in mean-field models, exciting one oscillatory mode
with linear control may suppress other, more energetic, os-
cillatory modes [48, 47]. In addition, ensemble averages of
turbulent flow responses may be linear as in [165, 41]. Other
examples include the transient control of separation for the
fully turbulent boundary layer [41].

The main goal of this section is to develop an overview
of the linear control framework and provide context for the
related literature in flow control. Ideas such as control topol-
ogy (feedback vs. feedforward, open-loop vs. closed-loop),
controllability and observability, state estimation, pole place-
ment, and robustness (sensitivity, bandwidth, stability), are
introduced with an emphasis on physical interpretation and
engineering implications. Since turbulent flows often have
very fast time-scales, many of the topics above are consid-
ered in light of computational complexity and the latency
of the control decision, leading to a discussion on reduced-
order models.

This section is not meant to be an exhaustive overview
of either linear control theory or its application in flow con-
trol. For more details on control theory, there are two recom-
mended texts, [166] (practical engineering), and [167] (math-
ematical theory). There have also been a number of excellent
recent reviews involving various aspects of the subject of lin-
ear closed-loop flow control [168, 34, 20, 169, 170, 171].

4.1 Linearized input–output dynamics
Often, we are interested in linearizing Eq. (2) about a steady
fixed point as, corresponding to a desirable flow state. This
leads to a linear system of equations:

d

dt
a = Aa+Bb, (5a)

s = Ca+Db, (5b)

where each of the matrices (A,B,C,D) depend on the lin-
earization point as and bifurcation parameter µ. The state
vector a refers to the difference between the current flow
and the fixed point as. The system is linearly stable if all
of the eigenvalues of A are in the left-half of the complex
plane, having negative real parts. The linear approximation
in Eq. (5) will be approximately valid near fixed points with-
out purely imaginary eigenvalues and away from critical val-
ues of the bifurcation parameter (i.e. when det df/dµ 6= 0).
Fortunately, if control is effective, the flow state should stay
close to as, where the linear approximation is valid. Similar
linearization may be applied near a periodic orbit of the flow.

It is possible to represent the state-space model in Eq. (5)
as a transfer function P (ζ) relating the frequency of sinu-
soidal input forcing to the magnitude and phase of the out-
put response; here ζ = iω ∈ C is a Laplace variable:

P (ζ) = C (ζI −A)−1B +D. (6)

For linear systems, the output frequency will be the same
as the input frequency ω, the magnitude is given by |P (ζ)|,
and the phase is given by ∠P (ζ). For example, consider a
single-input, single-output (SISO) linear system, where an
input sinusoid sin(ωt) will excite an output measurement
A sin(ωt + φ), where A and φ are the magnitude and phase
angle of the transfer function evaluated at ζ = iω: A = |P (ζ)|
and φ = ∠(P (ζ)). In the context of controls, the system P is
known as the plant. The roots of the denominator ofP are re-
ferred to as poles and the roots of the numerator are referred
to as zeros. The plant is unstable if any poles have a positive
real part; if P is based on Eq. (6), then the poles of P corre-
spond to eigenvalues ofA.

Both the state-space and frequency domain representa-
tions are useful. It is often beneficial to design specifications
and assess controller performance in the frequency domain,
although it is often simpler to achieve these goals by manip-
ulating the state-space system [166]. Generally, an effective
open-loop plant will have high gain at low frequency for dis-
turbance rejection and reference tracking, low gain at high
frequency for noise attenuation, and a good phase margin at
crossover for stability.

4.2 Model-based open-loop control
With a model of the form in Eq. (5) or Eq. (6), it may be
possible to design an open-loop control law to achieve some
desired specification without the use of measurement-based
feedback or feedforward control. For instance, if perfect
tracking of the reference input wr is desired in Fig. 6, un-
der certain circumstances it may be possible to design a con-
troller by inverting the plant dynamics P : K(ζ) = P−1(ζ).
In this case, the transfer function from referencewr to output
s is given byPP−1 = 1, so that the output perfectly matches
the reference. However, perfect control is never possible in
real-world systems, and this strategy should be used with
caution, since it generally relies on a number of significant
assumptions on the plant P . First, effective control based
on plant inversion requires extremely precise knowledge of
P and well-characterized, predictable disturbances; there is
little room for model errors or uncertainties, as there are no
sensor measurements to determine if performance is as ex-
pected and no corrective feedback mechanisms to modify the
actuation strategy to compensate.

For open-loop control using plant inversion, the plant
P must also be stable. It is impossible to fundamentally
change the dynamics of a linear system through open-loop
control, and thus an unstable plant cannot be stabilized with-
out feedback. Attempting to stabilize an unstable plant
by inverting the dynamics will typically have disastrous
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[(typically D = 0 for this problem...)] which leads
to

d

dt
â = (A � KfC) â + Kfs + (B � KfD) b.(6a)

The full-state estimate â will converge to an esti-
mate of the true state a if the eigenvalues of A �
KfC are stable.

Combined with full-state feedback b = �Krâ,
this results in a dynamical system for the controller:

d

dt
â = (A � KfC � BKr + KfDKr) â + Kfs,(7a)

b = �Krâ. (7b)

Note that the input to the controller is the sensor
signal s, the output is the actuation signal b, and
the state â estimates the full-state of the linear sys-
tem in Eq. (2). The separation principle states that
Kr and Kf may be designed separately to deter-
mine the stability of the state dynamics for a and â,
respectively, and the closed-loop system will have
poles given by the poles of A�BKr and A�KfC.

The most general observer dynamical system is
given by:

d

dt
â = Ââ + B̂s, (8a)

b = Ĉâ + D̂s. (8b)

The general controller will be denoted by K(⇣)
in the frequency domain.

4.4 Controllability, Observability, and
Gramians

The ability to place poles of the closed-loop system
arbitrarily with choice of Kr relies on the controlla-
bility of the system in Eq. (2). The system is control-
lable if the following matrix:

C =
⇥
B AB A2B · · · ANa�1B

⇤
(9a)

has full rank Na. Controllability implies that the
system may be steered to an arbitrary state a with
suitable time-history of the control input b.

Similarly, the full state is observable if the observ-
ability matrix is full rank:

O =

2
666664

C
CA
CA2

...
CANa�1

3
777775

. (10a)

This means that any state a may be estimated with
a suitable time-history of the measurements s.

Although the definitions of controllability and
observability above are binary, there are degrees of
controllability and observability, based on how dif-
ficult it is to control or estimate a state a. The degree
of controllability and observability of a given state
is quantified by eigenvalues and eigenvectors of the
controllability Gramian

Wc =

Z 1

0
eAtBB⇤eA⇤tdt (11a)

⇡
1X

k=0

�
eA�t

�k
BB⇤

⇣
eA⇤�t

⌘k
(11b)

and observability Gramian:

Wo =

Z 1

0
eA⇤tC⇤CeAtdt (12a)

⇡
1X

k=0

⇣
eA⇤�t

⌘k
C⇤C

�
eA�t

�k
. (12b)

These may be approximated by full-state mea-
surements of the direct system in Eq. (2) and adjoint
system:

Wc ⇡ W e
c = CC⇤, (13a)

Wo ⇡ W e
o = OO⇤. (13b)

[Decide on notation for continuous vs. discrete
time A... emp. Gramians are slightly wrong, since
they use Ad]

[Mention SVD and symmetric matrix, degrees of
controllability...]

[Mention balanced model reduction: BT, BPOD,
ERA]
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4.4.1 Balanced model reduction

4.5 H1 robust vs. H2 optimal control

Now that we have established conditions enabling
arbitrary pole placement of the closed-loop system,
we must now decide on where to place them.

4.5.1 H2 optimal control: Linear quadratic Gaus-
sian (LQG)

We may often modify Eq. (2) with the addition of
white noise disturbance wd and measurement noise
wn:

d

dt
a = Aa + Bb + wd, (14a)

s = Ca + Db + wn. (14b)

Each of these noise inputs has a different co-
variance matrix: E(wdw

T
d ) = Vd and E(wnwT

n ) =
Vn, where E(·) is the expectation value. [This is
not precise enough... really need E(wd(t)wd(⌧)T ) =
Vd�(t � ⌧).]

Linear-quadratic regulator (LQR):

J =

Z 1

0
aT Qa + bT Rb dt. (15a)

The optimal control law is b = �Kra, where Kr =
R�1BT X and X is the unique solution to the alge-
braic Riccati equation:

AT X + XA � XBR�1BT X + Q = 0. (16a)

A dual Riccati equation is solved for the observer
gain Kf = Y CT Vn:

Y AT + AY � Y CT V �1
n CY + Vd = 0. (17a)

The so-called Kalman filter Kf is chosen to mini-

mize E
⇣
(a � â)T (a � â)

⌘
given known covariance

Vd and Vn.
[Note: Kalman published his famous Kalman

filter in a journal of Fluid Engineering.]
[Decent stability margins for LQR, but no guar-

anteed stability margins for LQG (famous Doyle pa-
per)].

4.5.2 Sensitivity, Complementary Sensitivity,
and Robustness

• S(⇣) - sensitivity function

• T (⇣) - complementary sensitivity function

• wr - reference tracking

4.5.3 H1 robust control

We will often set Ĉ = Kr and D̂ = 0, where
Kr is a linear-quadratic-regulator (LQR) gain ma-
trix. We may also choose Â and B̂ according to the
Kalman filter, resulting in a combined estimation-
based controller known as the linear-quadratic-
Gaussian (LQG). Because of the separation principle
for linear systems, it is possible to design an optimal
feedback control gain Kr and an optimal observer
separately, and they will be both stable and optimal
when combined.

The resulting controller, known more generally
as a H2 controller, optimally balances the effect of
Gaussian measurement noise with process distur-
bances. However, these controllers are known to
have arbitrarily poor robustness margins. Instead,
H1 robust controllers are used when robustness is
important.

Figure 4 shows the most general schematic for
closed loop feedback control, encompassing H2 and
H1 optimal control strategies. There are a number
of excellent books expanding on this theory [39, 40].

Here we discuss important theoretical results re-
garding the various types of optimal control: H1
robust control, and H2 LQG.

• Often times turbulence is considered a distur-
bance term in a slower dynamical system, such
as the rigid body equations of an aircraft, space
shuttle, or rocket. In this case, turbulent fluc-
tuations may be seen as inevitable and oper-
ating on a time scale that is faster than con-
troller bandwidth. Instead of trying to change
the nature of the turbulence itself, the controller
may be designed to obtain some other objective
while robustly managing the uncertain turbu-
lent disturbance.

• H2 is by far the more popular control paradigm
because of its simple mathematical formula-
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4 Linear model-based control

Many results in closed-loop turbulence control are
specific to linear systems. For example, one may sta-
bilize an unstable steady-state and delay the transi-
tion to turbulence, as in the boundary layer or chan-
nel flow. In this case, the laminar solution becomes
unstable for post-critical Reynolds numbers, but it
may be stabilized by feedback control.

Such work has encompassed a significant mod-
eling effort (see Sec. 3) to describe the relevant low-
order fluid mechanisms. Performance issues such as
bandwidth, disturbance rejection, and noise atten-
uation must be balanced with robustness to model
uncertainty and time-delays. For this reason, there
has been a recent push to move away from H2 op-
timal control techniques (LQR, Kalman estimation,
LQG, etc.) to the robust H1 controllers [32, 33, 34,
35]. These controllers penalize the worse-case sce-
nario error and provide robust performance. In addi-
tion, significant effort has gone into the design and
modeling of sensor and actuators, along with their
placement in the flow.

There are many instances when linear control
strategies may have significant and direct impact for
nonlinear turbulent flows, even away from laminar
fixed-point solutions:

1. In mean-field models, exciting one oscillatory
mode with linear control may kill other oscilla-
tory modes [36, 37],

2. ensemble averages of turbulent flow responses
may be linear, as in Colonius’s experimental jet
noise study ,

3. Dusek’s jet simulation at Re=100,

4. transient control of separation for fully turbu-
lent boundary layer [38].

4.1 Linearized input–output dynamics

Often, we are interested in linearizing Eq. (1) about
a steady fixed point as or periodic orbit, leading to
a linear system of equations:

d

dt
a = Aa + Bb, (2a)

s = Ca + Db. (2b)

Open-loop control
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Figure 3: Open-loop control topology.

where each of the (A, B, C, D) depend on the lin-
earization point as and bifurcation parameter �.
This approximation will be approximately valid
near fixed points and away from critical values of
the bifurcation parameter where det df/d� = 0.

It is possible to represent the state-space model
in Eq. (2) as a transfer function P (⇣) in the frequency
domain (in terms of a Laplace variable ⇣):

P (⇣) = C (⇣I � A)�1 B + D. (3a)

4.2 Model-based open loop control

• What it would look like to design the ideal sys-
tem, invert plant dynamics, etc.

• Why this would be a terrible idea (in many
cases)...

• P

4.3 Dynamic feedback controllers

Given linear dynamics of the form in Eq. (2), we of-
ten want a feedback controller based on full-state
feedback: b = �Kra. For example, if the system is
controllable, then the poles of the closed-loop system
may be placed arbitrarily by choice of Kr.

d

dt
a = Aa � BKra (4a)

= (A � BKr) a. (4b)

However, full-state measurements of a are ei-
ther infeasible or prohibitively expensive, and so an
estimate â may be obtained from measurements s.
This is of course, only if the system of equations (2)
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Figure 6: Open-loop control topology.
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consequences. For instance, consider the following unsta-
ble plant with a pole at ζ = 5 and a zero at ζ = −10:
P (ζ) = (s+ 10)/(s− 5). Inverting the plant would result in
a controller K = (s− 5)/(s+ 10); however, if there is even
the slightest uncertainty in the model, so that the true pole is
at 5− ε, then the open-loop system will be:

Ptrue(ζ)K(ζ) =
s− 5

s− 5 + ε
.

This system is still unstable, despite the attempted pole can-
celation. Moreover, the unstable mode is now nearly unob-
servable, a concept that will be discussed later.

In addition to stability, the plant P must not have any
time delays or zeros in the right-half plane, and it must have
the same number of poles as zeros. If P has any zeros in the
right-half plane, then the inverted controller K will be un-
stable, since it will have right-half plane poles. These plants
are called non-minimum phase, and there have been general-
izations to plant inversion that provide bounded inverses to
these systems [172]. Similarly, time-delays are not invertible,
and if P has more poles than zeros, then the resulting con-
troller will not be realizable and may have extremely large ac-
tuation signals b. There are also generalizations that provide
regularized model inversion, where optimization schemes are
applied with penalty terms added to keep the resulting ac-
tuation signal b bounded. These regularized open-loop con-
trollers are often significantly more effective, with improved
robustness.

Combined, these restrictions on the plant P imply that
model-based open-loop control should only be used when
the plant is well-behaved, accurately characterized by a
model, when disturbances are characterized, and when the
additional feedback control hardware is unnecessarily ex-
pensive. Otherwise, performance goals must be modest.
Open-loop model inversion is often used in manufactur-
ing and robotics, where systems are constrained and well-
characterized in a standard operating environment.

4.3 Dynamic closed-loop feedback control
Feedback control addresses many of the aforementioned is-
sues with open-loop control. Namely, closed-loop feedback,
as illustrated in Fig. 7, uses sensor measurements to correct
for model uncertainties, reject disturbances, and stabilize un-
stable system dynamics. Depending on the plant dynam-
ics and system latency, robust performance may be achieved
through feedback.

For the linear dynamics in Eq. (5), full-state measure-
ments s = a and a negative feedback controller b = −Kra

PlantController+
-
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to

d

dt
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b = �Krâ. (7b)

Note that the input to the controller is the sensor
signal s, the output is the actuation signal b, and
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dt
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Although the definitions of controllability and
observability above are binary, there are degrees of
controllability and observability, based on how dif-
ficult it is to control or estimate a state a. The degree
of controllability and observability of a given state
is quantified by eigenvalues and eigenvectors of the
controllability Gramian

Wc =

Z 1

0
eAtBB⇤eA⇤tdt (11a)

⇡
1X

k=0

�
eA�t

�k
BB⇤

⇣
eA⇤�t

⌘k
(11b)

and observability Gramian:

Wo =

Z 1

0
eA⇤tC⇤CeAtdt (12a)

⇡
1X

k=0

⇣
eA⇤�t

⌘k
C⇤C

�
eA�t

�k
. (12b)

These may be approximated by full-state mea-
surements of the direct system in Eq. (2) and adjoint
system:

Wc ⇡ W e
c = CC⇤, (13a)

Wo ⇡ W e
o = OO⇤. (13b)

[Decide on notation for continuous vs. discrete
time A... emp. Gramians are slightly wrong, since
they use Ad]

[Mention SVD and symmetric matrix, degrees of
controllability...]

[Mention balanced model reduction: BT, BPOD,
ERA]
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4.4.1 Balanced model reduction

4.5 H1 robust vs. H2 optimal control

Now that we have established conditions enabling
arbitrary pole placement of the closed-loop system,
we must now decide on where to place them.

4.5.1 H2 optimal control: Linear quadratic Gaus-
sian (LQG)

We may often modify Eq. (2) with the addition of
white noise disturbance wd and measurement noise
wn:

d

dt
a = Aa + Bb + wd, (14a)

s = Ca + Db + wn. (14b)

Each of these noise inputs has a different co-
variance matrix: E(wdw

T
d ) = Vd and E(wnwT

n ) =
Vn, where E(·) is the expectation value. [This is
not precise enough... really need E(wd(t)wd(⌧)T ) =
Vd�(t � ⌧).]

Linear-quadratic regulator (LQR):

J =

Z 1

0
aT Qa + bT Rb dt. (15a)

The optimal control law is b = �Kra, where Kr =
R�1BT X and X is the unique solution to the alge-
braic Riccati equation:

AT X + XA � XBR�1BT X + Q = 0. (16a)

A dual Riccati equation is solved for the observer
gain Kf = Y CT Vn:

Y AT + AY � Y CT V �1
n CY + Vd = 0. (17a)

The so-called Kalman filter Kf is chosen to mini-

mize E
⇣
(a � â)T (a � â)

⌘
given known covariance

Vd and Vn.
[Note: Kalman published his famous Kalman

filter in a journal of Fluid Engineering.]
[Decent stability margins for LQR, but no guar-

anteed stability margins for LQG (famous Doyle pa-
per)].

4.5.2 Sensitivity, Complementary Sensitivity,
and Robustness

• S(⇣) - sensitivity function

• T (⇣) - complementary sensitivity function

• wr - reference tracking

4.5.3 H1 robust control

We will often set Ĉ = Kr and D̂ = 0, where
Kr is a linear-quadratic-regulator (LQR) gain ma-
trix. We may also choose Â and B̂ according to the
Kalman filter, resulting in a combined estimation-
based controller known as the linear-quadratic-
Gaussian (LQG). Because of the separation principle
for linear systems, it is possible to design an optimal
feedback control gain Kr and an optimal observer
separately, and they will be both stable and optimal
when combined.

The resulting controller, known more generally
as a H2 controller, optimally balances the effect of
Gaussian measurement noise with process distur-
bances. However, these controllers are known to
have arbitrarily poor robustness margins. Instead,
H1 robust controllers are used when robustness is
important.

Figure 4 shows the most general schematic for
closed loop feedback control, encompassing H2 and
H1 optimal control strategies. There are a number
of excellent books expanding on this theory [39, 40].

Here we discuss important theoretical results re-
garding the various types of optimal control: H1
robust control, and H2 LQG.

• Often times turbulence is considered a distur-
bance term in a slower dynamical system, such
as the rigid body equations of an aircraft, space
shuttle, or rocket. In this case, turbulent fluc-
tuations may be seen as inevitable and oper-
ating on a time scale that is faster than con-
troller bandwidth. Instead of trying to change
the nature of the turbulence itself, the controller
may be designed to obtain some other objective
while robustly managing the uncertain turbu-
lent disturbance.

• H2 is by far the more popular control paradigm
because of its simple mathematical formula-
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4 Linear model-based control

Many results in closed-loop turbulence control are
specific to linear systems. For example, one may sta-
bilize an unstable steady-state and delay the transi-
tion to turbulence, as in the boundary layer or chan-
nel flow. In this case, the laminar solution becomes
unstable for post-critical Reynolds numbers, but it
may be stabilized by feedback control.

Such work has encompassed a significant mod-
eling effort (see Sec. 3) to describe the relevant low-
order fluid mechanisms. Performance issues such as
bandwidth, disturbance rejection, and noise atten-
uation must be balanced with robustness to model
uncertainty and time-delays. For this reason, there
has been a recent push to move away from H2 op-
timal control techniques (LQR, Kalman estimation,
LQG, etc.) to the robust H1 controllers [32, 33, 34,
35]. These controllers penalize the worse-case sce-
nario error and provide robust performance. In addi-
tion, significant effort has gone into the design and
modeling of sensor and actuators, along with their
placement in the flow.

There are many instances when linear control
strategies may have significant and direct impact for
nonlinear turbulent flows, even away from laminar
fixed-point solutions:

1. In mean-field models, exciting one oscillatory
mode with linear control may kill other oscilla-
tory modes [36, 37],

2. ensemble averages of turbulent flow responses
may be linear, as in Colonius’s experimental jet
noise study ,

3. Dusek’s jet simulation at Re=100,

4. transient control of separation for fully turbu-
lent boundary layer [38].

4.1 Linearized input–output dynamics

Often, we are interested in linearizing Eq. (1) about
a steady fixed point as or periodic orbit, leading to
a linear system of equations:

d

dt
a = Aa + Bb, (2a)

s = Ca + Db. (2b)

Open-loop control

PlantController

Figure 3: Open-loop control topology.

where each of the (A, B, C, D) depend on the lin-
earization point as and bifurcation parameter �.
This approximation will be approximately valid
near fixed points and away from critical values of
the bifurcation parameter where det df/d� = 0.

It is possible to represent the state-space model
in Eq. (2) as a transfer function P (⇣) in the frequency
domain (in terms of a Laplace variable ⇣):

P (⇣) = C (⇣I � A)�1 B + D. (3a)

4.2 Model-based open loop control

• What it would look like to design the ideal sys-
tem, invert plant dynamics, etc.

• Why this would be a terrible idea (in many
cases)...

• P

4.3 Dynamic feedback controllers

Given linear dynamics of the form in Eq. (2), we of-
ten want a feedback controller based on full-state
feedback: b = �Kra. For example, if the system is
controllable, then the poles of the closed-loop system
may be placed arbitrarily by choice of Kr.

d

dt
a = Aa � BKra (4a)

= (A � BKr) a. (4b)

However, full-state measurements of a are ei-
ther infeasible or prohibitively expensive, and so an
estimate â may be obtained from measurements s.
This is of course, only if the system of equations (2)
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Figure 7: Closed-loop control topology.

yield:

d

dt
a = Aa−BKra, (7a)

= (A−BKr)a. (7b)

If the system is controllable, as defined in the next section, the
closed-loop poles, given by eigenvalues ofA−BKr , may be
placed arbitrarily by choice of Kr . Pole placement has been
used to control combustion instabilities [173].

However, full-state measurements of amay be either in-
feasible or prohibitively expensive, and so an estimate â may
be obtained from measurements s. This is of course, only if
the system of equations (5) is observable. An observer dynamical
system may be constructed as follows:

d

dt
â = Aâ+Bb+Kf (s− ŝ), (8a)

ŝ = Câ+Db. (8b)

Typically D = 0 for this problem, meaning that there is no
direct feedthrough from actuators to sensors, although exten-
sions exist whenD 6= 0; see [166]. KeepingD in the calcula-
tions, and combining Eqs. (8a) and (8b):

d

dt
â = (A−KfC) â+Kfs+ (B −KfD) b. (9)

The estimate â will converge to the full state a if the eigen-
values of A −KfC are stable. Again, it is possible to place
the poles ofA−KfC arbitrarily if the system is observable.

Combined with full-state feedback b = −Krâ, this re-
sults in a dynamical system for the controller:

d

dt
â = (A−KfC −BKr +KfDKr) â+Kfs, (10a)

b = −Krâ. (10b)

The input to the controller is the sensor signal s, the output is
the actuation signal b, and the state â estimates the full-state
of the linear system in Eq. (5). The separation principle in
control theory states that the closed-loop system, combining
state estimation and full-state feedback, will have combined
poles given by the poles ofA−BKr andA−KfC. Thus,Kr

and Kf may be designed independently to satisfy different
stability criteria for the state-feedback and estimation, and
they may then be combined without interference.

4.3.1 Controllability, observability, and Gramians

The ability to place poles of the closed-loop system in Eq. (7)
arbitrarily with choice ofKr relies on the controllability of the
system in Eq. (5). The system is controllable if and only if the
following matrix has full row rank Na:

C =
[
B AB A2B · · · ANa−1B

]
. (11)

Controllability implies that the system may be steered to an
arbitrary state a with suitable time-history of the control in-
put b. Similarly, the full state is observable if any state a may
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be estimated from a suitable time-history of the measure-
ments s. This is true when the observability matrix has full
column rank Na:

O =




C
CA
CA2

...
CANa−1



. (12)

Although the definitions of controllability and observ-
ability above are binary, there are degrees of controllability
and observability, based on how difficult it is to control or
estimate a state a. This is a more physically intuitive notion,
that some states are easier to control than others. The degree
of controllability and observability of a given state in time tf
is quantified by eigenvalues and eigenvectors of the control-
lability Gramian:

Wc(tf ) =

∫ tf

0

eAτBB∗eA
∗τdτ (13a)

≈
tf/∆t∑

k=0

(
eA∆t

)k
BB∗

(
eA
∗∆t
)k

∆t, (13b)

and observability Gramian:

Wo(tf ) =

∫ tf

0

eA
∗τC∗CeAτdτ (14a)

≈
tf/∆t∑

k=0

(
eA
∗∆t
)k
C∗C

(
eA∆t

)k
∆t. (14b)

Here, the matrices A∗,B∗, and C∗ denote the adjoints of
A,B, and C. Often the Gramians in Eqs. (13) and (14)
are evaluated at infinite time, and if the time dependence
is not explicitly mentioned, we assume tf = ∞, so that
Wc ,Wc(∞) and Wo ,Wo(∞). In this case, if the matrix
A is stable, so that all eigenvalues have negative real part,
then the Gramians are unique solutions to a Lyapunov equa-
tion:

AWc +WcA
∗ +BB∗ = 0, (15a)

A∗Wo +WoA+C∗C = 0. (15b)

Solving these equations may be quite expensive. Empirical
snapshot based methods, discussed in Sec. 4.5.1, are faster.

The matrices Wc and Wo are both symmetric and posi-
tive semi-definite. The system is controllable (resp. observ-
able) if and only if the controllability (resp. observability)
Gramian is invertible. The controllability of a state a is mea-
sured by a∗Wca, which is larger for more controllable states.
Physically, if a∗Wca is large, then it is possible to steer the
system state far in the a direction with a unit control input.
Similarly, the observability of a state is measured by a∗Woa.
This connection between the Gramians and energy expen-
diture to move the system toward a state a at time tf can
be made precise with the notion of minimum energy control.
The minimum-energy control input b(t) to steer the system
to a(tf ) from a(0) = 0 is given by:

b(t) = BT
(
eA(tf−t)

)T
Wc(tf )−1a(tf ). (16)

The total energy expended during this minimum-energy ac-
tuation to steer the system to a in time tf is give by:

∫ tf

0

‖b(τ)‖2dτ = aTWc(tf )−1a. (17)

Thus, if the controllability Gramian is nearly singular, then
tremendous actuation energy is required to control the sys-
tem. Conversely, if the eigenvalues of the Gramian are large,
then the system is highly controllable.

It is therefore possible to determine a hierarchy of con-
trollable states, in order of controllability, by taking the eigen-
value decomposition of Wc, which is positive semi-definite.
The eigenvectors corresponding to the largest eigenvalues
are the most controllable states. This eigen-decomposition
is closely related to the singular value decomposition (SVD)
of the controllability matrix from Eq. (11), but defined from a
discrete-time system approximating Eq. (5). This connection
to the SVD will be important in model reduction, and will
be discussed in Sec. 4.5.1. A similar hierarchy of observable
states may be determined.

4.3.2 Linear quadratic Gaussian

Now that we have established conditions enabling arbitrary
pole placement of the closed-loop system, we must decide
on where to place them. It is mathematically possible to
make closed-loop eigenvalues arbitrarily stable (i.e. arbitrar-
ily far in the left-half complex plane) if the system is control-
lable. However, this may require expensive control expendi-
ture with unrealistic actuation magnitudes. Moreover, very
stable eigenvalues may over-react to noise and disturbances,
causing the closed-loop system to jitter, much as a new driver
over-reacting to vibrations in the steering wheel.

In a linear-quadratic regulator (LQR) controller, the con-
troller Kr is chosen to place the closed-loop poles to mini-
mize a quadratic cost function J . This cost function balances
the desire to regulate the system state to a = 0 with the added
objective of small control expenditure:

J =

∫ ∞

0

(
aTQa+ bTRb

)
dt. (18)

Q is a symmetric positive semi-definite matrix that is chosen
to penalize deviations of the state a from the set-point a = 0.
Similarly, R is a symmetric positive definite matrix that is
chosen to penalize control expenditure. Often, Q and R are
chosen to be diagonal matrices, and the magnitude of the di-
agonal elements may be adjusted to tune the control perfor-
mance by adjusting relative penalty ratios. For example, to
increase the aggressiveness of control, the diagonal entries of
Rmay be decreased with respect to those ofQ.

The optimal control law that minimizes J in Eq. (18) is
given by b = −Kra, withKr = R−1BTX . X is the unique
solution to the algebraic Riccati equation:

ATX +XA−XBR−1BTX +Q = 0. (19)

In LQR, a balance is struck between the stability of the
closed-loop system and the aggressiveness of control. Tak-
ing control expenditure into account is important so that the
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where each of the (A, B, C, D) depend on the lin-
earization point as and bifurcation parameter �.
This approximation will be approximately valid
near fixed points and away from critical values of
the bifurcation parameter where det df/d� = 0.

It is possible to represent the state-space model
in Eq. (2) as a transfer function P (⇣) in the frequency
domain (in terms of a Laplace variable ⇣):

P (⇣) = C (⇣I � A)�1 B + D. (3a)

4.2 Model-based open loop control

• What it would look like to design the ideal sys-
tem, invert plant dynamics, etc.

• Why this would be a terrible idea (in many
cases)...

4.3 Dynamic feedback controllers

Given linear dynamics of the form in Eq. (2), we of-
ten want a feedback controller based on full-state
feedback: b = �Kra. For example, if the system is
controllable, then the poles of the closed-loop system
may be placed arbitrarily by choice of Kr.

d

dt
a = Aa � BKra (4a)

= (A � BKr) a. (4b)

However, full-state measurements of a are ei-
ther infeasible or prohibitively expensive, and so an
estimate â may be obtained from measurements s.
This is of course, only if the system of equations (2)
is observable. An observer dynamical system may be
constructed as follows:

d

dt
â = Aâ + Bb + Kf (s � ŝ), (5a)

ŝ = Câ + Db (5b)
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[(typically D = 0 for this problem...)] which leads
to

d

dt
â = (A � KfC) â + Kfs + (B � KfD) b.(6a)

The full-state estimate â will converge to an esti-
mate of the true state a if the eigenvalues of A �
KfC are stable.

Combined with full-state feedback b = �Krâ,
this results in a dynamical system for the controller:

d

dt
â = (A � KfC � BKr + KfDKr) â + Kfs,(7a)

b = �Krâ. (7b)

Note that the input to the controller is the sensor
signal s, the output is the actuation signal b, and
the state â estimates the full-state of the linear sys-
tem in Eq. (2). The separation principle states that
Kr and Kf may be designed separately to deter-
mine the stability of the state dynamics for a and â,
respectively, and the closed-loop system will have
poles given by the poles of A�BKr and A�KfC.

The most general observer dynamical system is
given by:

d

dt
â = Ââ + B̂s, (8a)

b = Ĉâ + D̂s. (8b)

The general controller will be denoted by K(⇣)
in the frequency domain.

4.4 Controllability, Observability, and
Gramians

The ability to place poles of the closed-loop system
arbitrarily with choice of Kr relies on the controlla-
bility of the system in Eq. (2). The system is control-
lable if the following matrix:

C =
⇥
B AB A2B · · · ANa�1B

⇤
(9a)

has full rank Na. Controllability implies that the
system may be steered to an arbitrary state a with
suitable time-history of the control input b.

Similarly, the full state is observable if the observ-
ability matrix is full rank:

O =
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666664
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CANa�1

3
777775

. (10a)

This means that any state a may be estimated with
a suitable time-history of the measurements s.

Although the definitions of controllability and
observability above are binary, there are degrees of
controllability and observability, based on how dif-
ficult it is to control or estimate a state a. The degree
of controllability and observability of a given state
is quantified by eigenvalues and eigenvectors of the
controllability Gramian

Wc =

Z 1

0
eAtBB⇤eA⇤tdt (11a)

⇡
1X

k=0

�
eA�t

�k
BB⇤

⇣
eA⇤�t

⌘k
(11b)

and observability Gramian:

Wo =

Z 1

0
eA⇤tC⇤CeAtdt (12a)

⇡
1X

k=0

⇣
eA⇤�t

⌘k
C⇤C

�
eA�t

�k
. (12b)

These may be approximated by full-state mea-
surements of the direct system in Eq. (2) and adjoint
system:

Wc ⇡ W e
c = CC⇤, (13a)

Wo ⇡ W e
o = OO⇤. (13b)

[Decide on notation for continuous vs. discrete
time A... emp. Gramians are slightly wrong, since
they use Ad]

[Mention SVD and symmetric matrix, degrees of
controllability...]

[Mention balanced model reduction: BT, BPOD,
ERA]
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4.4.1 Balanced model reduction

4.5 H1 robust vs. H2 optimal control

Now that we have established conditions enabling
arbitrary pole placement of the closed-loop system,
we must now decide on where to place them.

4.5.1 H2 optimal control: Linear quadratic Gaus-
sian (LQG)

We may often modify Eq. (2) with the addition of
white noise disturbance wd and measurement noise
wn:

d

dt
a = Aa + Bb + wd, (14a)

s = Ca + Db + wn. (14b)

Each of these noise inputs has a different co-
variance matrix: E(wdw

T
d ) = Vd and E(wnwT

n ) =
Vn, where E(·) is the expectation value. [This is
not precise enough... really need E(wd(t)wd(⌧)T ) =
Vd�(t � ⌧).]

Linear-quadratic regulator (LQR):

J =

Z 1

0
aT Qa + bT Rb dt. (15a)

The optimal control law is b = �Kra, where Kr =
R�1BT X and X is the unique solution to the alge-
braic Riccati equation:

AT X + XA � XBR�1BT X + Q = 0. (16a)

A dual Riccati equation is solved for the observer
gain Kf = Y CT Vn:

Y AT + AY � Y CT V �1
n CY + Vd = 0. (17a)

The so-called Kalman filter Kf is chosen to mini-

mize E
⇣
(a � â)T (a � â)

⌘
given known covariance

Vd and Vn.
[Note: Kalman published his famous Kalman

filter in a journal of Fluid Engineering.]
[Decent stability margins for LQR, but no guar-

anteed stability margins for LQG (famous Doyle pa-
per)].

4.5.2 Sensitivity, Complementary Sensitivity,
and Robustness

• S(⇣) - sensitivity function

• T (⇣) - complementary sensitivity function

• wr - reference tracking

4.5.3 H1 robust control

We will often set Ĉ = Kr and D̂ = 0, where
Kr is a linear-quadratic-regulator (LQR) gain ma-
trix. We may also choose Â and B̂ according to the
Kalman filter, resulting in a combined estimation-
based controller known as the linear-quadratic-
Gaussian (LQG). Because of the separation principle
for linear systems, it is possible to design an optimal
feedback control gain Kr and an optimal observer
separately, and they will be both stable and optimal
when combined.

The resulting controller, known more generally
as a H2 controller, optimally balances the effect of
Gaussian measurement noise with process distur-
bances. However, these controllers are known to
have arbitrarily poor robustness margins. Instead,
H1 robust controllers are used when robustness is
important.

Figure 4 shows the most general schematic for
closed loop feedback control, encompassing H2 and
H1 optimal control strategies. There are a number
of excellent books expanding on this theory [39, 40].

Here we discuss important theoretical results re-
garding the various types of optimal control: H1
robust control, and H2 LQG.

• Often times turbulence is considered a distur-
bance term in a slower dynamical system, such
as the rigid body equations of an aircraft, space
shuttle, or rocket. In this case, turbulent fluc-
tuations may be seen as inevitable and oper-
ating on a time scale that is faster than con-
troller bandwidth. Instead of trying to change
the nature of the turbulence itself, the controller
may be designed to obtain some other objective
while robustly managing the uncertain turbu-
lent disturbance.

• H2 is by far the more popular control paradigm
because of its simple mathematical formula-
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trix. We may also choose Â and B̂ according to the
Kalman filter, resulting in a combined estimation-
based controller known as the linear-quadratic-
Gaussian (LQG). Because of the separation principle
for linear systems, it is possible to design an optimal
feedback control gain Kr and an optimal observer
separately, and they will be both stable and optimal
when combined.

The resulting controller, known more generally
as a H2 controller, optimally balances the effect of
Gaussian measurement noise with process distur-
bances. However, these controllers are known to
have arbitrarily poor robustness margins. Instead,
H1 robust controllers are used when robustness is
important.

Figure 4 shows the most general schematic for
closed loop feedback control, encompassing H2 and
H1 optimal control strategies. There are a number
of excellent books expanding on this theory [39, 40].

Here we discuss important theoretical results re-
garding the various types of optimal control: H1
robust control, and H2 LQG.

• Often times turbulence is considered a distur-
bance term in a slower dynamical system, such
as the rigid body equations of an aircraft, space
shuttle, or rocket. In this case, turbulent fluc-
tuations may be seen as inevitable and oper-
ating on a time scale that is faster than con-
troller bandwidth. Instead of trying to change
the nature of the turbulence itself, the controller
may be designed to obtain some other objective
while robustly managing the uncertain turbu-
lent disturbance.

• H2 is by far the more popular control paradigm
because of its simple mathematical formula-

11

4.4.1 Balanced model reduction

4.5 H1 robust vs. H2 optimal control

Now that we have established conditions enabling
arbitrary pole placement of the closed-loop system,
we must now decide on where to place them.

4.5.1 H2 optimal control: Linear quadratic Gaus-
sian (LQG)

We may often modify Eq. (2) with the addition of
white noise disturbance wd and measurement noise
wn:

d

dt
a = Aa + Bb + wd, (14a)

s = Ca + Db + wn. (14b)

Each of these noise inputs has a different co-
variance matrix: E(wdw

T
d ) = Vd and E(wnwT

n ) =
Vn, where E(·) is the expectation value. [This is
not precise enough... really need E(wd(t)wd(⌧)T ) =
Vd�(t � ⌧).]

Linear-quadratic regulator (LQR):

J =

Z 1

0
aT Qa + bT Rb dt. (15a)

The optimal control law is b = �Kra, where Kr =
R�1BT X and X is the unique solution to the alge-
braic Riccati equation:

AT X + XA � XBR�1BT X + Q = 0. (16a)

A dual Riccati equation is solved for the observer
gain Kf = Y CT Vn:

Y AT + AY � Y CT V �1
n CY + Vd = 0. (17a)

The so-called Kalman filter Kf is chosen to mini-

mize E
⇣
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4 Linear model-based control

Many results in closed-loop turbulence control are
specific to linear systems. For example, one may sta-
bilize an unstable steady-state and delay the transi-
tion to turbulence, as in the boundary layer or chan-
nel flow. In this case, the laminar solution becomes
unstable for post-critical Reynolds numbers, but it
may be stabilized by feedback control.

Such work has encompassed a significant mod-
eling effort (see Sec. 3) to describe the relevant low-
order fluid mechanisms. Performance issues such as
bandwidth, disturbance rejection, and noise atten-
uation must be balanced with robustness to model
uncertainty and time-delays. For this reason, there
has been a recent push to move away from H2 op-
timal control techniques (LQR, Kalman estimation,
LQG, etc.) to the robust H1 controllers [32, 33, 34,
35]. These controllers penalize the worse-case sce-
nario error and provide robust performance. In addi-
tion, significant effort has gone into the design and
modeling of sensor and actuators, along with their
placement in the flow.

There are many instances when linear control
strategies may have significant and direct impact for
nonlinear turbulent flows, even away from laminar
fixed-point solutions:

1. In mean-field models, exciting one oscillatory
mode with linear control may kill other oscilla-
tory modes [36, 37],

2. ensemble averages of turbulent flow responses
may be linear, as in Colonius’s experimental jet
noise study ,

3. Dusek’s jet simulation at Re=100,

4. transient control of separation for fully turbu-
lent boundary layer [38].

4.1 Linearized input–output dynamics

Often, we are interested in linearizing Eq. (1) about
a steady fixed point as or periodic orbit, leading to
a linear system of equations:

d

dt
a = Aa + Bb, (2a)

s = Ca + Db. (2b)

Open-loop control

PlantController

Figure 3: Open-loop control topology.

where each of the (A, B, C, D) depend on the lin-
earization point as and bifurcation parameter �.
This approximation will be approximately valid
near fixed points and away from critical values of
the bifurcation parameter where det df/d� = 0.

It is possible to represent the state-space model
in Eq. (2) as a transfer function P (⇣) in the frequency
domain (in terms of a Laplace variable ⇣):

P (⇣) = C (⇣I � A)�1 B + D. (3a)

4.2 Model-based open loop control

• What it would look like to design the ideal sys-
tem, invert plant dynamics, etc.

• Why this would be a terrible idea (in many
cases)...

• P

4.3 Dynamic feedback controllers

Given linear dynamics of the form in Eq. (2), we of-
ten want a feedback controller based on full-state
feedback: b = �Kra. For example, if the system is
controllable, then the poles of the closed-loop system
may be placed arbitrarily by choice of Kr.

d

dt
a = Aa � BKra (4a)

= (A � BKr) a. (4b)

However, full-state measurements of a are ei-
ther infeasible or prohibitively expensive, and so an
estimate â may be obtained from measurements s.
This is of course, only if the system of equations (2)
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estimate â may be obtained from measurements s.
This is of course, only if the system of equations (2)
is observable. An observer dynamical system may be
constructed as follows:

d

dt
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ŝ = Câ + Db (5b)

[(typically D = 0 for this problem...)] which leads
to

d

dt
â = (A � KfC) â + Kfs + (B � KfD) b.(6a)
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KfC are stable.

Combined with full-state feedback b = �Krâ,
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Note that the input to the controller is the sensor
signal s, the output is the actuation signal b, and
the state â estimates the full-state of the linear sys-
tem in Eq. (2). The separation principle states that
Kr and Kf may be designed separately to deter-
mine the stability of the state dynamics for a and â,
respectively, and the closed-loop system will have
poles given by the poles of A�BKr and A�KfC.

The most general observer dynamical system is
given by:

d

dt
â = Ââ + B̂s, (8a)

b = Ĉâ + D̂s. (8b)

The general controller will be denoted by K(⇣)
in the frequency domain.

4.4 Controllability, Observability, and
Gramians

The ability to place poles of the closed-loop system
arbitrarily with choice of Kr relies on the controlla-
bility of the system in Eq. (2). The system is control-
lable if the following matrix:

C =
⇥
B AB A2B · · · ANa�1B

⇤
(9a)

has full rank Na. Controllability implies that the
system may be steered to an arbitrary state a with
suitable time-history of the control input b.

Similarly, the full state is observable if the observ-
ability matrix is full rank:

O =

2
666664

C
CA
CA2

...
CANa�1

3
777775

. (10a)

This means that any state a may be estimated with
a suitable time-history of the measurements s.

Although the definitions of controllability and
observability above are binary, there are degrees of
controllability and observability, based on how dif-
ficult it is to control or estimate a state a. The degree
of controllability and observability of a given state
is quantified by eigenvalues and eigenvectors of the
controllability Gramian

Wc =

Z 1

0
eAtBB⇤eA⇤tdt (11a)

⇡
1X

k=0

�
eA�t

�k
BB⇤

⇣
eA⇤�t

⌘k
(11b)

and observability Gramian:

Wo =

Z 1

0
eA⇤tC⇤CeAtdt (12a)

⇡
1X

k=0

⇣
eA⇤�t

⌘k
C⇤C

�
eA�t

�k
. (12b)

These may be approximated by full-state mea-
surements of the direct system in Eq. (2) and adjoint
system:

Wc ⇡ W e
c = CC⇤, (13a)

Wo ⇡ W e
o = OO⇤. (13b)

[Decide on notation for continuous vs. discrete time
A... emp. Gramians are slightly wrong, since they
use Ad]

[Mention SVD and symmetric matrix, degrees of
controllability...]

[Mention balanced model reduction: BT, BPOD,
ERA]
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Figure 8: Linear-quadratic Gaussian controller. The Kalman filterKf is a dynamical system that takes sensor measurements
s and the actuation signal b to estimate the full-state â. The LQR gainKr is a matrix that multiplies the full-state to produce
an actuation signal b = −Krâ that is optimal with respect to the quadratic cost function in Eq. (18).

controller doesn’t overreact to high-frequency noise and dis-
turbances, doesn’t exceed maximum actuation amplitudes,
and isn’t prohibitively expensive.

In practice, to make Eq. (5) more realistic, it must be aug-
mented with the addition of white noise disturbancewd and
measurement noisewn:

d

dt
a = Aa+Bb+Bwwd, (20a)

s = Ca+Db+wn. (20b)

The matrix Bw determines the spatial distribution of how
disturbances enter the state. Each of these noise inputs has a
different co-variance matrix: E(wd(t)wd(τ)T ) = Vdδ(t − τ)
and E(wn(t)wn(τ)T ) = Vnδ(t− τ), where E(·) is the expec-
tation value and δ is the Dirac delta function. The addition of
disturbances and sensor noise is shown in Fig. 8, and also in
Fig. 9 withwr = 0;wr is the reference input.

In linear-quadratic estimation (LQE), a dual problem to
LQR is solved, resulting in an optimal full-state estimator,
as in Eq. (9), that balances the relative importance of mea-
surement noise and process noise. The process noise may be
an additive stochastic term, or structural uncertainty in the
model. A dual Riccati equation is solved for Y in the ob-
server gainKf = Y CTVn:

Y AT +AY − Y CTV −1
n CY + Vd = 0. (21)

The so-called Kalman filter Kf may be used in the observer

in Eq. (9), and it is chosen to minimize E
(

(a− â)T (a− â)
)

given known covariance Vd and Vn.
The optimal state-feedback (LQR) and optimal state-

estimation (LQE) may be designed independently and then
combined. The separation principle guarantees that when
combined, the state-feedback and state-estimation will re-
main stable and optimal. The resulting controller, combining
estimation-based full-state feedback, is known as a linear-
quadratic-Gaussian (LQG) controller, shown in Fig. 8.

The combined LQG controller may be written as a more

general observer dynamical system, given by:

d

dt
â = Ââ+ B̂s, (22a)

b = Ĉâ+ D̂s. (22b)

For the LQG controller, we set Â = A − KfC − BKr +
KfDKr , B̂ = Kf , Ĉ = −Kr , and D̂ = 0, recovering the
form of Eq. (10) with Kr as the LQR gain matrix and Kf as
the Kalman filter gain matrix.

The resulting controller, known more generally as anH2

controller, optimally balances the effect of Gaussian measure-
ment noise with process disturbances. Although LQR con-
trollers may have decent stability margins, there is no guar-
antee on stability margins for LQG controllers, as famously
demonstrated in [161]. This means that even small uncertain-
ties, such as unmodeled dynamics, unexpected disturbances,
or time-delays may destabilize the closed-loop system.

4.4 Robust control
The notion of robustness and performance are central in feed-
back control. The limitations of LQG control have motivated
significant advances in the development of controllers with
robust performance. Robustness typically refers to the abil-
ity to maintain control performance despite model uncer-
tainty, unmodeled nonlinear dynamics, and unforeseen dis-
turbances, time-delays, etc., which are all important for tur-
bulence control. A complete discussion of robust control is
beyond the scope of this review; instead, our goal is to build
an intuition and provide a glimpse of the powerful robust
control machinery for flow systems [174]. For a more com-
plete overview with excellent attention to engineering con-
siderations and practical control design, see [166].

4.4.1 Sensitivity, complementary sensitivity, and ro-
bustness

As discussed in the previous section, real systems will always
include disturbances wd and sensor noise wn, as illustrated
in Fig. 9. This diagram also includes a commanded reference
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inputwr , that the controller should track. When designing a
robust controller, it is important to understand how these ex-
ogenous inputs affect the outputs s, the error signal e, and the
actuation signal, b. In general, systems will be particularly
sensitive to disturbances and noise at certain frequencies.

We may express the output s in terms of transfer func-
tions on the inputswr ,wd, andwn:

s = Pdwd + PK(wr − s−wn),

=⇒ (I + PK)s = Pdwd + PKwr − PKwn.

Therefore, we have:

s = (I + PK)−1PK︸ ︷︷ ︸
T

wr + (I + PK)−1

︸ ︷︷ ︸
S

Pdwd

− (I + PK)−1PK︸ ︷︷ ︸
T

wn. (23)

S is the sensitivity and T is the complementary sensitivity. If
we let L = PK be the loop transfer function, then we have:

S = (I +L)−1, (24a)

T = (I +L)−1L. (24b)

Since we are interested in minimizing the error e (with-
out noise), the following expression is more useful:

e = wr − s = Swr − SPdwd + Twn. (25)

The disturbance plant Pd and the system plant P are often
closely related. For example, disturbances and control inputs
may both be amplified by a natural convective instability in
the flow.

Typically, we will choose the controller K so that the
open-loop transfer function L = PK has desirable prop-
erties in the frequency domain. For example, small gain at
high frequencies will attenuate sensor noise. Similarly, high
gain at low frequencies will provide good reference tracking
performance. These are intimately related to the sensitiv-
ity S and complementary sensitivity T . In particular, from
Eq. (25), S should be small at low frequencies, and T should
be small at large frequencies; note that S + T = I , from
Eq. (24).

PlantController+

-

[(typically D = 0 for this problem...)] which leads
to

d

dt
â = (A � KfC) â + Kfs + (B � KfD) b.(6a)

The full-state estimate â will converge to an esti-
mate of the true state a if the eigenvalues of A �
KfC are stable.

Combined with full-state feedback b = �Krâ,
this results in a dynamical system for the controller:

d

dt
â = (A � KfC � BKr + KfDKr) â + Kfs,(7a)

b = �Krâ. (7b)

Note that the input to the controller is the sensor
signal s, the output is the actuation signal b, and
the state â estimates the full-state of the linear sys-
tem in Eq. (2). The separation principle states that
Kr and Kf may be designed separately to deter-
mine the stability of the state dynamics for a and â,
respectively, and the closed-loop system will have
poles given by the poles of A�BKr and A�KfC.

The most general observer dynamical system is
given by:

d

dt
â = Ââ + B̂s, (8a)

b = Ĉâ + D̂s. (8b)

The general controller will be denoted by K(⇣)
in the frequency domain.

4.4 Controllability, Observability, and
Gramians

The ability to place poles of the closed-loop system
arbitrarily with choice of Kr relies on the controlla-
bility of the system in Eq. (2). The system is control-
lable if the following matrix:

C =
⇥
B AB A2B · · · ANa�1B

⇤
(9a)

has full rank Na. Controllability implies that the
system may be steered to an arbitrary state a with
suitable time-history of the control input b.

Similarly, the full state is observable if the observ-
ability matrix is full rank:

O =

2
666664

C
CA
CA2

...
CANa�1

3
777775

. (10a)

This means that any state a may be estimated with
a suitable time-history of the measurements s.

Although the definitions of controllability and
observability above are binary, there are degrees of
controllability and observability, based on how dif-
ficult it is to control or estimate a state a. The degree
of controllability and observability of a given state
is quantified by eigenvalues and eigenvectors of the
controllability Gramian

Wc =

Z 1

0
eAtBB⇤eA⇤tdt (11a)

⇡
1X

k=0

�
eA�t

�k
BB⇤

⇣
eA⇤�t

⌘k
(11b)

and observability Gramian:

Wo =

Z 1

0
eA⇤tC⇤CeAtdt (12a)

⇡
1X

k=0

⇣
eA⇤�t

⌘k
C⇤C

�
eA�t

�k
. (12b)

These may be approximated by full-state mea-
surements of the direct system in Eq. (2) and adjoint
system:

Wc ⇡ W e
c = CC⇤, (13a)

Wo ⇡ W e
o = OO⇤. (13b)

[Decide on notation for continuous vs. discrete
time A... emp. Gramians are slightly wrong, since
they use Ad]

[Mention SVD and symmetric matrix, degrees of
controllability...]

[Mention balanced model reduction: BT, BPOD,
ERA]
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4 Linear model-based control

Many results in closed-loop turbulence control are
specific to linear systems. For example, one may sta-
bilize an unstable steady-state and delay the transi-
tion to turbulence, as in the boundary layer or chan-
nel flow. In this case, the laminar solution becomes
unstable for post-critical Reynolds numbers, but it
may be stabilized by feedback control.

Such work has encompassed a significant mod-
eling effort (see Sec. 3) to describe the relevant low-
order fluid mechanisms. Performance issues such as
bandwidth, disturbance rejection, and noise atten-
uation must be balanced with robustness to model
uncertainty and time-delays. For this reason, there
has been a recent push to move away from H2 op-
timal control techniques (LQR, Kalman estimation,
LQG, etc.) to the robust H1 controllers [32, 33, 34,
35]. These controllers penalize the worse-case sce-
nario error and provide robust performance. In addi-
tion, significant effort has gone into the design and
modeling of sensor and actuators, along with their
placement in the flow.

There are many instances when linear control
strategies may have significant and direct impact for
nonlinear turbulent flows, even away from laminar
fixed-point solutions:

1. In mean-field models, exciting one oscillatory
mode with linear control may kill other oscilla-
tory modes [36, 37],

2. ensemble averages of turbulent flow responses
may be linear, as in Colonius’s experimental jet
noise study ,

3. Dusek’s jet simulation at Re=100,

4. transient control of separation for fully turbu-
lent boundary layer [38].

4.1 Linearized input–output dynamics

Often, we are interested in linearizing Eq. (1) about
a steady fixed point as or periodic orbit, leading to
a linear system of equations:

d

dt
a = Aa + Bb, (2a)

s = Ca + Db. (2b)

Open-loop control

PlantController

Figure 3: Open-loop control topology.

where each of the (A, B, C, D) depend on the lin-
earization point as and bifurcation parameter �.
This approximation will be approximately valid
near fixed points and away from critical values of
the bifurcation parameter where det df/d� = 0.

It is possible to represent the state-space model
in Eq. (2) as a transfer function P (⇣) in the frequency
domain (in terms of a Laplace variable ⇣):

P (⇣) = C (⇣I � A)�1 B + D. (3a)

4.2 Model-based open loop control

• What it would look like to design the ideal sys-
tem, invert plant dynamics, etc.

• Why this would be a terrible idea (in many
cases)...

• P

4.3 Dynamic feedback controllers

Given linear dynamics of the form in Eq. (2), we of-
ten want a feedback controller based on full-state
feedback: b = �Kra. For example, if the system is
controllable, then the poles of the closed-loop system
may be placed arbitrarily by choice of Kr.

d

dt
a = Aa � BKra (4a)

= (A � BKr) a. (4b)

However, full-state measurements of a are ei-
ther infeasible or prohibitively expensive, and so an
estimate â may be obtained from measurements s.
This is of course, only if the system of equations (2)
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The most general observer dynamical system is given
by:

d

dt
â = Ââ + B̂s, (8a)

b = Ĉâ + D̂s. (8b)

The general controller will be denoted by K(⇣) in the
frequency domain.

4.3.1 Controllability, Observability, and Gramians

The ability to place poles of the closed-loop system arbitrarily
with choice of Kr relies on the controllability of the system in
Eq. (2). The system is controllable if the following matrix:

C =
⇥
B AB A2B · · · ANa�1B

⇤
(9a)

has full rank Na. Controllability implies that the system may
be steered to an arbitrary state a with suitable time-history
of the control input b.

Similarly, the full state is observable if the observability
matrix is full rank:

O =

2
666664

C
CA
CA2

...
CANa�1

3
777775

. (10a)

This means that any state a may be estimated with a suitable
time-history of the measurements s.

Although the definitions of controllability and observ-
ability above are binary, there are degrees of controllability
and observability, based on how difficult it is to control or
estimate a state a. The degree of controllability and observ-
ability of a given state is quantified by eigenvalues and eigen-
vectors of the controllability Gramian

Wc =

Z 1

0

eAtBB⇤eA⇤tdt (11a)

⇡
1X

k=0

⇣
eA�t

⌘k

BB⇤
⇣
eA⇤�t

⌘k

(11b)

and observability Gramian:

Wo =

Z 1

0

eA⇤tC⇤CeAtdt (12a)

⇡
1X

k=0

⇣
eA⇤�t

⌘k

C⇤C
⇣
eA�t

⌘k

. (12b)

[Mention SVD and symmetric matrix, degrees of con-
trollability...]

Eigenvalues and eigenvectors of Wc are left singular
vectors of Cd

4.4 H1 robust vs. H2 optimal control
Now that we have established conditions enabling arbitrary
pole placement of the closed-loop system, we must now de-
cide on where to place them.

4.4.1 H2 optimal control: Linear quadratic Gaussian
(LQG)

[Decide on notation for continuous vs. discrete time A...
emp. Gramians are slightly wrong, since they use Ad]

We may often modify Eq. (2) with the addition of white
noise disturbance wd and measurement noise wn:

d

dt
a = Aa + Bb + wd, (13a)

s = Ca + Db + wn. (13b)

Each of these noise inputs has a different co-variance matrix:
E(wdwT

d ) = Vd and E(wnwT
n ) = Vn, where E(·) is the ex-

pectation value. [This is not precise enough... really need
E(wd(t)wd(⌧)T ) = Vd�(t � ⌧).]

Linear-quadratic regulator (LQR):

J =

Z 1

0

aT Qa + bT Rb dt. (14a)

The optimal control law is b = �Kra, where Kr =
R�1BT X and X is the unique solution to the algebraic Ric-
cati equation [Expensive!!]:

AT X + XA � XBR�1BT X + Q = 0. (15a)

A dual Riccati equation is solved for the observer gain Kf =
Y CT Vn:

Y AT + AY � Y CT V �1
n CY + Vd = 0. (16a)

The so-called Kalman filter Kf is chosen to minimize

E
⇣
(a � â)T (a � â)

⌘
given known covariance Vd and Vn.

[Note: Kalman published his famous Kalman filter in a
journal of Fluid Engineering.]

We will often set Ĉ = Kr and D̂ = 0 in Eq. (8), where
Kr is a linear-quadratic-regulator (LQR) gain matrix. We
may also choose Â and B̂ according to the Kalman filter,
resulting in a combined estimation-based controller known
as the linear-quadratic-Gaussian (LQG). Because of the sepa-
ration principle for linear systems, it is possible to design an
optimal feedback control gain Kr and an optimal observer
separately, and they will be both stable and optimal when
combined.

The resulting controller, known more generally as a H2

controller, optimally balances the effect of Gaussian measure-
ment noise with process disturbances. Although LQR con-
trollers may have decent stability margins, there is no guar-
antee on stability margins for LQG controllers, as famously
demonstrated in [32].

4.4.2 [Sensitivity, Complementary Sensitivity, and
Robustness]

• Pd

• n d

• S(⇣) - sensitivity function

• T (⇣) - complementary sensitivity function

• wr - reference tracking

• Time delays

10

+
+

+
+

wr e b

wd

wn

s

Figure 9: Feedback control with disturbances and noise.

For performance and robustness, we want the maximum
peak of S, MS = ‖S‖∞, to be as small as possible. From
Eq. (25), it is clear that in the absence of noise, feedback con-
trol improves performance (i.e. reduces error) for all frequen-
cies where |S| < 1; thus control is effective when T ≈ 1. As
explained in [166] (pg. 37), all real systems will have a range
of frequencies where |S| > 1, in which case performance is
degraded. Minimizing the peak MS mitigates the amount of
degradation experienced with feedback at these frequencies,
improving performance. In addition, the minimum distance
of the loop transfer functionL to the point−1 in the complex
plane is given by M−1

S . The larger this distance, the greater
the stability margin of the closed-loop system, improving ro-
bustness. These are the two major reasons to minimize MS .

The controller bandwidth ωB is the frequency below
which feedback control is effective. This is a subjective defi-
nition. Often, ωB is the frequency where |S(jω)| first crosses
-3 dB from below. We would ideally like the controller band-
width to be as large as possible without amplifying sensor
noise, which is typically high frequency. However, there are
fundamental bandwidth limitations that are imposed for sys-
tems that have time delays or right half plane zeros [166].

4.4.2 H∞ robust control design

As discussed above, LQG controllers are known to have ar-
bitrarily poor robustness margins. This is a serious problem
in turbulence control, where the flow is wrought with un-
certainty and time-delays. H∞ robust controllers are used
when robustness is important. There are many connections
between H2 and H∞ control, and we refer the reader to the
excellent reference books expanding on this theory [166, 167].

Figure 10 shows the most general schematic for closed-
loop feedback control, encompassing H2 and H∞ optimal
control strategies. In the generalized theory of modern con-
trol, the goal is to minimize the transfer function from ex-
ogenous inputsw (reference, disturbances, noise, etc.) to the
cost function J (accuracy, actuation cost, time-domain per-
formance, etc.). Both H2 and H∞ control design result in
controllers that minimize different norms on this fundamen-
tal input–output transfer function. In fact, the symbol H2

refers to a Hardy space with bounded two-norm, consisting
of stable and strictly proper transfer functions (meaning gain
rolls off at high frequency). The symbolH∞ refers to a Hardy
space with bounded infinity-norm, consisting of stable and
proper transfer functions (gain does not grow infinite at high
frequencies). The infinity norm is defined as:

‖P ‖∞ , max
ω

σ1 (P (iω)) . (26)

Here, σ1 denotes the maximum singular value. Since the
‖ · ‖∞ norm is the maximum value of the transfer function
at any frequency, it is often called a worst-case scenario norm;
therefore, minimizing the infinity norm provides robustness
to worst-case exogenous inputs.

If we let Pw→J denote the transfer function from w to
J , then the goal of H∞ control is to construct a controller
to minimize the infinity norm: min ‖Pw→J‖∞. This is typi-
cally difficult, and no analytic closed-form solution exists for
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Generalized
plant

Controller

w J

b s

Pw→J

Figure 10: General framework for feedback control. The in-
put to the controller are the system measurements s, and the
controller outputs an actuation signal b. The exogenous in-
putswmay refer to a referencewr , disturbanceswd or sensor
noise wn. The cost function J may measure cost associated
with inaccuracy of reference tracking, expense of control, etc.

the optimal controller in general. However, there are rela-
tively efficient iterative methods to find a controller such that
‖Pw→J‖∞ < γ, as described in [164]. There are numerous
conditions and caveats that describe when this method can
be used. In addition, there are computationally efficient al-
gorithms implemented in both Matlab and Python, and these
methods require relatively low overhead from the user.

Selecting the cost function J to meet design specifica-
tions is a critically important part of robust control design.
Considerations such as disturbance rejection, noise attenu-
ation, controller bandwidth, and actuation cost may be ac-
counted for by a weighted sum of the transfer functions
S,T , and KS. In the mixed sensitivity control problem, vari-
ous weighting transfer function are used to balance the rela-
tive importance of these considerations at various frequency
ranges. For instance, we may weight S by a low-pass filter
and KS by a high-pass filter, so that disturbance rejection
at low frequency is promoted and control response at high-
frequency is discouraged. A general cost function may con-
sist of three weighting filters Fk multiplying S, T , andKS:

∥∥∥∥∥∥



F1S
F2T
F3KS



∥∥∥∥∥∥
∞

.

Another possible robust control design is called H∞
loop-shaping. This procedure may be more straightforward
than mixed sensitivity synthesis for many problems. The
method consists of two major steps. First, a desired open-
loop transfer function is specified based on performance
goals and classical control design. Input and output com-
pensators are constructed to transform the open-loop sys-
tem to the desired loop shape. Second, the shaped loop is
made robust with respect to a large class of model uncer-
tainty. Indeed, the procedure of H∞ loop shaping allows
the user to design an ideal controller to meet performance
specifications, such as rise-time, band-width, settling-time,

etc. Typically, a loop shape should have large gain at low
frequency to guarantee accurate reference tracking and slow
disturbance rejection, low gain at high frequencies to atten-
uate sensor noise, and a cross-over frequency that ensures
desirable bandwidth. The loop transfer function is then ro-
bustified so that there are improved gain and phase margins.
H2 control has been an extremely popular control

paradigm because of its simple mathematical formulation
and its tunability by user input. The advantages of H∞ con-
trol are increasingly realized in flow control, eminent exam-
ples being the collaborative research centers (Sfb 557 & Sfb
1029) lead by Rudibert King [16, 17, 175]. Additionally, there
are numerous consumer software solutions that make imple-
mentation relatively straightforward. In Matlab, mixed sen-
sitivity is accomplished using the >>mixsyn command in
the robust control toolbox. Similarly, loop-shaping is accom-
plished using the >>loopsyn command in the robust control
toolbox.

4.4.3 Fundamental limitations with implications for
turbulence control

As discussed above, we want to minimize the peaks of S and
T . Some peakedness is inevitable, and there are certain sys-
tem characteristics that significantly limit performance and
robustness. Most notably, time-delays and right-half plane
zeros of the open-loop system will limit the effective control
bandwidth and will increase the attainable lower-bound for
peaks of S and T . This contributes to both degrading perfor-
mance and decreasing robustness.

Similarly, a plant will suffer from robust performance
limitations if the number of poles exceeds the number of ze-
ros by more than 2. These fundamental limitations are quan-
tified in the waterbed integrals, which are so named because
if you push a waterbed down in one location, it must rise in
a another. Thus, there are limits to how much one can push
down peaks in S without causing other peaks to pop up.

Time delays are somewhat easier to understand, since a
time delay τ will introduce an additional phase lag of τω at
the frequency ω, limiting how fast the controller can respond
effectively (i.e. bandwidth). Thus, the bandwidth for a con-
troller with acceptable phase margins is typically ωB < 1/τ .

Following the discussion in [166], these fundamental
limitations may be understood in relation to the limitations
of open-loop control based on model inversion from Sec. 4.2.
If we consider high-gain feedback b = K(wr − s) for a sys-
tem as in Fig. 9 and Eq. (25), but without disturbances or
noise, we have

b = Ke = KSwr. (27)

We may write this in terms of the complementary sen-
sitivity T , by noting that since T = I − S, we have
T = L(I +L)−1 = PKS:

b = P−1Twr. (28)

Thus, at frequencies where T is nearly the identity I and
control is effective, the actuation is effectively inverting the
plant P . Even with sensor-based feedback, perfect control is
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unattainable. For example, if the plantP has right-half plane
zeros, then the actuation signal will become unbounded if
the gainK is too aggressive. Similarly, limitations arise with
time-delays and when the number of poles of P exceed the
number of zeros, as in the case of open-loop model-based in-
version.

As a final illustration of the limitation of right-half
plane zeros, we consider the case of proportional control
b = Ks in a single-input, single output system with plant
P (ζ) = N(ζ)/D(ζ). Here, roots of the numerator N(ζ) are
zeros of the plant and roots of the denominator D(ζ) are
poles. The closed-loop transfer function from reference wr
to sensors s is given by:

s(ζ)

wr(ζ)
=

PK

1 + PK
=

NK/D

1 +NK/D
=

NK

D +NK
. (29)

For small control gain K, the term NK in the denominator
is small, and the poles of the closed-loop system are near the
poles of P , given by roots of D. As K is increased, the NK
term in the denominator begins to dominate, and closed-loop
poles are attracted to the roots of N , which are the open-loop
zeros of P . Thus, if there are right-half plane zeros of the
open-loop plant P , then high-gain proportional control will
drive the system unstable. These effects are often observed
in the root locus plot from classical control theory. In this
way, we see that right-half plane zeros will directly impose
limitations on the gain margin of the controller.

The limitations imposed by a time-delay have significant
implications for turbulence control. First, time-delays will be
inevitable for many sensor/actuator configurations in con-
vective flows [176], limiting the frequency of disturbances
that may be effectively suppressed with feedback. Second, as
turbulence time-scales may become extremely fast, the time it
takes to compute a control action will introduce a latency that
is just as deleterious as a time-delay in the plant. Time-delays
and flow time-scales should be primary considerations when
designing feedback controllers for turbulent flows.

4.4.4 Two degrees of freedom control

With the addition of reference and disturbance feed-forward
control, it is possible to improve the control performance at
frequencies where feedback control is ineffective due to large
sensitivity. This more sophisticated two-degrees-of-freedom
control is illustrated in Fig. 11.

Again, we may compute the transfer function from in-
puts to output:

s =(I + PK)−1

[P (K +Kref)wr + (Pd − PKd)wd − PKwn] .

Then the error becomes:

e = s−wr = −SSrefwr + SSdPdwd − Twn, (30)

where the additional feedforward sensitivity functions are

Sref = I − PKref, (31a)

Sd = I − PKdP
−1
d . (31b)
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Figure 11: Two degrees-of-freedom control with reference
tracking and disturbance rejection.

Two-degree of freedom control may be intuitively un-
derstood as the combination of a fast feedforward controller
to get close to a desired reference value, followed by a slow
feedback controller to mitigate model uncertainty and re-
ject unexpected disturbances. There are explicit bounds on
model uncertainty that determine when combined inverse-
based feedforward and feedback will outperform feedback
alone [177].

4.5 Balanced model reduction
The high-dimensionality and short time-scales associated
with turbulent flows makes it infeasible to implement the
model-based control strategies above in real-time. More-
over, solving for H2 and H∞ optimal controllers may be
computationally intractable, as they involve either a high-
dimensional Riccati equation solve, or an expensive iterative
optimization. Instead, reduced-order models provide effi-
cient, low-dimensional representations of the most relevant
flow mechanisms. These models result in efficient controllers
that may be applied in real-time for many systems. An alter-
native is to develop controllers based on the full-dimensional
model and then apply model reduction techniques directly to
the full controller [178].

Model reduction is essentially data reduction that re-
spects the fact that the data is generated by a dynamic pro-
cess. If the dynamic process is a linear time-invariant (LTI)
input–output system, then there is a wealth of machinery
available for model reduction, and performance bounds may
be quantified. Many of these methods are based on the singu-
lar value decomposition (SVD) [88, 179, 87], and the minimal
realization theory of Ho and Kalman [180, 181]. The general
idea is to determine a hierarchical modal decomposition of
the flow state that may be truncated at some model order,
only keeping the most important coherent structures.

The proper orthogonal decomposition (POD) [182, 85]
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orders modes based on energy content, and it has been
widely used for a range of fluid dynamic reduced-order
models, many for control. POD is guaranteed to provide
an optimal low-rank basis to capture the maximal energy
or variance in a data set. In some cases, a large number of
POD modes may be required to represent non-normal energy
growth, as in wall-bounded shear flows, such as in [183].

Instead of ordering modes based on energy, it is possible
to determine a hierarchy of modes that are most controllable
and observable, therefore capturing the most input–output
information. Such balanced models give equal weighting to
the controllability and observability of a state, providing a
coordinate transformation that makes the controllability and
observability Gramians equal and diagonal. It is observed
that for many high-dimensional systems, the control input
may only excite a few controllable modes, with the remain-
ing modes being stable. These models have been extremely
successful in the context of flow control, especially for sys-
tems with non-normal growth. However, computing a bal-
anced model using traditional methods is extremely expen-
sive computationally. In this section, we describe the balanc-
ing procedure, as well as modern methods for efficient com-
putation of balanced models. A computationally efficient
suite of algorithms for model reduction and system identi-
fication may be found in [117].

4.5.1 Discrete-time systems and Gramians

Until now, we have considered continuous-time dynamical
systems, as in Eq. (5). However, the discussion of model re-
duction is somewhat simplified using a discrete-time model:

ak+1 = Adak +Bdbk, (32a)

sk = Cdak +Ddbk. (32b)

The index k may be thought of as the k-th sample of a
continuous-time system in Eq. (5), sampled every ∆t by
an analogue-to-digital converter. Alternatively, the discrete-
time system may be a numerical time-stepper. The discrete-
time system may be related to the continuous-time system
by the following: Ad = exp(A∆t), Bd =

∫∆t

0
exp(Aτ)Bdτ ,

Cd = C, and Dd = D. Then ak = a(k∆t), and similar for
bk and sk. The assumption that b is constant during each ∆t
interval is called a zero-order-hold in control theory.

The Gramians may be approximated by full-state mea-
surements of the direct system in Eq. (32) and adjoint system:

direct: ak+1 = Adak +Bdbk, (33a)

adjoint: ak+1 = A∗dak +C∗dsk. (33b)

It is then possible to determine empirical Gramians without
solving the Lyapunov equations in Eq. (15).

Wc ≈ W e
c = CdC∗d, (34a)

Wo ≈ W e
o = OdO∗d. (34b)

Cd and Od are snapshot matrices constructed from impulse
response simulations of the discrete direct and adjoint sys-
tems in Eq. (32). The method of empirical Gramians is quite

efficient, and was used in [181, 184, 185]. Note that there are
Ns adjoint impulse response experiments required. This be-
comes intractable when there are a large number of outputs
(e.g. full state measurements).

4.5.2 Goal of model reduction

The goal of model reduction is to obtain a related system
(Ar,Br,Cr,Dr),

ãk+1 = Arãk +Brbk, (35a)

sk = Crãk +Drbk, (35b)

in terms of a state ãk ∈ RNr with reduced state dimension,
Nr � Na. Note that bk and sk are the same in Eq. (32) and
Eq. (35). A balanced reduced-order model should map in-
puts to outputs as faithfully as possible for a given order.

It is therefore important to introduce an operator norm to
quantify how similarly Eq. (32) and Eq. (35) act on a given
set of inputs. Typically, we consider the infinity norm of the
transfer functions P (ζ) and Pr(ζ) obtained from the full sys-
tem (32) and reduced system (35), respectively:

‖P ‖∞ , max
ω

σ1 (P (iω)) . (36)

To summarize, we seek a reduced-order model (35) of low
order, Nr � Na, so the operator norm ‖P − Pr‖∞ is small.

4.5.3 Balanced proper orthogonal decomposition

In balanced truncation (BT) [181], a coordinate transforma-
tion is sought that makes the observability and controllability
Gramians equal and diagonal. The balancing transformation
is given by the matrix B in the eigendecomposition:

WcWoB = BΣ2 (37)

where Σ is a diagonal matrix containing Hankel singular val-
ues (HSVs). It is then possible to obtain a reduced-order basis
by choosing the first Nr columns of B corresponding to the
Nr largest HSVs. It has been demonstrated that modes with
small energy content may be important for control of a given
input–output system [97, 183]. Therefore, instead of truncat-
ing based on energy content, we consider truncating based
on Hankel singular values.

In practice, it may be extremely expensive to compute
the Gramians Wc and Wo by solving a high-dimensional
Lyapunov equation, and the subsequent eigendecomposition
is also expensive. Instead of solving for Gramians directly, it
is possible to construct empirical Gramians using snapshots
of direct and adjoint simulations, as discussed in Eq. (34).
Strong connections have been established between POD and
balanced truncation [181, 184, 185, 96], and in [96], POD is
used to obtain low-rank approximations to the Gramians.
However, the early methods combining POD and BT do not
scale well with the number of output measurements. In fact,
the number of adjoint simulations required is equal to the
number of output measurements, Ns, which may be quite
large [186].

In [97], Rowley introduced the method of balanced
proper orthogonal decomposition (BPOD) to address the
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aforementioned issues associated with snapshot based bal-
anced truncation. There are two major advances introduced
in this method that make it practical to very large dynamical
systems:

1. Method of snapshots – Instead of computing the balanc-
ing transformation by solving the eigendecomposition
in Eq. (37), it is possible to construct the transformation
by computing the singular value decomposition of

OdCd, (38)

reminiscent of the method of snapshots from [187, 188,
86].

2. Output projection – To avoid computing Ns adjoint
simulations, it is possible instead to solve an output-
projected adjoint equation:

ak+1 = A∗dak +C∗dUrs (39)

where Ur is a rank-Nr proper orthogonal decomposi-
tion truncation.

First, define the generalized Hankel matrix as the prod-
uct of the direct (Cd) and adjoint (O∗d) snapshot matrices from
Eq. (11) and (12), for the discrete-time system:

H = OdCd (40)

=




CdBd CdAdBd · · · CdA
mc−1
d Bd

CdAdBd CdA
2
dBd · · · CdA

mc
d Bd

...
...

. . .
...

CdA
mo−1
d Bd CdA

mo
d Bd · · · CdA

mc+mo−2
d Bd


 .

Next, we factorH2 using the SVD:

H = UΣV ∗ =
[
U1 U2

] [Σ1 0
0 0

] [
V ∗1
V ∗2

]
= U1Σ1V

∗
1 .

(41)

For a given desired model order Nr � Na, only the first Nr
columns of U and V are kept, along with the first Nr × Nr
block of Σ. This yields a bi-orthogonal set of modes given
by:

direct modes: Φr = CdVrΣ−1/2
r , (42a)

adjoint modes: Ψr = O∗dUrΣ−1/2
r . (42b)

These modes are bi-orthogonal, Ψ∗rΦr = INr×Nr , and
Rowley [97] showed that the direct and adjoint modes,
Φ and Ψ, establish the change of coordinates that bal-
ance the empirical Gramians: B = Φ , CdV Σ−1/2 and
B−1 = Ψ∗ , Σ−1/2U∗Od. Moreover, Φr and Ψr are the first
Nr-columns of the balancing transformation.

Now, these modes allow us to project our original sys-
tem onto a (balanced) reduced-order model or order Nr :

Ar = Ψ∗rAdΦr, (43a)

Br = Ψ∗rBd, (43b)

Cr = CdΦr. (43c)

2The powers mc and mo in Eq. (40) signify that data must be
collected until the matrices Cd and O∗d become full rank, after which
the controllable/observable subspaces have been sampled.

One of the key benefits of balanced truncation is that
there is an upper bound on the error of a given order trunca-
tion:

Upper bound: ‖P − Pr‖∞ < 2

n∑

j=Nr+1

σj .

A BPOD model may not exactly satisfy this upper bound
due to errors in the calculation of empirical Gramians. In ad-
dition, there is a lower bound that is universal to all models
with Nr states:

Lower bound: ‖P − Pr‖∞ > σNr+1.

4.5.4 Eigensystem realization algorithm

Balanced POD requires expensive full-state measurements
and adjoint simulations, which are not feasible for experi-
ments. The eigensystem realization algorithm (ERA) makes
it possible to obtain equivalent balanced models directly
from input–output measurements. ERA is based on the mini-
mal realization theory of [180], and it was developed to iden-
tify structural models for various spacecraft [141]. It has
been shown that ERA models are equivalent to BPOD mod-
els [189]. ERA is a system identification method based on
impulse response measurements and does not require prior
knowledge of the high-dimensional model in Eq. (32) or ac-
cess to adjoint simulations.

Similar to BPOD, we take the SVD of the Hankel matrix
H . However, instead of collecting snapshot matrices Cd and
O∗d to obtain modes Φ and Ψ, we proceed directly to the
reduced-order model, without modes. Introducing another
Hankel matrixH ′ advanced one time-step in the future

H ′ = OdAdCd, (44)

a model is constructed as follows:

Ar = Σ−1/2
r U∗rH

′VrΣ
−1/2
r , (45a)

Br = first p columns of Σ1/2
r V ∗, (45b)

Cr = first q columns of UΣ1/2
r . (45c)

It is simple to verify that (43a) and (45a) are equal.
The expressions (43b) and (45b) for Br are equivalent, since
Σ
−1/2
r U∗rH = Σ

1/2
r V ∗r . Similarly, the expressions forCr are

equivalent.
H and H ′ are constructed from impulse response sim-

ulations/experiments, without the need for storing direct or
adjoint snapshots. However, if direct snapshots are available,
for example, by collecting velocity fields in simulations or
PIV, then it is possible to construct direct modes.

ERA and BPOD balance the empirical Gramians, so un-
less we collect a very large amount of data, the true Grami-
ans are only approximately balanced. However, instead of
collecting long tails of data, it is possible to collect data until
the Hankel matrix is full rank, balance the full-rank identi-
fied model, and then truncate. This is more efficient than
collecting snapshots until all of the transients have decayed3.

3This idea is developed in [190], inspired by [191].
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4.5.5 Observer/Kalman filter identification

Observer/Kalman filter identification (OKID) was devel-
oped to compliment the ERA for lightly damped experimen-
tal systems with noise [192, 193, 194, 142]. This method
addresses the general problem of identifying an approxi-
mate impulse response (i.e. Markov parameters) from arbi-
trary, noisy input–output data. Typically, one would ob-
tain reduced-order models according to the following gen-
eral procedure:

1. Collect output response to a pseudo-random input

2. This information is then passed through the OKID algo-
rithm to obtain the linear impulse response,

3. The impulse response is passed through the ERA to ob-
tain a reduced-order state-space system.

The OKID method identifies an approximation to the
impulse response of a system from noisy input–output data
using an asymptotically stable Kalman filter. Although this
method is quite powerful, it has not been broadly adopted
because of the algorithmic complexity as well as nonintuitive
theoretical elements. However, a recent method extending
dynamic mode decomposition (DMD) to systems with con-
trol inputs provides similar models as ERA/OKID, but with
a more intuitive and computationally simple algorithm [195].
This follows recent results that DMD and ERA may be seen
as equivalent, up to a coordinate transformation, for certain
types of input–output data [101].

4.6 Case study: Transition delay in a
boundary layer and stabilizing steady
states

For many canonical flows, such as pipe flow or Couette
flow, the underlying laminar steady solution is stable for all
Reynolds numbers [196, 197, 198], and turbulent fluctuations
arise as transient events due to perturbations and wall rough-
ness. However, many fully turbulent flows are character-
ized by saturated nonlinear dynamics, and the existence of
a desirable underlying unstable fixed point or periodic or-
bit. For example, in the laminar-to-turbulent transition of a
flat plate boundary layer or channel flow, the unstable fixed
point corresponds to steady, laminar flow with significantly
decreased drag. The existence of these remnant unstable
steady-states is consistent with the Hopf-bifurcation route to
turbulence [199]. In addition, linearization may also work in
the viscous sublayer in wall turbulence.

Linear control is ideal for such systems, because success-
ful regulators keep the system in a state that is near the fixed
point, where the linear assumption remains valid. Therefore,
linear control has largely been applied to transition delay and
stabilizing unstable steady-states. It is also possible to desta-
bilize a system to enhance mixing by reversing the sign of
a stabilizing controller [200]. It is worth noting that there
are numerous examples where linear model-based control
has been successfully applied to flows that are in a nonlinear
regime. Often times turbulence is considered a disturbance
term in a slower dynamical system, such as the rigid body

equations of an aircraft, space shuttle, or rocket. In this case,
turbulent fluctuations may be seen as inevitable and operat-
ing on a time scale that is faster than controller bandwidth.
Instead of trying to change the nature of the turbulence itself,
the controller may be designed to obtain some other objec-
tive while robustly managing the uncertain turbulent distur-
bance. Here, we consider the problem of actively controlling
the turbulent dynamical system.

The field of linear model-based flow control has expe-
rienced exceptional growth, largely due to the close align-
ment of challenges in engineering fluid dynamics with the
sophisticated machinery in model reduction and control the-
ory. There are a number of excellent reviews of linear flow
control [20], for transition delay in spatially developing wall-
bounded flows [170, 201, 171], and for the control of cavity
oscillations [34]. A good overview of drag reduction by con-
trol of turbulence boundary layers is also found in [10], with
a quantification of potential fuel savings in transportation.
The discussion here is not meant to be complete, but rather
is designed to clarify the choices and historical progress of
linear model-based flow control, especially in turbulence.

4.6.1 Early work

Early progress in model-based flow control is closely tied to
advances in computational resources, enabling the simula-
tion of large-scale dynamical systems, such as in fluid dy-
namics. Currently, the majority of model-based flow control
employing H2 and H∞ techniques are applied to numerical
simulations. In [202], gradient-based optimal control tech-
niques were introduced to control the flow in a channel using
boundary condition control. Adjoint methods have also been
used extensively for aerodynamic shape optimization based
on CFD [203, 204, 205, 206].

A suboptimal control approximation was introduced by
Choi et al in 1993 [207] using a very short time horizon that
allowed convective terms to be neglected, resulting in a con-
troller based on a Stokes flow model. This method was then
applied to a turbulent channel flow by Bewley and Moin
in 1994 [208], resulting in a 17% drag reduction. Subop-
timal control with more physically realizable measurement
was analyzed for a turbulent channel flow in [209]. Without
the suboptimal approximation, a model-predictive control
(MPC) framework may be used for receding-horizon optimal
control, although this is computationally intensive. MPC has
been used in [210] and [211], and is discussed in more detail
in a recent review [171].

In Bewley and Liu [212], both H2 and H∞ controllers
were developed and applied to single wavenumber pairs in
a plane channel flow with three dimensional perturbations.
In [213], robust control was applied to the extended prob-
lem of 2D multi-wavenumber control with localized actua-
tion and sensing in plane Poiseuille flow. Högberg et al [214]
extended the analysis of [212] to include multiple wavenum-
bers and state estimation using a Kalman filter based on wall
measurements. Their three-dimensional DNS used bound-
ary condition forcing, and it was shown that state-estimation
was not as effective as full-state feedback.

Högberg and Henningson [215] demonstrated the effec-
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tiveness of linear H2 optimal control in spatially developing
boundary layers, even with moderately strong nonlinearities
present. In a follow-up work [216], they extended this analy-
sis to include full-state estimation based on a number of wall
measurements, similar to [214].

4.6.2 Use of reduced-order models

As discussed earlier, the development of controllers for high-
dimensional linear systems may be extremely computation-
ally intensive since they depend on the solution to Riccati
equations, involving O(N3

a ) operations, or expensive itera-
tions. Further, once a high-dimensional controller has been
designed, it is expensive to compute the resulting control ac-
tion, introducing unwanted latency in the control loop. This
latency significantly limits control bandwidth and may pre-
vent real-time control of high-dimensional systems with fast
time-scales. These issues are especially pronounced in flow
control.

In the timely work of Åkervik et al [218], reduced-order
models were developed by using a few non-normal global
eigenmodes of the linearized Navier-Stokes equations as a
basis for Galerkin projection. Based on the reduced-order
model, an LQG controller is able to attenuate global oscilla-
tions in a separated boundary layer. The use of non-normal
global modes has been important to capture the transient
energy growth associated with wall-bounded shear flows.
Yet, these approaches have limited applicability to unstable
advection-dominated flows. Transient growth implies a sen-
sitivity issue: a small difference in the initial condition or a
small perturbation in the system can give rise to significantly
different solutions. Hence, unavoidable truncation errors
of reduced-order models based on global modes may cause
similar differences in the solutions. The sensitivity problem
is less pronounced at lower Reynolds numbers or for weakly
unstable flows.

After the seminal work of Rowley [97], introducing
a computationally efficient method to compute balanced
reduced-order models, the use of balanced models has be-
come a mainstay in model-based linear flow control. The re-
sulting models are able to capture transient energy growth
with significantly fewer modes than POD, as demonstrated
in [183] on the transitional channel flow. BPOD was also
shown to outperform standard POD/Galerkin methods for
the separation control of an airfoil at low Reynolds num-
ber [219], using an immersed-boundary method [220, 221].

The paper of Bagheri, Brandt, and Henningson [222]
provides one of the most complete and clearly presented nar-
ratives on closed-loop control based on balanced models. In
this work, they develop models using snapshot-based bal-
anced truncation. Snapshot based methods are necessary
when the state dimension Na is large, since the A matrix
is size N2

a , which may not be representable in system mem-
ory. The matrix-free methods advocated in [222] use the CFD
time-stepper to find the next flow state, rather than explic-
itly computing a large A matrix. These methods may be
used to solve large eigenvalue problems, for instance using
Arnoldi iteration, thus bypassing the creation and factoriza-
tion of a large matrix. In this paper, H2 control is developed

to suppress two-dimensional boundary layer perturbations.
[223] presents a three-dimensional generalization of [222] us-
ing LQG to delay transition in a boundary layer.

As described in Sec. 4.5.4, the eigensystem realization al-
gorithm (ERA) produces balanced models that are equivalent
to BPOD, but without the need for adjoint simulations [189].
ERA has been rapidly adopted in flow control because of the
fact that it is based purely on input–output data, making it a
system identification method, rather than a model reduction
method. ERA was used to study and control cavity flow os-
cillations and combustion oscillations [224, 225]. In Semeraro
et al [217], ERA models were used to develop LQG control to
suppress three-dimensional Tollmien-Schlichting (TS) waves
in a transitional boundary layer using a volume force actua-
tion. This paper is well-written and thought provoking, and
an illustration of the closed-loop control topology is shown in
Fig. 12. Interestingly, one of the earliest experimental demon-
strations of active feedback suppression of turbulence was
applied to cancel TS waves using a downstream heating el-
ement and a phase shifted measurement feedback, resulting
in an increase in the transition Reynolds number [18].

4.7 Case study: Wall turbulence control
and skin-friction reduction

There is a tremendous industrial motivation to reduce tur-
bulent skin-friction drag. This problem has thus received
significant attention, and corresponding progress has been
made [40, 10]. Reduced-order models for control based on
LQG and the robustifying loop-transfer recovery were used
to reduce skin-friction drag in a a channel flow [226, 227], re-
sulting in eventual relaminarization of the flow. Reduced-
order models were also used with blowing/suction at the
wall to reduce skin friction in simulations [228], and reduced-
order Kalman filters were developed based on balanced trun-
cation models [133].

In addition to the mechanisms and techniques dis-
cussed, there have been many efforts to reduce turbulent
skin friction drag [229, 230, 231, 232, 233] using various tech-
niques such as traveling-wave-like actuation including blow-
ing/suction and wall deformation. Increasing heat trans-
fer while decreasing drag is also an important area of re-
search [234]. In addition, system identification and control
were used for the linear feed-forward control of turbulent
boundary layer fluctuations by exploiting coherent struc-
tures and predicting their behavior downstream [235]. The
same reduction in turbulent boundary layer fluctuations was
explored using model-based control in an experiment using
an array of synthetic jet actuators [236].

4.8 Case study: Cavity flow control
The work surrounding the control of open cavity flows rep-
resents one of the most complete and compelling success
stories in active flow control [237]. Cavity flow control has
many applications, such as the suppression of oscillations in
weapons bays in high-speed flight [238], which is an inher-
ently high Reynolds number phenomena. A more complete
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Disturbance
B1

Sensors
C2

Actuators
B2

Domain to minimize 
disturbance energy

C1

z(t)

Controller

FIGURE 2. (Colour online) Sketch of the control configuration. The disturbance (B1) consists
of an optimal initial condition. A low-order LQG controller is designed; based on the output
extracted by a spanwise row of sensors (C2), the controller computes the control signals
feeding a row of actuators (B2). The objective of the controller is to minimize the disturbance
energy in the region marked with the grey colour. The inset figure shows that all of the
sensors are wired to all of the actuators (so-called centralized control, see Appendix).

The optimal, localized initial condition triggers a wavepacket of TS waves
(Monokrousos et al. 2010). The temporal behaviour described by the signal w(t) 2 R
is the disturbance signal excitation, assumed as a unit-variance white noise process.
The matrix B2 2 Rn⇥m represents the spatial distribution of the actuators, located in a
spanwise array of m elements and modelled as volume forcing localized close to the
walls. The control signal is represented by �(t) 2 Rm.

The output signals  (t) 2 Rp in (2.2b) are extracted by the array of p localized
sensors C2 2 Rp⇥n, which are placed a short distance upstream of the actuators.
The noise contamination of the signal is modelled by the unit-variance white noise
g(t) 2 Rp, whose level is set by the constant ⌘. A large value of ⌘ introduces high
levels of noise corruption on the measurements  (t), while a small value indicates
high fidelity of the information extracted by the sensors C2.

The output signal z(t) 2 Rk in (2.2c) is used to assess the performance of the
controller. Output projection is performed (Rowley 2005): the signal is obtained by
projecting the velocity field on a sequence of k = 10 proper orthogonal decomposition
(POD) modes, capturing ⇡93 % of the perturbation energy. The modes are generated
by a dataset of snapshots collected from the impulse response to the initial condition
B1 and are represented by the rows of C1 2 Rk⇥n. By adopting this approach, the
signal z(t) 2 Rk represents an approximation of the energy content of the system;
based on the output z(t), a fictitious output is defined as

z(t)0 =
"

C1

0

#
u(t)0 +

"
0

R1/2

#
�(t), (2.3)

where the diagonal entries of the matrix R 2 Rm⇥m correspond to the control penalty
l2. Thus, the first term is related to the energy of the system through the projection
performed on the POD basis, while the second term is related to the control effort.

Figure 12: Schematic of the closed-loop controller for transition delay of a flat plate boundary layer, reproduced from [217].
Here, ψ correspond to sensors s and ϕ correspond to actuators b.

discussion of the cavity flow control problem is discussed in
reviews [239, 34, 240].

Suppression of cavity oscillations has benefited from a
combination of new physical insights combined with simu-
lations [241], advances in advanced Galerkin modeling [242,
243], and the practical implementation of control in experi-
ments [244, 245, 246, 247]. Exciting new methods, such as
control based on neural networks [248, 46] and the use of
ERA [225] have also been investigated.

In some regimes, oscillations are self-sustained and in-
herently nonlinear. To identify models suitable for control,
Rowley et al [244] stabilized the oscillations using Nyquist
plots to tune the phase of controllers based on experimen-
tally obtained frequency response data. A model was then
obtained for the closed-loop system using system identifica-
tion, and model for the unstable system was derived.

4.9 Potential impact and challenges
All of the models discussed above, and therefore the cor-
responding controllers, depend on the placement of actua-
tors and sensors, as these directly effect B and C in Eq. (5).
Actuator and sensor placement was recently investigated
for boundary layer transition delay [249]. Importantly, this
study provides a clear comparison of feedforward (sen-
sor upstream of actuator) versus feedback (sensor down-
stream of actuator) control. In particular, it is shown that
disturbance-feedforward control is effective sometimes, but
is sensitive to additional disturbances and uncertainty. Feed-
back, on the other hand, effectively rejects disturbances and
compensates for unmodeled dynamics. However, if the sen-
sor is too far downstream, the time-delay between actuation
and sensing dramatically limits robust performance, which
is consistent with the discussion above.

Given the performance of drag reduction, in the neigh-

borhood of 20%, and transition delay cited in the literature,
it may be somewhat surprising that active closed-loop con-
trol is not being utilized on mainstream aircraft, trains, or
automobiles. There are a number of reasons why the studies
above are largely numerical. First, many model-reduction
techniques require extensive and invasive information about
the plant, although ERA is less invasive. Second, the time-
scales associated with real experimental and industrial tur-
bulence are extremely fast, so that reducing time delays is
a significant challenge. Time delays may originate from la-
tency involved in the computation of a control decision, and
they may also arise from convective time scales from actua-
tors to sensors. Finally, the development of advanced sensor
and actuator hardware will be a major enabling factor in the
practical implementation of these methods.

5 Prototypes for linear and non-
linear dynamics

Despite the powerful tools for linear model reduction and
control, the assumption of linearity is often overly restrictive
for real-world fluids. Turbulent fluctuations are inherently
nonlinear, and often the goal is not to stabilize an unstable
fixed point but rather to change the nature of a turbulent at-
tractor. Moreover, it may be the case that the control input is
either a bifurcation parameter itself, or closely related to one,
such as the control surfaces on an aircraft.

The degree of nonlinearity is most easily characterized
in a Galerkin modeling framework (Sec. 5.1). The subsequent
sections (Sec. 5.2–5.5) provide prototypic examples of linear,
weakly, moderately and strongly nonlinear dynamics as evi-
denced in many fluid flows and corresponding control strate-
gies. Sec. 5.6 concludes with enablers and show-stoppers of
nonlinear model-based control design.
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5.1 Galerkin model
In this section, different degrees of system non-linearity are
introduced. For simplicity, we consider an incompressible
velocity field u(x, t) in a finite steady domain x ∈ Ω. Let
a = [a1, a2, . . . , aNa ]T represent anNa-dimensional approxi-
mation of the the flow state. The coordinates ai, i = 1, . . . , Na
may, for instance, represent the coefficients in a Galerkin ex-
pansion

u(x, t) = us(x) +

Na∑

i=1

ai(t) ui(x), (46)

where us represents the steady Navier-Stokes solution and
ui, i = 1, . . . , Na, are suitable expansion modes.

Let b = [b1, b2, . . . , bNb ]T characterize the actuation. One
example involves Nb volume forces

∑Nb
i bi(t) gi(x) with the

individual fields gi, i = 1, . . . , Nb. To simplify the discussion,
only a single component is assumed, Nb = 1, and b = b1
denotes its amplitude.

The sensor signals s = [s1, s2, . . . , sNs ]T may represent
velocity components. In this case, they are affinely related to
expansion coefficients via (46). The sensing plays no role in
this section. Focus is placed on finding a proper linearized
system whenever possible.

For the sake of simplicity, we assume the structure of
a Galerkin system with a single volume force as actuation.
Then, the dynamics in Eq. (2) take the form

fi(a, b) =

Na∑

j=1

lij aj +

Na∑

j,k=1

qijk aj ak + gib. (47)

The constant term of the dynamics vanishes since the basic
mode us is assumed to be the steady Navier-Stokes solution.

Near the fixed point a ≈ 0, the quadratic term may be
neglected yielding the linear dynamics (5) of Sec. 4. Physi-
cally meaningful linearizations may also be effected far away
from the origin. The critical element is the notion of ’fast’
and ’slow’ modes. The fast modes describe the evolution of
coherent structures and may best be considered as a fluctu-
ation. Let us assume i = 1, . . . , Nf

a represent the indices of
the fast modes. The slow modes have significantly lower fre-
quencies and may best be attributed to a base-flow variation.
Let the remaining indices i = Nf

a + 1, . . . , Na represent such
slow modes. By a trivial operation, the dynamics have the
form

fi = cBi +

Nf
a∑

j=1

lBij aj + hBi + gib,

where

cBi =

Na∑

j=N
f
a +1

lij aj +

Na∑

j,k=N
f
a +1

qijk aj ak,

lBij =

Na∑

k=N
f
a +1

(qijk + qikj) ak,

hBi =

Nf
a∑

j,k=1

qijk aj ak.

Here, the quasi-constant cBi measures the distance to the
fixed point a ≡ 0, the quasi-linear term with the coefficients
lBij incorporates slow base-flow changes, and hBi represents a
quadratic nonlinearity in the fluctuating modes. hBi has slow
and fast components. If the volume force is in feedback with
the fluctuations, cBi + hBi ≈ 0 in a short-term average. In this

case, fi =
Nf

a∑
j=1

lBij aj + gib, i = 1, . . . , Nf
a may be a suitable

linear representation of the fast dynamics.
The slow modes are slaved to an approximate manifold

in state space defined by dai/dt = fi(a) ≈ 0, i = Nf
a +

1, . . . , Na and are driven by the Reynolds stress contributions
of the fast modes, or, equivalently, by the slow component of
hBi .

In the following sections, four prototypic examples are
discussed: A) an oscillation around the fixed point; B) a self-
excited amplitude-limited oscillation; C) frequency cross-talk
with two different frequencies over the base-flow deforma-
tion; and D) the remaining irreducible cases.

5.2 Linear dynamics
First, a small oscillatory fluctuation around a steady solution
is considered. Examples include the flow over a backward-
facing step [250] at subcritical Reynolds number with noise,
transition delay of a boundary layer [251], or stabilization of
a cylinder wake [19, 252]. In Sec. 5.2.1, a control-oriented os-
cillator model is presented as a least-order description. Sec.
5.2.2 exemplifies the powerful method of energy-based con-
trol design for this model.

5.2.1 Oscillator model

The considered flows can be described by

u(x, t) = us(x) + uu(x, t), (48a)

uu(x, t) = a1(t) u1(x) + a2(t) u2(x). (48b)

Here, ui, i = 1, 2 correspond to the cosine and sine contri-
bution of the first harmonic or the real and imaginary part
of the unstable complex eigenmode. Higher harmonics are
neglected. By construction, the stable or unstable fixed point
is as = 0.

The linearized version of the dynamics (47) reads

d

dt
a = A0 a+B b, (49)

where

A0 =

[
σu −ωu
ωu σu

]
,

B =

[
0
g

]
.

Without loss of generality, the modes can be rotated so that
the gain in the first component vanishes. A similar equation
holds for the measurement equation. As discussed in Sec. 4.1,
the matricesA0 andB depend on the fixed point as and the
bifurcation parameters µ.
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The linear dynamics (49) may also be an acceptable ap-
proximation for turbulent flows with dominant oscillatory
behavior. In the triple decomposition, the velocity field is
partitioned into the mean flow u0, the periodic oscillation uu

and an uncorrelated stochastic fluctuation ur . The periodic
fluctuation may be described by two modes (48b), again. (49)
is obtained by substituting the velocity field u = u+uu+ur

in the Navier-Stokes equation, projecting onto the modes ui,
and filtering out anything but the dominant frequency. In
this case the growth-rate σu = 0 has to vanish and the am-
plitude selection mechanism cannot be resolved by the two-
dimensional Galerkin model. In particular, the fixed point 0
of the Galerkin model represents the mean flow which is not
the steady solution of the Navier-Stokes equation. Yet, the
model may be good enough to predict the right actuation for
increasing or decreasing the fluctuation near the limit cycle.

5.2.2 Energy-based control design

Control design of the linear system (49) can be performed
with the methods of Sec. 4. Here, we illustrate the idea of
energy-based control which is particularly suited for nonlin-
ear dynamics. Moreover, energy-based control has a kine-
matic relation to phasor control and an energetic relation to
opposition control.

The growth-rate σu is assumed positive and small
enough so that the time-scale of amplitude growth is small
compared to the time-scale of oscillation. In this case, the
state can be approximated by a1 = r cos θ, a2 = r sin θ,
where r and ω = dθ/dt are slowly varying functions of time.
The amplitude evolution is given by

dr2

dt
= 2a1

da1

dt
+ 2a2

da2

dt
= 2σu r2 + 2g a2 b.

The control goal is an exponential decay of the amplitude
with σc < 0, i.e.

dr2

dt

!
= 2σcr2.

Eliminating the time-derivative in both equation yields

dr2

dt
= σcr2 = σu r2 + g a2 b.

The control command b increases (decreases) the energy r2/2
if it has the same (different) sign as a2. To prevent wast-
ing actuation energy with the wrong phase, the linear ansatz
b = −k a2 is made. The gain k > 0 is determined by sub-
stituting a2 = r cos θ in the energy equation and averaging
over one period. The resulting control law reads

b = 2
σc − σu

g
a2. (51)

The gain increases with the difference between the natural
and design growth rate σc − σu and decreases with the forc-
ing constant g in the linear dynamics. The factor 2 arises from
the fact that the actuation is only effective in the [0, 1]T direc-
tion.

It may be emphasized that the achieved decay of the
fluctuation energy is an average value over one period.
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quency cross talk is key to the control goal. A prominent ex-
ample is high-frequency forcing to mitigate vortex shedding.
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5.5 Strongly nonlinear dynamics
A simple version of strongly nonlinear dynamics is described
by (??), but with

A = A0 +
NX

i=1

ai Ai. (29)

Now, the quadratic nonlinear gives rise to an energy cascade,
i.e. non-trivial frequency cross talk.

This classification is based on a spectrum of periodic
processes (clock-works). There exist an analogue classifica-
tion for event-based control.

• Turbulent jet-noise control [62].
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Figure 13: Phase portrait of oscillatory linear dynamics
(49). The dashed black trajectory corresponds to the unac-
tuated dynamics while the solid red trajectory corresponds
to actuated dynamics with (51). The chosen parameters are
σu = 0.1, σc = −0.1, ωu = 1, g = 1 implying k = 0.4.

When a2 = 0, no change of the energy is achievable. Sec-
ondly, the construction of the control law is based on design-
ing a dissipative term ga2b in the power balance. Hence, the
actuation mechanism may be considered an energetic oppo-
sition control. Thirdly, the actuation command b scales with
fluctuation amplitude r. Its phase lags 270◦ with respect to
the first coordinate a1. Hence, on a kinematical level, the ac-
tuation describes a phasor control. Figure 13 describes the
corresponding unactuated and actuated solution of (49).

The described energy-based control design is very sim-
ple and immediately reveals the physical mechanism. It is
easy to generalize for nonlinear systems, particularly if the
fluctuation is composed of clean frequency components. Re-
lated approaches are called Lyapunov control design and
harmonic balance.

5.3 Weakly nonlinear dynamics

As a refinement to the linearization, mean-field theory is re-
capitulated [253, 254] providing an important nonlinear am-
plitude selection mechanism. The onset of vortex shedding
behind a cylinder is one well investigated example fitting
this description [255]. The following two sections outline the
dynamical model and corresponding control design, respec-
tively.
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5.3.1 Mean-field model

Qualitatively, mean-field theory describes the feedback
mechanism between the fluctuations and the base flow. The
fluctuation gives rise to a Reynolds stress which changes the
base flow. The base-flow deformation generally reduces the
production of fluctuation energy with increasing fluctuation
level until an equilibrium is reached. The resulting evolution
equations are also referred to as weakly nonlinear dynamics,
as they describe a mild form of nonlinearity.

The fluctuation has the same representation as in
Sec. 5.2. However, the base flow is allowed to vary by an-
other mode u3, called the 0-th, base-deformation or shift
mode. This mode can be derived from the (linearized)
Reynolds equation and it is assumed to be slaved to the fluc-
tuation level. The resulting velocity field ansatz reads

u(x, t) = us(x) + uu(x, t) + u∆(x, t), (52a)

uu(x, t) = a1(t) u1(x) + a2(t) u2(x), (52b)

u∆(x, t) = a3(t) u3(x). (52c)

The evolution equation is given by

d

dt

[
a1

a2

]
= A(a3)

[
a1

a2

]
+B b (53a)

a3 = αu
(
a2

1 + a2
2

)
, (53b)

where

A(a3) = A0 + a3A3,

A0 =

[
σu −ωu
ωu σu

]
,

A3 =

[
−βu −γu
γu −βu

]
,

B =

[
0
g

]
.

Without loss of generality, αu > 0. Otherwise, the sign of the
modeu3 must be changed. A nonlinear amplitude saturation
requires the Landau constant to be positive βu > 0.

For a3 ≡ 0, (53) is equivalent to (49). However, (53) has
a globally stable limit cycle with radius r∞ =

√
σu/αuβu in

the plane a3 = a∞3 = σu/βu, and with center [0, 0, a∞3 ].
In the framework of weakly nonlinear stability the-

ory, the growth-rate is considered a linear function of the
Reynolds number σu = κ(Re−Rec), whereRec corresponds
to its critical value. The other parameters are considered to
be constant. This yields the famous Landau equation for
the amplitude dr/dt = σur − βr3, β = αuβu and a corre-
sponding equation for the frequency. In particular, the Lan-
dau equation explains the famous square-root amplitude law
r ∝

√
Re−Rec for supercritical Reynolds numbers assum-

ing a soft bifurcation. We refer to the literature for a discus-
sion of the hard subcritical bifurcation with quintic nonlin-
earity [254].

Mean-field theory explains the stabilizing feedback
mechanism between the harmonic oscillatory structure and
the mean-field deformation. A refined weakly nonlinear ex-
pansion also takes higher harmonics into account. The first

harmonic, via the quadratic Navier-Stokes term, generates
not only a mean-flow deformation but also a second har-
monic which changes, in turn, the mean flow. The nonlin-
ear interaction of the first and second harmonics produces a
third harmonic, etc. Dus̆ek et al. [256] derive a corresponding
harmonic expansion from the Navier-Stokes equation in the
neighborhood of a supercritical Hopf bifurcation. Let ε > 0
be the small amplitude of the first harmonic, then n-th har-
monics are shown to scale in geometric progression i.e. with
εn. Hence, higher harmonics may be neglected near the onset
of fluctuations. Even for periodic flow far beyond the onset,
the second harmonic is observed to be one order of magni-
tude smaller than the corresponding harmonic component.
A similar observation holds for turbulent flow with domi-
nant periodicity.

Intriguingly, even turbulent flows with dominant peri-
odic coherent structures may be described by (53). One ex-
ample is the wake behind a finite cylinder [257]. In this case,
the rationale is the velocity decomposition with an added un-
correlated stochastic fluctuationur : u = us+a3u3+uu+ur .
In this case, (53) remains valid ifur scales with the oscillatory
fluctuation level and the base flow deformation is slaved to
this level as well.

5.3.2 Nonlinear control design

The mean-field model and variants thereof have been suc-
cessfully used for the model-based stabilization of the cylin-
der wake at Re = 100 [44, 258, 259]. In these studies, an
energy based control design as discussed in Sec. 5.2 has been
used to prescribe a fixed decay rate of the model. Figure 14
illustrates an unactuated and actuated transient.

It may be noted that (53) can be considered a linear pa-
rameter varying (LPV) model with the shift-mode amplitude
a3, or, equivalently, with the fluctuation level r2 as the pa-
rameter. Thus, the linear control design of Sec. 4 is immedi-
ately applicable for the linear system corresponding to the ac-
tual value of this parameter. King et al. [260] elaborate other
nonlinear control design techniques for the mean-field model
employing input-output-linearization, Lyapunov-based syn-
thesis and backstepping. The mean-field model has also been
the basis for optimal control of the Navier-Stokes equation
[261], using the simulation to improve the model and the
model as a surrogate plant for control design.

5.4 Moderately nonlinear dynamics
Some oscillatory flows may be tamed by direct mitigation
with models and methods described in the previous section.
Not all plants, particularly turbulent flows, have the actu-
ation authority for such a stabilization. However, periodic
forcing at high frequency has mitigated periodic oscillations
in a number of experiments. Examples are the wake stabiliza-
tion with a oscillatory cylinder rotation [74], suppression of
Kelvin-Helmholtz vortices in transitional shear layers [262],
reduction of the separation zone in a high-lift configuration
[48], and elongation of the dead-water region behind a back-
ward facing step [47]. Also a periodic frequency at 60–70%
of the dominant shedding frequency may substantially delay
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by (??), but with

A = A0 +
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This classification is based on a spectrum of periodic
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tion for event-based control.

• Turbulent jet-noise control [62].
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Figure 14: Phase portrait of weakly nonlinear dynamics.
The dashed black trajectory corresponds to the unactuated
dynamics while the solid red trajectory corresponds to actu-
ated dynamics. The chosen parameters of (53) are σu = 0.1,
ωu = 1, αu = 1, βu = 1, γu = 0 and the forced decay
rate σc = −0.1. The globally stable limit cycle lies on the
parabolic inertial manifold, shown in gray.

the vortex formation in wall-bounded shear-layers [49] and
D-shaped cylinders [45]. The following two sections outline
a corresponding modeling and control strategy.

5.4.1 Generalized mean-field model

Here, a generalized mean-field model for such frequency-
cross talk phenomena is reviewed from [48]. Let uu denote
the natural self-amplified oscillation represented by two os-
cillatory modes u1, u2. Analogously, the actuated oscillatory
fluctuation ua is described by two modes u3, u4. The base-
flow deformation due to the unstable natural frequency ωu

and stable actuation frequency ωa is described by the shift-
modes u5 and u6 respectively. The resulting velocity decom-
position reads

u(x, t) = us(x) + u∆(x, t)

+uu(x, t) + ua(x, t), (54a)

uu(x, t) = a1(t) u1(x) + a2(t) u2(x), (54b)

ua(x, t) = a3(t) u3(x) + a4(t) u4(x), (54c)

u∆(x, t) = a5(t) u5(x) + a6(t) u6(x). (54d)

Generalized mean-field arguments yield the following

evolution equation:
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)
, (55b)
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4

)
, (55c)

where

A(a5, a6) = A0 + a5A5 + a6A6,
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ωu σu 0 0
0 0 σa −ωa
0 0 ωu σu


 ,

A5 =




−βuu −γuu 0 0
γuu −βuu 0 0
0 0 −βau −γau
0 0 γau −βau
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0
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g


 .

It should be noted that a vanishing actuation implies
a3 = a4 = a6 = 0 and yields the mean-field model of (53)
modulo index numbering. In the sequel, we assume that
the fixed point is unstable (σu > 0) and the limit cycle is
stable (βuu > 0). Similarly, a vanishing natural fluctuation
a1 = a2 = a5 yields another mean-field model, again mod-
ulo index numbering. In the sequel, we assume that the ac-
tuated structures vanish after the end of actuation, implying
σaa < 0 and βaa > 0 in the model.

An interesting aspect of (55) is the frequency cross-talk.
The effective growth-rate for the natural oscillation reads

A11 = σu − βuuαu
(
a2

1 + a2
2

)
− βuaαa

(
a2

3 + a2
4

)
. (57)

The forcing stabilizes the natural instability if and only if
βua > 0. Complete stabilization implies A11 ≤ 0. From
(57), such complete stabilization is achieved with a threshold
fluctuation level at the forcing frequency

a2
3 + a2

4 ≥
σu

αaβua
.

Thus, increasing the forcing at higher or lower frequency can
decrease the natural frequency.

The generalized mean-field model has been fitted to nu-
merical URANS simulation data of a high-lift configuration
[48] with high-frequency forcing. This model also accurately
describes the experimental turbulent wake data with a stabi-
lizing low-frequency forcing [263] as shown in Fig. 15.
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(a) Natural wake with vortex shedding

(b) Actuated partially stabilized wake

Figure 15: Flow visualization of the experimental wake be-
hind a D-shaped body without (a) and with symmetric low-
frequency actuation (b), reproduced with permission from
Mark Pastoor. The D-shaped body is indicated in gray, the
red squares mark the location of the pressure sensors and the
blue arrows indicated the employed ZNMF actuators.

Table 1: Parameters of the generalized mean-field model il-
lustrated in Fig. 16.

Unstable oscillator Stable oscillator
σu = 0.1 ωu = 1 σa = −0.1 ωa = 10
βuu = 1 γuu = 0 βau = 0 γau = 0
βua = 1 γua = 0 βaa = 0 γaa = 0
αu = 1 αa = 1 g = 1

5.4.2 Nonlinear control design

The model above may guide in-time control [264] and adap-
tive control design providing the minimum effective actua-
tion energy [265].

Figures 16 and 17 show an unactuated and stabilizing
transient with the parameters of Tab. 1. For simplicity, all
nonlinear terms of the forced oscillator are assumed to van-
ish, since the linear term is already stabilizing. For the same
reason, all nonlinear frequency terms are set to zero as the
frequency cross-talk is not affected by small frequency vari-
ations. In principle, (55) can be generalized for an arbitrary
number of frequencies.
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These may be described by a linear parameter varying sys-
tem (LPV). Like weakly nonlinear dynamics, but now the fre-
quency cross talk is key to the control goal. A prominent ex-
ample is high-frequency forcing to mitigate vortex shedding.
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5.5 Strongly nonlinear dynamics
A simple version of strongly nonlinear dynamics is described
by (??), but with

A = A0 +
NX

i=1

ai Ai. (29)

Now, the quadratic nonlinear gives rise to an energy cascade,
i.e. non-trivial frequency cross talk.

This classification is based on a spectrum of periodic
processes (clock-works). There exist an analogue classifica-
tion for event-based control.

• Turbulent jet-noise control [62].
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Figure 16: Phase portrait of moderately nonlinear dynamics
(55). The dashed black trajectory corresponds to the unac-
tuated dynamics while the solid red trajectory corresponds
to actuated dynamics with (51). The chosen parameters are
enumerated in Tab. 1.

It should be noted that linear, weakly nonlinear and
moderately nonlinear systems show different actuation re-
sponse which may be tested in experiments. For the linear
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Figure 17: Phase portrait of the shift-mode amplitudes a5

and a6, i.e. the slow dynamics in (55). Same transient solu-
tions as in Fig. 16.

system, a global superposition principle for the actuation re-
sponse holds: Let b1(t) and b2(t) be two open-loop actua-
tion commands and a1(t) and a2(t) be the corresponding
solutions. Let the linear combination b = λb1 + µb2 with
real coefficients λ and µ be a new actuation command. Then
a = λa1 + µa2 is a corresponding new solution. The weakly
nonlinear system has a similar local superposition principle
for an infinitesimal perturbation of the stable unforced limit
cycle. In contrast, the frequency cross-talk mechanism of the
moderately non-linear system is not resolved by a local lin-
earization around the stable unforced limit cycle. The lin-
earization of (57) removes the frequency cross-talk.

5.5 Strongly nonlinear dynamics
Sections 5.5.1 and 5.5.2 outline examples of strongly nonlin-
ear dynamics not fitting in the previous categories and exam-
ples of corresponding control design, respectively.

5.5.1 Examples of strongly nonlinear dynamics

In the case of moderately nonlinear dynamics, different fre-
quencies interact over the slowly varying base flow. The
corresponding solutions are well described by the local lin-
earization around the short-term averaged flow. In other
words, the solution lives on a manifold in state space and
evolves according to a locally linear dynamical system. This
may be a useful approximation even for turbulent flows with
one or few dominant frequencies. The turbulence cascade is,
however, dominated by triadic interactions involving non-
vanishing frequencies. The corresponding energy flow from
large scales (low frequencies) to small scales (high frequen-
cies) is not well characterized by moderately nonlinear dy-
namics. No linearization is able to describe such a cascade.
A similar behavior applies to the inverse cascade from dom-
inant to larger scales, e.g. via vortex pairing. We shall call
such dynamics ’strongly nonlinear’ implying that they are
irreducible to even locally linear systems. The decay of 2D

nonlinear

Moderately

Weakly

nonlinearLinear

nonlinear

Strongly

A

B

C

D

Figure 18: Venn diagram for the classification of nonlineari-
ties. Prototypic examples are for (A) the subcritical flow over
backward-facing step with noise excitation [250], for (B) the
supercritical onset of vortex shedding [255], for (C) the sup-
pression of Kelvin-Helmoltz vortices by high-frequency forc-
ing [47] and for (D) the decay of 2D turbulence [266].

turbulence by optimal initial conditions is a beautiful con-
figuration illustrating the complexity associated with strong
nonlinearity [266].

Mathematically, strong nonlinearity may be cast in a
form similar to the linear dynamics in (5), but with

A = A0 +

Na∑

i=1

ai Ai. (58)

The variation of the matrixA can neither be ignored nor con-
sidered slowly varying — in contrast to linear, weakly non-
linear or moderately nonlinear behavior.

We arrive at the following classification of system dy-
namics (see Fig. 18). The dynamics are either linearizable
near the fixed point, or they are locally linearizable with one
or few frequencies, or they belong to the reducible cases. The
boundaries between two neighboring cases are, of course, a
bit blurred depending on the considered error tolerance of
the model.

5.5.2 Nonlinear control design

The above classification is based on a spectrum of periodic
processes (clock-works). There exists an analog classification
for event-based control. Model-based control strategies for
strongly nonlinear dynamics are scarce. One programmatic
general approach is suboptimal control in which the optimal
control actuation is chosen just for the next time step [43]. In
[267] a corresponding Lyapunov-based control strategy has
been found effective to suppress jet noise events. For some
well understood configurations, the physical mechanism can
be exploited. For instance, skin-friction of wall turbulence is
known to increase with sweeps and ejections. Hence, a wall-
normal blowing or suction counteracting the wall-normal ve-
locity at 10 plus units has been found to be a very effective
closed-loop opposition control [43].

30



Po
w

er
 s

pe
ct

ra
l 

de
ns

it
y 

(P
SD

)

Frequency, [    ]!

PS
D

PS
D

PS
D

!

Broadband frequency dynamics

Multi-frequency dynamics

Limit cycle dynamics

Steady fixed point

!

!

!

!

!

!

Figure 19: Input/output characteristics of different dynam-
ics. Left: actuation command; right: sensor signal with-
out forcing (black), and sensor signal under periodic forcing
(red). From top to bottom: a stable fixed point with periodic
excitation (linear dynamics); a stable limit cycle with locking
periodic forcing (weakly nonlinear dynamics); a stable limit
cycle with high-frequency forcing (moderately nonlinear dy-
namics); and broad-bad turbulence under periodic forcing
(strongly nonlinear dynamics).

Figure 19 displays examples of the single input (one ac-
tuator) and single output (one sensor) system for the four
kinds of system dynamics. The first row shows the excitation
of a frequency for a stable linear system. The second exam-
ple is the energization of a stable limit cycle. The third row
shows the suppression of a low frequency by high-frequency
forcing. And the last example indicates how a single excita-
tion frequency can change the whole frequency spectrum.

There is a strong increase of complexity as one moves
from taming few frequency peaks to broadband dynamics.
For the latter, even developing reduced-order models suit-
able for control design constitutes an unattainable goal with
modern techniques.

5.6 Enablers and challenges of nonlinear
model-based control

In this section, enablers and challenges of nonlinear model-
based control are discussed. The beauty of the linear (49),
weakly nonlinear (53) and moderately nonlinear models (55)
is that each mode and each dynamical system coefficient has
a clear physical meaning. Moreover, the nonlinear systems
have an inherent tunable robustness. Evidently, more sophis-
ticated models with more frequencies can be constructed in
a similar spirit. Alternatively, a POD model with, say, 100 di-
mensions may be more accurate but the modes and the sys-
tem coefficients have no physical meaning. Moreover, each
mode and each coefficient acts as a noise amplifier for esti-
mation and control design tasks. Thus, more accurate mod-
els for a given operating condition tend to be less effective
for control design [44].

In the sequel, a validated recipe for control-oriented
least-order modeling is provided giving preference to the
most simple methods. Focus is placed on the generalized
mean-field model which incorporates the other models as
special cases. In addition, an experimental plant is assumed,
which gives access to less data and thus makes model iden-
tification more difficult.
• Modes — The domain of the modes should be large

enough to provide instantaneous phase information
and small enough to ignore pure convection effects. The
size of the recirculation region or one or two wave-
lengths are good indicators. The first two modes u1,2

may be a pair of Fourier cosine and sine modes at the
natural frequency ωu of the unactuated flow. Similarly,
the second pair u3,4 may be Fourier cosine and sine
modes at the actuated frequency ωa under periodic forc-
ing. The dominant POD or DMD modes of unactu-
ated and forced flow are good candidates [48]. Filter-
ing techniques may be equally suited [268]. The shift
modes u5,6 are more difficult as the unstable steady so-
lution us is generally not accessible from experiments.
However, base-flow changes from modulations and un-
forced transients may provide u5, for instance via a
POD of low-pass filtered flows [257]. Now, us may be
inferred from the fixed point of a calibrated Galerkin
model with the averaged flow u0 and the expansion
modes u1,2,5. The second shift mode u6 points from
us to the average actuated flow 〈ua〉. An orthonormal-
ization completes the construction of the basis.

• Coefficients of the dynamical system — The 4D-Var method
is a powerful technique that is generally applicable for
parameter identification [269]. One significant advan-
tage is that no time-derivative information from flow
snapshots is needed. One actuation off-on-off transient
(from unforced to forced to unforced state) can provide
information about unforced and periodically forced so-
lutions as well as growth-rates and frequencies. Gener-
ally, the parameter identification problem tends to be ill-
posed, i.e. significantly different dynamical system co-
efficients can yield similar Galerkin solutions. Hence,
a critical enabler is a regularization, i.e. a weak pe-
nalization of the difference from a reference dynamical
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system. This reference system may be obtained for a
Navier-Stokes-based Galerkin projection (ignoring the
third flow dimension for 2D PIV data) or from a simple
propagator calibration technique.

• Sensor-based estimation — Good sensor placement can
easily be inferred from the actuation mechanism. A
destabilizing sensor-based control, for instance, re-
quires knowledge of the phase of the forced structures
and the amplitude of the natural shedding for gain
scheduling. Developing more general techniques for
sensor optimization is a recent area of active research.
No generally applicable robust optimization strategy
has emerged yet (see Sec. 8).

• Control design — A control law for the model can eas-
ily be designed following conventional wisdom of con-
trol theory. However, any control design should respect
the narrow limitations of the model. For instance, the
generalized mean-field model can be stabilized in a tiny
fraction of the shedding period. The shed vortices in the
experiment, however, need a minimum time to leave
the observation domain. In particular, the model is only
applicable for slow transients with the design frequency
content. For most shear flows, the resolvable frequen-
cies are hard-coded by the wavelength of the vorticity
in the expansion modes and the convection of the mean
flow.

These recipes for model-based control design follow increas-
ingly powerful data-driven methods. The danger of over-
fitting needs to be mitigated by a cross-validation with data
not used for the parameter identification. The modeling
may also be based on first principles, i.e. a Navier-Stokes-
based Galerkin projection, subgrid turbulence closures, actu-
ation modes, deformable expansion modes and other auxil-
iary methods. This path provides additional physical insight
at the price of larger effort and the necessity of a more exten-
sive experience [270].

Reduced and least-order Galerkin models can provide a
crisp analytical description of the actuation mechanism and
thus guide the design of control laws. As such, they can
serve as light houses for terra incognita. However, the con-
struction of robust control-oriented models is more often an
art rather than a fool-proof methodology. By construction,
Galerkin models are elliptic, i.e. a local change of the flow
is immediately communicated via the expansion modes in
the whole domain. Moreover, Galerkin models can build
up unbounded fluctuation energy. Shear flows, however,
are hyperbolic, i.e. dominated by convection. Excited struc-
tures convect out the observation domain. Thus, the fluc-
tuation level is naturally stabilized. Galerkin models lack
this convective stabilization mechanism. This can be con-
sidered the root-cause of the narrow dynamic bandwidth of
Galerkin models. Another related challenge is the change
of flow structures under natural or actuated transients. In
simple cases, such as structures with dominant frequencies,
these changes may be tracked in deformable base-flow de-
pendent modes [271, 272]. In broadband turbulence, as in
turbulent jets, there is no rationale for such cure. Physically,
an evolving vortex configuration convects downstream and

it constitutes a significant challenge to robustly embed a rel-
evant ensemble of such vortex dynamics in a modal frame-
work.

Some challenges of Galerkin models can be avoided by
choosing a suitable sensor-based state space (see, e.g., Sec.
3). The structure of the linear, weakly nonlinear and mod-
erately nonlinear models has been derived purely from the
linear-quadratic structure of the Navier-Stokes equation and
from frequency filtering arguments. Hence, similar models
may be constructed from the sensor history. These sensor-
based models keep all relevant information which are acces-
sible in the control experiment and bypass Galerkin mod-
eling problems with the observation domain, the unknown
steady solution, base-flow dependent expansion modes, etc.
ERA/OKID is a powerful realization of this path for linear
dynamics (see Sec. 4.5.4).

6 Model-free control
Often, developing a detailed dynamical system model for a
given set of high-dimensional nonlinear phenomena may not
be the best use of time and resources. After an attractor has
been identified and dynamics painstakingly determined, ap-
plying control strategies will usually shift the attractor signif-
icantly, rendering models inaccurate. The obvious exception
is linear stabilization of a fixed point, whereby effective con-
trol makes the model more accurate. Alternatively, one may
apply adaptive or model-free approaches to control a com-
plex high-dimensional system.

There are a wide range of model-free control options,
and we explore a number of methods that have been widely
applied in turbulence control. First, open-loop forcing is per-
haps the most pervasive model-free control strategy, based
on its simplicity. Next, adaptive control may be used as a
slow parameter tuning feedback wrapped around a working
open-loop control to modify controller behavior in response
to changing environmental conditions. Extremum-seeking
control is among the most widely used adaptive controllers
for flow control. Third, in-time control may be achieved by
first specifying a given parameterized control structure, such
as PID control, and then employing tuning methodologies
to improve performance. Finally, machine-learning control
constitutes a growing collection of data-driven techniques for
structure identification and parameter identification of con-
trollers.

Machine learning is a rapidly developing field of com-
puter science whereby a complex system may be learned
from observational data, rather than first-principles mod-
eling [273, 274, 275, 276]. There is a tremendous poten-
tial to incorporate data-driven modeling techniques, espe-
cially for the control of high-dimensional complex systems,
such as turbulence. Machine learning control, the use of
machine-learning techniques to determine effective output–
input maps (i.e. the controller), is a relatively new innova-
tion [277]. The specific machine learning methods discussed
here include adaptive neural networks, genetic algorithms,
and genetic programming control.

Figure 20 provides an organization of these model-free
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Figure 20: Overview of model-free control methods discussed in Sec. 6. Model-free control involves the choice of control
law structure as well as the optimization of controller parameters.

control methods. In each method, the structure of the con-
trol law must be determined and the parameters identified
to optimize the control law. Many of the methods (open-
loop forcing, in-time control, and neural networks) specify
the structure of the control law, while other methods (adap-
tive control, gradient search, and genetic algorithms) iden-
tify optimal parameters once the structure has been identi-
fied. Thus, once a given structure has been assumed, there
is a choice of parameter identification algorithm. Among the
methods discussed here, genetic programming control is the
only method where both the structure and the parameters
of the control law are identified. Other important considera-
tions include whether or not the method adaptation or learn-
ing occurs predominantly online or offline, and whether the
parameter optimization finds local extrema or has the possi-
bility of exploring the global parameter space.

It is important to note that model-free control method-
ologies may be applied to numerical or experimental systems
with little modification. All of these model-free methods
have some sort of macroscopic objective function, typically
based on sensor measurements (past and present). The ob-
jective may be drag reduction, mixing enhancement, or noise
reduction, among others.

6.1 Open-loop forcing
Periodic forcing is widely used in turbulence control, largely
because its ease of implementation and the lack of the need
for a model of the flow [25]. Periodic forcing may be used to
modify the dominant frequency of a flow, resulting in a lock-
on with the forcing frequency. Alternatively, the forcing may
modify the broadband frequency content, exploiting nonlin-
ear frequency cross-talk.

In either case, open-loop forcing does not take advan-
tage of sensor measurements, including reference or distur-

bance measurements for feedforward control, and down-
stream sensors for feedback control. This limits the ability of
open-loop forcing to reject disturbances, adapt to slow varia-
tions in flow parameters, or compensate for un-modeled dy-
namics. Most importantly, open-loop strategies are unable to
stabilize unstable flows, regardless of the forcing strategy.

6.2 Adaptive control

6.2.1 Extremum-seeking control methodology

There are numerous adaptive control techniques, although
extremum-seeking control (ESC) [278, 279] has gained the
most traction in fluid dynamics. ESC is attractive for com-
plex systems because it does not rely on an underlying model
and it has guaranteed convergence and stability under cer-
tain well-defined conditions [278, 279]. Extremum-seeking
control may be applied to track local maxima of an objec-
tive function, such as mixing enhancement or drag reduc-
tion, despite disturbances and varying system parameters.
Although adaptive control may generally be implemented
in-time, it is overwhelmingly used in flow control as a slower
feedback tuning the parameters of a working open-loop con-
troller. There are a number of reasons for this, including
sensor and actuator bandwidth, the fact that turbulent fluc-
tuations may be viewed as a fast disturbance, and the fact
that many objective functions, such as mixing, require inte-
gration over a slow time-scale. However, this slow feedback
has many benefits, such as maintaining performance despite
slow changes to environmental conditions.

ESC is an advanced method of perturb-and-observe,
whereby a sinusoidal input perturbation is used to estimate
the gradient of an objective function J to be maximized (or
minimized). The objective function is typically based on sen-
sor measurements, s, although it ultimately depends on the
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Figure 21: Schematic illustrating the components of an
extremum-seeking controller. A sinusoidal perturbation is
added to the best guess of the input b, passing through the
plant, and resulting in a sinusoidal output perturbation. The
high-pass filter removes the DC gain and results in a zero-
mean output perturbation, which is then multiplied (demod-
ulated) by the same input perturbation. This demodulated
signal is finally integrated into the best guess b̂ for the opti-
mizing input b.

choice of input signal b, via the plant dynamics relating b to
s. Often, for extremum-seeking control, the variable b may
be a parameter that describes the actuation signal, such as
the frequency of periodic forcing.

A schematic of the extremum seeking control architec-
ture is shown in Fig. 21 for a single scalar input b, although
the methods readily generalize to vector-valued inputs b. A
schematic objective function J(b), for static plant dynamics,
is shown in Fig. 22.

In extremum-seeking control, a sinusoidal perturbation
is added to b̂, the best approximation of the input that maxi-
mizes the objective function:

b = b̂+M sin(ωt). (59)

This input perturbation passes through the system dynamics,
resulting in an output signal J that varies sinusoidally about
some mean value. To remove the mean, the output is high-
pass filtered, resulting in JHP. A simple high-pass filter is
represented in the frequency domain as

HP(ζ) =
ζ

ζ + ωHP
, (60)

where ζ is the Laplace variable, and ωHP is the filter fre-
quency, chosen to be slow compared with the perturbation
frequency ω. It is possible to multiply the high-pass filtered
output signal by the input sinusoid, resulting in a demodu-
lated signal ξ, which is mostly positive if the input b is to the

b̂

J

b̂ < b∗ b∗ b̂ > b∗

Figure 22: Schematic illustrating extremum-seeking control
on for a static objective function J(b). The output perturba-
tion (orange) is in phase when the input is left of the peak
value (i.e. b < b∗) and out of phase when the input is to the
right of the peak (i.e. b > b∗). Thus, integrating the product
of input and output sinusoids moves b̂ towards b∗.

left of the optimal value b∗ and which is mostly negative if b
is to the right of the optimal value b∗:

ξ = M sin(ωt)JHP. (61)

Finally, the demodulated signal ξ is integrated into b̂, the best
estimate of the optimizing value:

d

dt
b̂ = k ξ, (62)

so that the system estimate b̂ is steered towards the optimal
input b∗. Here, k is the integral gain, which determines how
aggressively the actuation responds to a non-optimal input.

The demodulated signal ξ measures the gradient of the
objective function, so that the algorithm converges more
rapidly when the gradient is larger. To see this, first assume
constant plant dynamics, so that J(s) is simply a function of
the input J(b) = J(b̂+M sin(ωt)). Expanding J(b) in the per-
turbation amplitudeM , which is assumed to be small, yields:

J(b) = J(b̂+M sin(ωt))

= J(b̂) +
∂J

∂b

∣∣∣∣
b=b̂

·M sin(ωt) +O(M2).

The leading-order term in the high-pass filtered signal is
JHP ≈ ∂J/∂b|b=b̂ ·M sin(ωt). Averaging ξ over one period
yields:

ξavg =
ω

2π

∫ 2π/ω

0

M sin(ωt)JHP dt

=
ω

2π

∫ 2π/2

0

∂J

∂b

∣∣∣∣
b=b̂

M2 sin2(ωt) dt

=
M2

2

∂J

∂b

∣∣∣∣
b=b̂

.
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Thus, for the case of trivial plant dynamics, the average sig-
nal ξavg is proportional to the gradient of the objective func-
tion J with respect to the input b.

In general, J may be time-varying and the plant relating
b to s may have nonlinear dynamics that operate on a faster
timescale than the perturbation ω, complicating the simplis-
tic averaging analysis above. This general case of extremum-
seeking control applied to a nonlinear dynamical system was
analyzed by Krstić and Wang in [278], where they devel-
oped powerful stability guarantees based on a separation of
timescales and a singular perturbation analysis. It is also pos-
sible to modify the basic algorithm outlined above by adding
a phase φ to the sinusoidal input perturbation in Eq. (61).
In [278], there was an additional low pass filter ωLP/(ζ+ωLP)
placed before the integrator to extract the DC component of
the demodulated signal ξ. Finally, there is an extension to
extremum-seeking called slope-seeking, where instead of a
zero slope, a specific slope is sought [279]. Slope-seeking is
preferred when there is not an extremum, as in the case when
control inputs saturate. Often extremum-seeking is used for
frequency selection and slope-seeking is used for amplitude
selection.

6.2.2 Examples of adaptive control in turbulence

Extremum-seeking has been widely applied in turbulence
control, largely because of its ease of use and equation-
free implementation. ESC was used in [280, 281] to reduce
the drag over a bluff-body in an experiment at moderate
Reynolds number (Re = 20, 000). The objective function
weighted drag reduction against energy expended by the ac-
tuation, a rotating cylinder on the upper trailing edge of the
backward facing step, to obtain efficient drag reduction.

In [282], ESC was used for separation control on a high-
lift configuration. The experiment consisted of spanwise
pressure sensors and pulsed jets on the leading edge of the
single-slotted flap for actuators. This work demonstrated en-
hanced lift over open-loop forcing, both at large angles of
attack where the flow was separated, and at moderate an-
gles of attack where flow remained attached. They use the
slope-seeking extension of ESC. This work also developed
both SISO and MIMO controllers.

ESC has also been used to control thermoacoustic modes
across a range of frequencies in an industrial scale, 4 MW gas
turbine combustor [283, 284]. It has also been utilized for
separation control in a planar diffusor that is fully turbulent
and stalled [285], and to control jet noise [286].

The ESC relies on a separation of timescales where the
system dynamics are the fastest, the periodic perturbation is
moderate, and the high-pass filter cut-off is slow. Changes
to the plant dynamics, either varying parameters or distur-
bances, are assumed to the the slowest timescale. It is pos-
sible to improve the performance of ESC in some instances
by adding additional filters and phase delays. For exam-
ple, extended Kalman filters were used as the filters in [287]
to control thermoacoustic instabilities in a combustor ex-
periment. The dramatic performance improvement of the
modified ESC algorithm from [287] is reproduced in Fig. 23.
Kalman filters were also used in [288] to reduce the flow
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Fig. 10. Spectra of acoustic pressure for the uncontrolled and the controlled case.

converges towards a second minimum at Kls = − 1.2 and ! = 8 ms.
Not surprisingly, the difference between the two optimal time
delays corresponds to half the period of the fundamental frequency
of the instability (1/2 · 94 Hz = 5.3 ms). At t = 170 s, the ESC also starts
from !0 = 6 ms,  and at t = 225 s, it starts once again from !0 = 5 ms,
thus, converging towards the first minimum.

Fig. 10 shows the spectrum of the acoustic pressure for the
uncontrolled and the controlled case. In the uncontrolled case dis-
tinct peaks at 94 Hz and higher harmonics can be seen. The peak
amplitude at 94 Hz is 157 dB. In the controlled case, this amplitude
is reduced by 35 dB. Due to the complete stabilization of the system
the higher harmonics also disappear.

6. Conclusion and outlook

The convergence speed of ESC can be improved by a more accu-
rate estimation of the local gradients. In this contribution no plant
dynamics were considered – the convergence was sped up by a

better gradient estimation of the plants static map  only. The clas-
sical algorithm uses a combination of high and low-pass filters for
gradient estimation. Here, extended Kalman filters were exploited
instead. In the SISO case, an EKF was employed to fit a tangential
line to the map  of the plant. It was  shown that for a correct esti-
mation of the gradients, the complete control input instead of the
perturbation signal should be used. By analyzing the observability
matrix of the EKF, an exact measure for the choice of the delay time
in the EKF was  found.

In the DISO case the EKF estimated the parameters of a tangential
plane that was  fitted to the map. In this way, the coupling of the
output to both inputs was  incorporated and a clearly more accurate
estimate of the gradients was obtained. In simulation it was shown
that

• the ESC that uses this EKF converges faster than the classical
algorithm when the same gain k is used in the integrators;

• the gain factor k can be increased to much larger values without
causing instability.

Using the EKF, a 50% reduction of the convergence time comparted
to the classical algorithm was  achieved.

In the simulations the influence of measurement noise was not
considered. A systematic examination would be interesting. It is
assumed that Kalman filter based ESC would again outperform the
classical algorithm.

As this contribution introduces the basic idea of an advanced
algorithm for gradient estimation in extremum seeking control, a
rigorous and lengthy proof of stability is omitted here. It will be
published elsewhere. However, the application of the algorithm
in a combustor test rig presented Section 5 and in other technical
setups (results not shown) corroborate a stable operation.

As stated in Section 3, the presented concept for gradient esti-
mation could easily be extended to multiple-input single-output
(MISO) and multiple-input multiple-output (MIMO) cases. Also,
higher order derivatives could be estimated using extended Kalman
filters. In the same way  as presented, this could be accomplished
by fitting quadratic or higher order functions to the map. With such
a gradient estimator, for example, the performance of algorithms
that use the second derivative for an adaptation of the perturbation
amplitude and integrator gain [14] could be improved. Further-
more, approaches for a compensation of the plants dynamic as
described in Section 2.1 could be combined with the presented
method for gradient estimation. Finally, advanced control algo-
rithms that use ESC on a higher hierarchal layer for the computation
of optimal operational points of a lower layer control structure [15],
might also benefit from the proposed gradient estimator.
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Appendix A. Parameters of the filters

All EKFs were run with a sampling time of "t = 10−3s. "t = "t/s
is the non-dimensional sampling time.

Section 2:
Classical algorithm: high- and low-pass filters of first order with

a corner frequency off fc = 0.5 Hz.

GHP(s) = s
s + 2#fc

GLP(s) = 1
1/(2#fc)s + 1

Figure 23: Acoustic pressure reduction in combustor exper-
iment with modified ESC algorithm. The main peak is re-
duced by about a factor of 60 when control is applied. Re-
produced from [287].

separation and increase the pressure ratio in a high-pressure
axial fan using an injected pulsed air stream. The use of a
Kalman filter improved the controller speed by a factor of
10 over traditional ESC. The implication is that the controller
may compensate for disturbances and changes in environ-
mental conditions that are 10 times faster than before.

The external perturbation used in ESC may be infeasi-
ble for some applications, such as optimizing aircraft control
surfaces for efficient flight. In [289], atmospheric turbulent
fluctuations were used as the perturbation for optimization
of aircraft control based on ESC. The strategy of using natu-
ral system perturbations for ESC is promising. ESC has also
been used for parameter tuning in PID controllers [290] as
well as to tune PI controllers to stabilize a model of nonlin-
ear acoustic oscillation in a combustion chamber [291].

6.3 In-time control
6.3.1 Control law parameterizations and tuning

methodologies

Often, the structure of a control law may be decided by an
expert in the loop with engineering intuition based on pre-
vious experience. The control structure is often chosen for a
combination of flexibility and simplicity, as in the ubiquitous
proportional-integral-derivative (PID) control:

b(t) = kP s(t) + kI

∫ t

t0

s(τ)dτ + kD
d

dt
s(t).

The PID control above is parameterized by three constants, kP ,
kI , and kD , the proportional, integral, and derivative gains.
When the controller is parameterized, as is PID control, it is
possible to tune the controller to improve performance and
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meet specifications (rise-time, bandwidth, overshoot, etc.) by
identifying locally or globally optimal parameters. Without
an underlying system model, there is tremendous freedom
in choosing these parameters. This parameter tuning may be
based on intuition, trial-and-error, or on a physical mecha-
nism, as in the case of opposition control in the next section.

6.3.2 Case study: opposition control in wall turbu-
lence

In 1994, Choi, Moin, and Kim introduced a method of ac-
tive feedback control to reduce the drag in a fully developed
turbulent boundary layer flow [43]. In DNS, a 20-30% reduc-
tion in drag was achieved by imposing a surface boundary
condition (blowing/suction) to oppose the effect of vortices
in the near wall region. This opposition control was an early
model-free control approach based on intuition about flow
physics and drag mechanisms, rather than a mathematical
model. [27, 208, 40, 292, 10] provide reviews of opposition
control. One of the earliest experimental demonstrations of
active feedback suppression was Liepmann and Nosenchuck
in 1982 [18], where they canceled T-S waves using a down-
stream heating element and a phase shifted measurement
feedback. This may be seen as a predecessor of the popu-
lar opposition control, and the experiments were quite suc-
cessful, resulting in a significant increase in the transitional
Reynolds number for a flat plate experiment.

There are many extensions to opposition control. The
best performance of skin-friction reduction [43] was achieved
when sensors were located at y+ = 10, which is not nearly
as practical as measurements at the wall. This led to the
development of a neural network architecture to optimize
the mapping from surface measurements to opposition con-
trol [22], as shown in Fig. 24. A drag reduction of about 20%
was achieved in a low Reynolds number turbulent channel
flow. Some studies suggest that opposition control does not
scale favorably with increasing Reynolds number [293], al-
though there are studies suggesting significant potential drag
reduction, even at high Reynolds numbers, assuming perfect
damping of near-wall fluctuations [294]. The method of op-
position control is also strongly dependent on the amplitude
and phase of the actuation response [295].

Opposition control has also been generalized to utilize
piston actuation [296], and has been used to reduce drag in a
DNS of turbulent channel flow using wall deformation [297].
Drag reduction has also been achieved in DNS of pipe flow
using opposition control [298, 299], and using sub-optimal
control [300]. Opposition control has also been investigated
in the context of stochastically forced non-normal dynamical
systems [301].

Recently opposition control has been explained in the
context of resolvent analysis, whereby the Fourier trans-
formed Navier-Stokes equations are viewed as an input–
output system [302]. In this approach, the convective terms
are viewed as the input and the turbulent flow field is the
output, and a singular value decomposition (SVD) of the
resolvent operator indicates the forcing that results in the
largest gain in the response.

y

y

z

z

Figure 24: Illustration of the benefits of opposition control
(bottom) in contrast to unforced system (top). Contours of
streamwise vorticity are plotted in a cross-flow plane. Neg-
ative contours are indicated with dashed lines. Reproduced
with permission from Lee, Kim, Babcock and Goodman [22].
Copyright 1997, AIP Publishing LLC.

6.4 Neural network based control
Many model-based open-loop controllers in fluid dynamics
are based on the inversion of a model, as discussed in Sec. 4.2.
When an input-output function is not well-approximated in a
simple linear or quadratic framework, it is often necessary to
employ more sophisticated methods, such as artificial neural
networks (ANNs). ANNs are a construct in machine learning
that attempts to mimic the computational flexibility observed
in the brains of animals. In particular, a number of individual
computational components, or neurons, may be connected in
a graph structure with inputs and outputs. By exposing this
network to example stimulus, it is possible to train the net-
work to perform complex tasks, though either supervised or
unsupervised reinforcement learning. There is a tendency
to use a gradient search to determine network weights, al-
though there are many variations in the literature [303, 304].

In turbulence, there are examples where neural net-
works have been used for both modeling and control [305,
306, 248]. As mentioned earlier, neural networks have also
been used to optimize opposition control [22]. Interest-
ingly, the POD, also known as principal components analysis
(PCA), may be trained in a neural network [307]. The neural
network framing of PCA also allows for powerful nonlinear
generalizations [308, 309]. Recent work has demonstrated
the application of network-theoretic tools more generally to
fluid modeling [310], resulting in a graph theoretic model of
the vortex dynamics in a flow.
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In general, neural networks are adaptable and may ap-
proximate any input–output function to arbitrary precision
with enough layers and enough training. However, they are
often susceptible to local minima and may result in overfit
models when trained on too much data. In recent years, sup-
port vector machines (SVMs) [158, 159, 160] have begun to re-
place neural networks for a number of reasons. First, SVMs
result in global solutions that have simple geometric inter-
pretation. SVMs also scale favorably for systems with very
large input spaces. However, multi-layer neural networks
have seen a recent resurgence in activity with the associated
field of deep learning [311, 312, 313]. The fact that these algo-
rithms have been developed to scale to extremely large data
sets (i.e., by Google, etc.), is promising for the mining of high-
Reynolds number turbulence data.

6.5 Genetic algorithm based control
An important class of machine learning algorithms are based
on evolutionary algorithms that mimic the process of opti-
mization by natural selection, whereby a population of in-
dividuals compete in a given task and rules exist to propa-
gate successful strategies to future generations. Evolution-
ary algorithms are typically employed to find near globally
optimal solutions when there are multiple extrema and gra-
dient searches won’t work. They may also provide an alter-
native to the extremely expensive Monte Carlo search algo-
rithm, which does not scale well with high-dimensional pa-
rameter spaces. In this section, evolutionary algorithms are
employed for parameter identification of controllers in the
genetic algorithm (GA) [314, 315, 316]. In the next section,
evolutionary algorithms are employed for both parameter
and structure identification of controllers in genetic program-
ming (GP) [317, 318]. The implementation of evolutionary
algorithms for engineering control is relatively recent [277].

In both genetic algorithms and genetic programming,
an initial generation of candidate parameters or controllers,
called individuals, is randomly populated and the perfor-
mance of each individual is quantified by some cost func-
tion for that particular simulation or experiment. The cost
function balances various design goals and constraints, and
it should be minimized by an effective individual. In the
case of genetic algorithms, the individuals correspond to pa-
rameter values to be identified in a parameterized model, as
shown in Fig. 25. In genetic programming, the individual
corresponds to both the structure of the control law, and the
specific parameters, as shown in Fig. 27.

After an initial generation is populated with individu-
als, the performance of each individual is assessed based on
their performance on the relevant cost function. Individuals
resulting in a lower cost function have a higher probability
of being selected for the next generation. Successful individ-
uals advance to the next generation according to a handful of
rules, or genetic operations:
• Elitism (optional) – a given number of top-performing

individuals are copied directly to the next generation.
Elitism guarantees that the best individuals of the next
generation will not perform worse in a noise-free envi-
ronment.
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Figure 25: Illustration of a possible binary representation of
parameters used in genetic algorithms. This example has two
parameters, each represented with a 3-bit binary number.

• Replication – a statistically selected individual is copied
directly to the next generation. Replication, also called
(asexual) reproduction in GP, has a positive memory
function.

• Cross-over – two statistically selected individuals ex-
change randomly selected values or structures and then
advance to the next generation. Cross-over has an ex-
ploitation purpose and tends to breed better individu-
als.

• Mutation – some portion of a statistically selected indi-
vidual is modified with new values or structures. Muta-
tion has an explorative function as it can discover better
minima of the cost function.

The top-performing individuals from each generation are ad-
vanced to the next generation using these four genetic oper-
ations, and a handful of new random individuals are added
for variety. This is illustrated conceptually for the genetic al-
gorithm in Fig. 26. These generations are evolved until the al-
gorithm converges or performance is within a desired range.

There are no guarantees that the evolutionary algo-
rithms will converge, although they have been successful in
a wide range of applications and may converge to a nearly
globally optimal solution. There are a number of choices that
can improve the performance and convergence time of these
algorithms. For example, the number of individuals in a gen-
eration, the number of generations, the rate of each genetic
operation and the schedule for advancing top-performers all
determine the quality of solution and speed of convergence.

Genetic algorithms generally involve a large-scale pa-
rameter identification in a possibly high-dimensional space.
Thus, these methods are typically applied to tune control
laws with pre-determined structure. Early efforts in using
machine learning for flow control involved the application of
genetic algorithms for parameter optimization in open-loop
control [305]. Applications included jet mixing [319], opti-
mization of noisy combustion processes [320], wake control
and drag reduction [321, 322], and drag reduction of linked
bodies [323]. These early genetic algorithms optimized cost
functions by specifying input forcing parameters without
taking into account sensor feedback. However, the method
was also applied to tune the parameters ofH∞ controllers in
a combustion experiment [324].
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Figure 26: Genetic operations are used to advance generations of individuals in genetic algorithms. Operations are elitism
(E), replication (R), crossover (C), and mutation (M). For each individual of generation k + 1, after the elitism step, a genetic
operation is chosen randomly according to a pre-determined probability distribution. The individuals participating in this
operation are selected from generation k with probability related to their fitness (e.g., inversely proportional to the cost
function).

6.6 Genetic programming control

Genetic programming (GP) [318, 317] achieves both struc-
ture and parameter identification of input–output maps us-
ing evolutionary algorithms. In genetic programming con-
trol (GPC), GP is used to iteratively learn and refine a non-
linear mapping from the sensors to the actuators to achieve
some control objective. The resulting control law is deter-
mined by sequential mathematical operations on combina-
tions of sensors and constants, which may be represented in
a recursive tree structure where each branch is a signal and
the merging points denote a mathematical operation, as illus-
trated in Fig. 27. The sensors and constants are the “leaves”,
and each subsequent merging of branches results in a more
finely tuned mapping. The “root”, where all branches even-
tually merge, is the signal that is fed into the actuation.

The same evolutionary operations of elitism, replication,
cross-over, and mutation, described in the previous section,
are used to advance individuals across generations in genetic
programming. These operations are shown in Fig. 28 for ge-
netic programming function trees. The probability of each
operation is chosen to balance exploration with exploitation.

Recently, genetic programming control has been applied
on a set of benchmark turbulence control experiments that
exhibit various levels of complexity [325, 326, 327, 328, 264,
262]. The interaction of the genetic programming control
paradigm with a dynamical system is illustrated in Fig. 29.
It is important to reiterate that the methods are based on ge-
netic programming so that both control structure and param-
eters are identified, as opposed to genetic algorithms, which
are useful for parameter optimization only. These examples
demonstrate the ability of machine-learning control using ge-
netic programming to produce desired macroscopic behavior
(e.g., drag reduction, mixing enhancement, etc.) for a variety
of flow configurations. These flow configurations include a

Other References
• APS DFD 2008, DMD[443]

• compressed DMD (Mathelin) [444]

• Willcox [445, 446, 447, 448, 449]

• K. Breuer [450, 451, 452, 453, 454]

• Videler et al (science and nature bio-flight) [455]

• Daniel [456] and Spohnberg

• Moss bat [338, 337]

• Dickinson [333] [335, 327? ? ] , [326]

• Wang [328]

• [330], [331]

Network theory references:

• Sam and Aditya [457]

• Eurika and Bernd [379]

• Network control refs[458, 459, 460, 461, 462? , 463]

• More refs [464, 465, 466, 467, 468, 469]

• Mesbahi work [470]

• Network science in general

– Small-world networks [471], Scale-free net-
works [472, 473], Universality of networks [474]

– Network review paper [475]

– All scale-free networks are sparse [476]

There have been many powerful advances in network con-
trol theory surrounding multi-agent systems in the past two
decades. In particular, networks are often characterized by a
large collection of individuals (represented by nodes), that
each execute their own set of local protocols in response
to external stimulus. This analogy holds quite well for a
number of large graph dynamical systems, including ani-
mals flocking [458, 477], multi-robotic cooperative control
systems [469], sensor networks [467, 463], biological regula-
tory networks [478, 479], and the internet [462, 460], to name
a few. Similarly, in a fluid we may view packets of vor-
ticity as nodes in a graph that move collectively according
to global rules (i.e., governing physical equations) based on
local rules (diffusion, etc.) as well as their external inputs
summed across the entire network (i.e., convection due to in-
duced velocity from the Biot–Savart law).

In these large multi-agent systems, it is often possible to
manipulate the large-scale behavior with leader nodes that
enact a larger supervisory control protocol to create a system-
wide minima that is favorable [458, 470, 480]. The fact that
birds and fish often act as local flows with large-scale coher-
ence, and that leaders can strongly influence and manipulate
the large-scale coherent motion [458, 477], is promising when
considering network-based fluid flow control.

There have been recent advances in understanding
when such a network is controllable and with how many
leader or “driver” nodes in the system [480]. A key observa-
tion in this line of research is that large, sparse networks with

heterogeneous degree distributions4 (such as sparse, scale-
free turbulence networks), are especially difficult to control.
In particular, the number of driver nodes (or leaders) may be
quite large for these systems, as compared with a regular or
random graph with more homogeneous degree distribution.

Degree to which network is controllable [481]

Extremum-seeking mathematics

b = b̂ + M sin(!t) (55)

Then, this signal passes through the system, and the out-
put J(s) also has a sinusoidal perturbation at frequency !.
To remove the DC component of this signal, the output is
sent through a high-pass filter of the form h(⇣) = ⇣/(⇣ +!f ),
where !f is the cutoff frequency.

Finally, the high-pass filtered signal is multiplied by the
original perturbation sin(!t + �) with a possible additional
phase � to demodulate the signal. The result is a signal that
is either mostly positive when b is left of the optimum point
b⇤ and a signal that is mostly negative when b is to the right
of the optimum point. This demodulated signal is then inte-
grated into our best estimate b̂ of b⇤, driving the input signal
towards the optimal value.

The theory is relatively straightforward to analyze in the
case of no dynamics and a quadratic cost function. To extend
this to systems with nonlinear dynamics, Wang and Krstic
leveraged singular perturbation theory and a separation of
time-scales argument.
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4The degree distribution of a network is the distribution of how
many other nodes each node is connected to; this is often visualized
as a histogram. Recent results indicate that all scale-free networks
are inherently sparse, with heterogeneous degree distribution.
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There have been recent advances in understanding
when such a network is controllable and with how many
leader or “driver” nodes in the system [480]. A key observa-
tion in this line of research is that large, sparse networks with
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free turbulence networks), are especially difficult to control.
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quite large for these systems, as compared with a regular or
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each execute their own set of local protocols in response
to external stimulus. This analogy holds quite well for a
number of large graph dynamical systems, including ani-
mals flocking [458, 477], multi-robotic cooperative control
systems [469], sensor networks [467, 463], biological regula-
tory networks [478, 479], and the internet [462, 460], to name
a few. Similarly, in a fluid we may view packets of vor-
ticity as nodes in a graph that move collectively according
to global rules (i.e., governing physical equations) based on
local rules (diffusion, etc.) as well as their external inputs
summed across the entire network (i.e., convection due to in-
duced velocity from the Biot–Savart law).

In these large multi-agent systems, it is often possible to
manipulate the large-scale behavior with leader nodes that
enact a larger supervisory control protocol to create a system-
wide minima that is favorable [458, 470, 480]. The fact that
birds and fish often act as local flows with large-scale coher-
ence, and that leaders can strongly influence and manipulate
the large-scale coherent motion [458, 477], is promising when
considering network-based fluid flow control.

There have been recent advances in understanding
when such a network is controllable and with how many
leader or “driver” nodes in the system [480]. A key observa-
tion in this line of research is that large, sparse networks with

heterogeneous degree distributions4 (such as sparse, scale-
free turbulence networks), are especially difficult to control.
In particular, the number of driver nodes (or leaders) may be
quite large for these systems, as compared with a regular or
random graph with more homogeneous degree distribution.

Degree to which network is controllable [481]

Extremum-seeking mathematics

b = b̂ + M sin(!t) (55)

Then, this signal passes through the system, and the out-
put J(s) also has a sinusoidal perturbation at frequency !.
To remove the DC component of this signal, the output is
sent through a high-pass filter of the form h(⇣) = ⇣/(⇣ +!f ),
where !f is the cutoff frequency.

Finally, the high-pass filtered signal is multiplied by the
original perturbation sin(!t + �) with a possible additional
phase � to demodulate the signal. The result is a signal that
is either mostly positive when b is left of the optimum point
b⇤ and a signal that is mostly negative when b is to the right
of the optimum point. This demodulated signal is then inte-
grated into our best estimate b̂ of b⇤, driving the input signal
towards the optimal value.

The theory is relatively straightforward to analyze in the
case of no dynamics and a quadratic cost function. To extend
this to systems with nonlinear dynamics, Wang and Krstic
leveraged singular perturbation theory and a separation of
time-scales argument.
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Figure 27: Illustration of function tree representation used
in genetic programming.

generalized mean-field model [328], the mixing layer with
pulsed actuation jets on the splitter plate [326, 262, 328, 264],
the backward facing step controlled by a slotted jet [327, 264],
and and a turbulent separated boundary layer [264].

The first experimental demonstration of machine-
learning control employing genetic programming was per-
formed in a mixing-layer with a velocity ratio of approxi-
mately 1:3 — both for laminar and turbulent boundary layers
[262]. The flow was actuated with 96 equidistantly spaced
streamwise facing jets and sensed with a rake of 24 equidis-
tantly spaced hot-wire sensors downstream. MLC yields a
control law which increases the mixing-layer width by 67%.
Thus, MLC performs 20% better as compared to the best peri-
odic forcing while simultaneously reducing the volume flux
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ence, and that leaders can strongly influence and manipulate
the large-scale coherent motion [458, 477], is promising when
considering network-based fluid flow control.

There have been recent advances in understanding
when such a network is controllable and with how many
leader or “driver” nodes in the system [480]. A key observa-
tion in this line of research is that large, sparse networks with

heterogeneous degree distributions4 (such as sparse, scale-
free turbulence networks), are especially difficult to control.
In particular, the number of driver nodes (or leaders) may be
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In these large multi-agent systems, it is often possible to
manipulate the large-scale behavior with leader nodes that
enact a larger supervisory control protocol to create a system-
wide minima that is favorable [458, 470, 480]. The fact that
birds and fish often act as local flows with large-scale coher-
ence, and that leaders can strongly influence and manipulate
the large-scale coherent motion [458, 477], is promising when
considering network-based fluid flow control.

There have been recent advances in understanding
when such a network is controllable and with how many
leader or “driver” nodes in the system [480]. A key observa-
tion in this line of research is that large, sparse networks with

heterogeneous degree distributions4 (such as sparse, scale-
free turbulence networks), are especially difficult to control.
In particular, the number of driver nodes (or leaders) may be
quite large for these systems, as compared with a regular or
random graph with more homogeneous degree distribution.
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grated into our best estimate b̂ of b⇤, driving the input signal
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The theory is relatively straightforward to analyze in the
case of no dynamics and a quadratic cost function. To extend
this to systems with nonlinear dynamics, Wang and Krstic
leveraged singular perturbation theory and a separation of
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trol theory surrounding multi-agent systems in the past two
decades. In particular, networks are often characterized by a
large collection of individuals (represented by nodes), that
each execute their own set of local protocols in response
to external stimulus. This analogy holds quite well for a
number of large graph dynamical systems, including ani-
mals flocking [458, 477], multi-robotic cooperative control
systems [469], sensor networks [467, 463], biological regula-
tory networks [478, 479], and the internet [462, 460], to name
a few. Similarly, in a fluid we may view packets of vor-
ticity as nodes in a graph that move collectively according
to global rules (i.e., governing physical equations) based on
local rules (diffusion, etc.) as well as their external inputs
summed across the entire network (i.e., convection due to in-
duced velocity from the Biot–Savart law).

In these large multi-agent systems, it is often possible to
manipulate the large-scale behavior with leader nodes that
enact a larger supervisory control protocol to create a system-
wide minima that is favorable [458, 470, 480]. The fact that
birds and fish often act as local flows with large-scale coher-
ence, and that leaders can strongly influence and manipulate
the large-scale coherent motion [458, 477], is promising when
considering network-based fluid flow control.

There have been recent advances in understanding
when such a network is controllable and with how many
leader or “driver” nodes in the system [480]. A key observa-
tion in this line of research is that large, sparse networks with

heterogeneous degree distributions4 (such as sparse, scale-
free turbulence networks), are especially difficult to control.
In particular, the number of driver nodes (or leaders) may be
quite large for these systems, as compared with a regular or
random graph with more homogeneous degree distribution.

Degree to which network is controllable [481]

Extremum-seeking mathematics

b = b̂ + M sin(!t) (55)

Then, this signal passes through the system, and the out-
put J(s) also has a sinusoidal perturbation at frequency !.
To remove the DC component of this signal, the output is
sent through a high-pass filter of the form h(⇣) = ⇣/(⇣ +!f ),
where !f is the cutoff frequency.

Finally, the high-pass filtered signal is multiplied by the
original perturbation sin(!t + �) with a possible additional
phase � to demodulate the signal. The result is a signal that
is either mostly positive when b is left of the optimum point
b⇤ and a signal that is mostly negative when b is to the right
of the optimum point. This demodulated signal is then inte-
grated into our best estimate b̂ of b⇤, driving the input signal
towards the optimal value.

The theory is relatively straightforward to analyze in the
case of no dynamics and a quadratic cost function. To extend
this to systems with nonlinear dynamics, Wang and Krstic
leveraged singular perturbation theory and a separation of
time-scales argument.
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trol theory surrounding multi-agent systems in the past two
decades. In particular, networks are often characterized by a
large collection of individuals (represented by nodes), that
each execute their own set of local protocols in response
to external stimulus. This analogy holds quite well for a
number of large graph dynamical systems, including ani-
mals flocking [458, 477], multi-robotic cooperative control
systems [469], sensor networks [467, 463], biological regula-
tory networks [478, 479], and the internet [462, 460], to name
a few. Similarly, in a fluid we may view packets of vor-
ticity as nodes in a graph that move collectively according
to global rules (i.e., governing physical equations) based on
local rules (diffusion, etc.) as well as their external inputs
summed across the entire network (i.e., convection due to in-
duced velocity from the Biot–Savart law).

In these large multi-agent systems, it is often possible to
manipulate the large-scale behavior with leader nodes that
enact a larger supervisory control protocol to create a system-
wide minima that is favorable [458, 470, 480]. The fact that
birds and fish often act as local flows with large-scale coher-
ence, and that leaders can strongly influence and manipulate
the large-scale coherent motion [458, 477], is promising when
considering network-based fluid flow control.

There have been recent advances in understanding
when such a network is controllable and with how many
leader or “driver” nodes in the system [480]. A key observa-
tion in this line of research is that large, sparse networks with

heterogeneous degree distributions4 (such as sparse, scale-
free turbulence networks), are especially difficult to control.
In particular, the number of driver nodes (or leaders) may be
quite large for these systems, as compared with a regular or
random graph with more homogeneous degree distribution.

Degree to which network is controllable [481]

Extremum-seeking mathematics
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Then, this signal passes through the system, and the out-
put J(s) also has a sinusoidal perturbation at frequency !.
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is either mostly positive when b is left of the optimum point
b⇤ and a signal that is mostly negative when b is to the right
of the optimum point. This demodulated signal is then inte-
grated into our best estimate b̂ of b⇤, driving the input signal
towards the optimal value.

The theory is relatively straightforward to analyze in the
case of no dynamics and a quadratic cost function. To extend
this to systems with nonlinear dynamics, Wang and Krstic
leveraged singular perturbation theory and a separation of
time-scales argument.
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to global rules (i.e., governing physical equations) based on
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In these large multi-agent systems, it is often possible to
manipulate the large-scale behavior with leader nodes that
enact a larger supervisory control protocol to create a system-
wide minima that is favorable [458, 470, 480]. The fact that
birds and fish often act as local flows with large-scale coher-
ence, and that leaders can strongly influence and manipulate
the large-scale coherent motion [458, 477], is promising when
considering network-based fluid flow control.

There have been recent advances in understanding
when such a network is controllable and with how many
leader or “driver” nodes in the system [480]. A key observa-
tion in this line of research is that large, sparse networks with

heterogeneous degree distributions4 (such as sparse, scale-
free turbulence networks), are especially difficult to control.
In particular, the number of driver nodes (or leaders) may be
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this to systems with nonlinear dynamics, Wang and Krstic
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time-scales argument.
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sent through a high-pass filter of the form h(⇣) = ⇣/(⇣ +!f ),
where !f is the cutoff frequency.

Finally, the high-pass filtered signal is multiplied by the
original perturbation sin(!t + �) with a possible additional
phase � to demodulate the signal. The result is a signal that
is either mostly positive when b is left of the optimum point
b⇤ and a signal that is mostly negative when b is to the right
of the optimum point. This demodulated signal is then inte-
grated into our best estimate b̂ of b⇤, driving the input signal
towards the optimal value.

The theory is relatively straightforward to analyze in the
case of no dynamics and a quadratic cost function. To extend
this to systems with nonlinear dynamics, Wang and Krstic
leveraged singular perturbation theory and a separation of
time-scales argument.
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4The degree distribution of a network is the distribution of how
many other nodes each node is connected to; this is often visualized
as a histogram. Recent results indicate that all scale-free networks
are inherently sparse, with heterogeneous degree distribution.
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Figure 28: Genetic operations are used to advance generations of functions in genetic programming.

by over 46% (see Fig. 30) [264]. In addition, the MLC per-
formance has been shown to be robust against large changes
of oncoming velocities implying a transition from laminar to
turbulent boundary layers. Also other experimental studies
with laminar and turbulent wall-bounded shear flows have
shown that MLC can significantly outperform the best open-
loop control and increase robustness against varying operat-
ing conditions [264, 327, 329].

The performance of genetic programming for turbu-
lence control is striking, providing robust performance in
extremely nonlinear regimes that are not amenable to tradi-
tional model-based or model-free control design. Yet, there
are a number of unexplored extensions of genetic program-

ming for the control of complex dynamical systems. First,
in addition to sensor measurements and constants, a modi-
fied GP algorithm could create nonlinear mappings on time-
delayed sensor measurements or measurements that have
been passed through linear time-invariant (LTI) filters. Sec-
ond, the inputs of a control law may consist of suitable time-
periodic functions. Thus, open-loop actuation may be opti-
mized. Third, the control law arguments may comprise sen-
sors and periodic functions so that GPC can choose between
open- and closed-loop control or combine them. Finally, it
will also be interesting to augment the machine-learning con-
trol to include reference tracking and disturbance rejection,
among other classical control methods.
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    Figure 29: Schematic of closed-loop feedback control using genetic programming for optimization. Various controllers in a
population compete to minimize a cost function J , and the best performing individual controllers may advance to the next
generation according to the optimization procedure on the right. (Modified from Fig. 4 of [264] with permission.)
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Figure 30: “Pseudo-visualizations of the TUCOROM experimental mixing layer demonstrator for three cases: (I) unforced
baseline (width W = 100%), (II) the best open-loop benchmark (width W = 155%) and (III) MLC closed-loop control (width
W = 167%). The velocity fluctuations recorded by 24 hot-wires probes are shown as contour-plot over the time t (abscissa)
and the sensor position y (ordinate). The black stripes above the controlled cases indicate when the actuator is active (taking
into account the convective time). The average actuation frequency achieved by the MLC control is comparable to the open-
loop benchmark.” The relative mixing cost function of the natural flow, open-loop forcing, and machine-learning control are
shown in (b), and the mixing layer is shown in (a), reproduced with permission from [262]. A lower cost function J indicates
improved mixing. Reproduced from [264] with permission of Thomas Duriez.
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7 Conclusions
Understanding turbulence has been a central engineering
challenge of the past century, with the clear goal of pas-
sively manipulating and eventually actively controlling tur-
bulence. Many advances in improved turbulence models
have resulted in devices that enable passive manipulation.
The focus has rapidly shifted from passive control of tur-
bulence to actively controlling it, and this will surely be a
central focus of engineering efforts during the present cen-
tury. Put simply, our ability to control and manipulate tur-
bulence will be a deciding factor in our ability to advance
key technologies, addressing challenges in energy, security,
transportation, medicine, and many other endeavors.

Our goal throughout this review has been to explore
the possibilities associated with turbulence control in various
contexts and for different problems. We have emphasized as-
pects of model complexity and resolution as well as control
logic and design objectives. In the current section, we sum-
marize this review from three perspectives: historical, prac-
tical, and industrial. In the next section, we point towards
exciting future directions that we believe will be particularly
impactful for closed-loop turbulence control.

As discussed throughout this review, there is not one
single method of turbulence control, just as there is not a sin-
gle type of turbulence. Fortunately, as difficult as it has been
to develop improved models of turbulence, control strategies
may be quite robust to model imperfections and uncertain-
ties. It was pointed out in [20] that models suitable for con-
trol may not be suitable for accurate prediction. Hopefully,
controlling turbulence will prove to be a more manageable
task than understanding it.

7.1 Historical perspective
Progress and challenges in turbulence control may be un-
derstood more clearly in a historical context. The story of
turbulence control is one of the oldest and richest chap-
ters in humans’ engineering history, marking great techno-
logical and theoretical strides along with ongoing struggles.
An in-depth treatment of this fascinating history is beyond
the scope of this review, although there are other excellent
sources [330, 331].

The first chapter of quantitative research in flow control
can be considered to be shape optimization. While Lilien-
thal optimized the wings of his gliders purely based on care-
ful experiments in the 1880’s, airfoil design has profited im-
mensely from potential flow theory around 1900. Joukowski
formulated his famous lift theorem for two-dimensional air-
foils in 1906 after visiting Lilienthal and observing his ex-
periments. Prandtl generalized the lift theory for finite
wings with his famous lifting line theory in 1923. Further
progress in quantitative shape optimization using potential
theory is associated with the names of Betz, von Kármán and
Theodorsen, to name a few. More recently, these achieve-
ments have been generalized for use in adjoint-based shape
optimization using the full Navier-Stokes equations.

The discovery of boundary-layer theory by Prandtl in
1904 has stimulated active control, as suction and blow-

ing were rapidly realized to change important boundary-
layer properties. The first experimental demonstrations in-
cluded stabilization of boundary layers with steady suction.
These efforts have enjoyed a thorough mathematical treat-
ment entering Schlichting’s famous book on boundary-layer
theory [332]. In the past century, many other forms of actua-
tors have been invented with continually increasing author-
ity and dynamic bandwidth [36]. Destabilizing control us-
ing unsteady periodic forcing was considered later for mix-
ing enhancements of shear flows [333].

In the 1940’s, the foundations of modern turbulence
theory were laid by Kolmogorov, Landau, Millionshtchikov,
Monin, von Neumann, Obhukov and Yaglom, to name only
a few [see, e.g., 334, 335]. Neither the energy cascade nor the
mathematical closure approaches have entered main-stream
flow control methodologies until now. Yet, the need for clo-
sures in nonlinear control design is increasingly realized as
an important grand challenge problem.

Around 1950, passive actuators were explored and opti-
mized. The vortex generator [336] for separation mitigation
is one prominent example. These developments are contin-
ued — hydrophobe surfaces for ships, riblets for airplanes
and spoilers on cars serving as prominent examples.

In the 1980’s, chaos theory has stimulated fluid mechan-
ics toward the search for universal transition scenarios, for
low-dimensional strange attractors [337] and for chaos con-
trol [338, 339]. The success of quantitative nonlinear dynam-
ics methods for turbulent flows has been limited. Yet, nonlin-
ear dynamics has entered fluid dynamics thinking with the
qualitative notions of strange attractors, domains of attrac-
tion, edge states, and bifurcations, just to name a few.

In the same period, the first closed-loop control experi-
ments were performed for the suppression of boundary layer
instabilities [18], for wake stabilization [19], for skin fric-
tion reduction of turbulent boundary layers [43], etc. The
first control designs were based on heuristic considerations,
like superposition of traveling waves and opposition control.
Rapidly, control theory has entered fluid mechanics [27, 212]
and is providing a solid foundation for model identification
and control design. Even the nomenclature, like ’plant’ for
actuated flow and ’order’ for the model dimension, is largely
borrowed from control theory.

In the late 1980’s, the foundation of many current
reduced-order models for flow control has been laid by the
pioneering POD model of wall turbulence [340], the snap-
shot method for POD [86, 188, 187], and other early work
on coherent structures [341, 342, 343]. This development of
control-oriented reduced-order models is attracting increas-
ingly many researchers with numerical and experimental
control demonstrations. At the same time, the challenges of
POD models are becoming more obvious. A minimum re-
quirement and challenge for model-based control design is
that the model describes unactuated and actuated states as
well as the transients between both. A more comprehensive
presentation is provided in [270].

Starting around 2000, the technological development of
microelectromechanical systems (MEMS) with actuators and
sensors of increasing performance [69] has stimulated the de-
velopment of more complex hierarchical control laws, based
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on globally coupled local sensing and control units. This area
is undergoing rapid development. The complexity of turbu-
lent dynamics has been partially addressed by a novel form
of model-free control design. The control laws have been cast
in the form of artificial neural networks with the pioneering
computational demonstrations in wall turbulence [22]. Cur-
rently many other machine-learning methods are entering
fluid mechanics for an increasing number of analysis, mod-
eling and control tasks.

There are two common and recurring themes in this his-
torical perspective on turbulence control. First, advances in
theory drive progress in control design. These theoretical
advances may involve first-principles understanding of in-
stabilities and turbulence itself. Additionally, theoretical ad-
vances in external fields, such as linear systems, control the-
ory, and dynamical systems, have all had a transformative
impact on the direction and progress of flow control efforts.

The next general rule is that whatever is possible on the
existing hardware will be fully exploited by the software.
Physical demonstrations of flow control have been necessar-
ily tied to advances in sensor and actuator hardware and to
growth in computational capabilities. With recent develop-
ments in micro manufacturing techniques, including MEMS,
many industrial applications of closed-loop flow control are
becoming increasingly feasible.

7.2 Current practices
Here we attempt to summarize some of the current “best
practices” gathered from success stories in the literature. Be-
cause of the mercurial nature of the field, this discussion may
be viewed as a work in progress. The specific control strat-
egy will vary depending on whether the goal is to minimize
or maximize a cost function, track a reference value of some
quantity, or stabilize an unstable steady state and reject dis-
turbances.

It is reasonable to start by assessing whether or not su-
perposition holds. If so, then it is possible to develop bal-
anced linear input–output models, either gray-box or black-
box, and then design optimal linear feedback controllers.
These controllers may be optimal in the sense of minimizing
the control expenditure, attenuating sensor noise, and reject-
ing disturbances while minimizing the error of the state to
some reference value. Alternatively, if model uncertainty is
large and stability margins are critical, then it is possible to
optimize the controller for robust performance. Linear con-
trol has been especially successful in delaying the transition
to turbulence, which involves stabilizing an unstable steady
state.

If superposition doesn’t hold, then the flow may be
dominated by oscillatory components. If there are a few
dominant frequencies in the flow, then it is possible to de-
velop a mean-field model and resulting nonlinear control
law. This strategy has been proven effective in suppressing
shedding behind bluff bodies.

If there are not strong, isolated oscillatory components,
but rather there is broad-band frequency cross-talk, then
open-loop control may be able to modify the spectrum to-
ward desirable specifications. It may be necessary to explore

the input parameter space to identify the most effective com-
bination of inputs for open-loop actuation. Once these input
directions are identified, an adaptive control algorithm, such
as extremum-seeking, may be applied to find a locally op-
timal open-loop forcing. Effective open-loop strategies may
then be emulated in closed-loop with added robustness.

A very general approach, including open- and closed-
loop control, is enabled by machine-learning methods.
Machine-learning control can be configured to yield either
open-loop or closed-loop control, depending on the choice
of inputs. Although the resulting controllers may approach
globally minimizing values of the cost function, there is no
guaranteed convergence, and depending on the dimension
of the input space, convergence may be slow. More work
is needed to extend MLC to include two-degree of freedom
reference tracking control to suppress disturbances via feed-
back.

The progress in turbulence control, both passive and ac-
tive, has been significant, as evidenced by the ability to re-
laminarize flows and reduce drag, to control separation, and
to modulate mixing. However, each of these three canoni-
cal flow control problems present unique challenges to large
scale industrial implementation, which in turn motivate new
opportunities for research. Note that the association of the
following three flows with corresponding control method-
ologies is not inclusive, but instead covers a large portion of
the cases in the literature.

7.2.1 Linear control and transition

Linear feedback flow control benefits from the most well-
developed theoretical foundations and a set of clear goals.
For instance, it is often used to stabilize unstable laminar
steady states and delay the transition to turbulence, reducing
drag. These techniques amount to a systematic approach to
identify and suppress unstable structures and disturbances
in the flow utilizing sensors and actuators. Many feedfor-
ward techniques in the optimal linear control of turbulent
boundary layers closely resemble opposition control, except
that future model predictions of disturbances are used to
cancel flow structures after they have been deformed and
convected with the flow. Feedback control offers better
robustness to unmodeled dynamics and disturbances,
although it is sensitive to time-delays which are inevitable in
convective flows, as it takes time for the effect of actuation to
reach downstream sensors. The limitations imposed by time
delays motivate the need for a denser array of sensors and
actuators for more complex convective flows, which in turn
motivate bio-inspired sensing and actuation along with local
computations.

7.2.2 Nonlinear control and separation

Nonlinear control presents a significant opportunity to
manipulate flows that are not close enough to a fixed point
for linear flow control. For example, massively separated
flows are in a fully nonlinear regime, and manipulation
of coherent structures requires an understanding of their
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Figure 31: Flow chart illustrating the hierarchy of active control approaches. This diagram is conservative in giving prefer-
ence to the most established techniques. If the task is optimization or minimization of measurement time, machine-learning
control may be an earlier branch. Top panel depicts a turbulent jet from Bradshaw, Ferris & Johnson [38].

nonlinear coupling. In contrast to linear control, which
involved suppressing structures, nonlinear control involves
redirecting some flow structures, possibly to suppress oth-
ers. The biggest issue for nonlinear flow regimes is the lack
of theoretical understanding of nonlinear turbulence models
and closures. Moreover, many tools from control theory
are developed for linear systems and do not generalize
to nonlinear problems. The need for improved nonlinear
reduced-order models and turbulence closures will be an

important area of turbulence research, facilitating advances
in turbulence control.

7.2.3 Model-free control and mixing

Effective linear control will suppress disturbances and bring
the flow state closer to the fixed point where a model was
developed. However, applying control to a nonlinear flow
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that is on an unsteady attractor, rather than a fixed point,
may significantly distort the attractor, rendering models in-
valid. It may be prohibitively difficult to develop models that
are sufficiently general to predict control responses. Instead
of developing detailed models that will then be rendered in-
valid by control, model-free approaches are promising when
it is desirable to change the nature of an attractor, for exam-
ple to increase mixing. The most challenging nonlinear prob-
lems are excellent candidates for advanced model-free tech-
niques. Data-driven methods, including compressive sens-
ing, machine learning, and uncertainty quantification, may
be increasingly effective in the development of control strate-
gies for highly complex, fully turbulent problems.

7.3 Industrial applications
There are many industrial research programs centered
around turbulence control, but it is not always clear how con-
trol results will scale to high Reynolds number flows. For
instance, how does the actuation velocity, energy input, etc.,
scale with the Reynolds number of the problem? In cases
where we do understand the scaling, such as the spatial and
temporal scales of flow perturbations for disturbance rejec-
tion through linear feedback control, the scaling is not favor-
able. Results suggest that at industrial Reynolds numbers,
a finer mesh of sensors and actuators with improved band-
width and more powerful computational capabilities will be
required for similar transition delay and drag reduction.

As a consequence of the large Reynolds numbers, indus-
trial flows are often exceedingly complex, with broadband
frequency cross-talk and many orders of magnitude scale
separation in space and time. It is entirely possible that data-
driven techniques such as machine-learning control method-
ologies will enable turbulence control in these situations be-
fore we are fully able to understand the mechanisms. How-
ever complex the flow, the multitude of industrial and de-
fense applications will continue to drive research develop-
ments in turbulence control for decades to come.

8 Future developments beyond
control theory

In the past, control theory has shaped flow control and sig-
nificantly influenced the path from open-loop to closed-loop
control. Flow control and control theory were both mature
disciplines with little synergy before the 1990s. After tech-
niques from mathematical control theory were embedded in
flow control, dramatic progress has been made. The lumi-
nary words of N. Wiener are apt in this situation: “The most
fruitful areas for the growth of the sciences were those which had
been neglected as a no-man’s land between the various established
fields” [76]. In the following, we sketch three mature disci-
plines which have not fully integrated into mainstream fluid
mechanics, but which are likely to dramatically improve the
complexity and performance of flow control in the future.

The first area includes advances in sensor and actuator
hardware, as well as principled or heuristic placement of sen-
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Figure 32: Schematic illustrating roadmap for future devel-
opment. We envision the synthesis of classical control the-
ory with data-driven methods for the development of hybrid
controllers. Both top-down and bottom-up approaches will
contribute to a better understanding of nonlinearities, which
will in turn contribute to the development of more effective
controllers.

sors and actuators in the flow. Recent developments in bio-
logically inspired sensing and actuation are motivated by the
extreme performance observed in biological turbulence con-
trol, and they remain promising for engineering flow con-
trol. Next, advances in data-driven modeling and control
are poised to leverage the growing movement in data sci-
ence. These new techniques include machine learning, com-
pressive sensing, and uncertainty quantification, all of which
have direct relevance for in-time closed-loop flow control.
Finally, developments in first-principles modeling and con-
trol of turbulence will remain a critical backbone of efforts
in flow control. These developments may include a common
control-theoretic framework generalizing linear systems the-
ory to handle various classes of flow nonlinearity, as well as
developments in turbulence closures. Combining bottom-up
(theoretical) advances in turbulence models and control the-
ory with top-down (data-driven) approaches will enable hy-
brid controllers with greater flexibility and robustness (see
Fig. 32). These directions are necessarily a product of the au-
thors’ experiences and biases, and there are certainly many
more fruitful directions that remain unlisted in this review.

8.1 Bio-inspired sensing and actuation
Sensors and actuators are the workhorses of active flow con-
trol. Advances in hardware will be a critical determining
factor in the ultimate success and adoption of turbulence
control in industry. These advances include smaller, higher-
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bandwidth, cheaper, and more reliable devices that may be
integrated directly into existing hardware, such as wings.
There have been many advances in actuator hardware, as
reviewed in [36] and discussed in Sec. 2.4. These have
included plasma actuators, microelectromechanical systems
(MEMS), fluidic oscillators [344, 345], synthetic jets, and zero-
net-mass-flux actuators, such as piezoelectric actuators. Ad-
vances in sensors, such as the nanoscale thermal anemome-
try probe (NSTAP) [346, 347, 348], are facilitating ever finer
measurements of turbulent systems. We expect that contin-
ued developments in sensing and actuation hardware will
continue to drive advances in turbulence control. In addi-
tion, we predict significant progress in the effective place-
ment of sensors and actuators for a given control objec-
tive. This progress should be marked by theoretical break-
throughs in the first-principles optimal placement as well as
improved heuristics for key engineering flows.

8.1.1 Cheap hardware and local computations

Active separation control has not been adopted in the auto-
mobile industry, in part because of low fuel prices and the
perception among automakers that drivers are unwilling to
pay the up-front cost for hardware upgrades. Reducing the
cost of control hardware, either through manufacturing ad-
vances or economies of scale, will be important to gain trac-
tion in the consumer automobile market.

Other markets, such as air travel or commercial ship-
ping, may be willing to bear upgrade costs for significant
improvements to fuel economy or improved range of op-
erability. However, modifying the design and manufacture
of an airplane wing is extremely costly and will likely re-
quire advances in the manufacture of embedded or surface-
laminated sensors and actuators. Because the smallest ed-
dies become smaller with increased flow velocity, transition
delay on a modern aircraft may involve a fine web of in-
tegrated sensors and actuators. Moreover, time-scales also
shrink with faster flows, and it may be necessary to perform
local computations in a neighborhood of the sensors and ac-
tuators. This will have a two-fold benefit: first, local com-
putations will greatly reduce the transfer of data associated
with a fine mesh of sensors, and second, local computations
will reduce the latency in a control decision.

These ideas are already being explored in the context of
bio-inspired engineering [349, 350, 351, 352, 353, 354, 355, 356,
357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368] and
bio-manipulation [369, 370, 371, 372, 373, 374, 375]. It is ob-
served that birds, bats, insects, fish, and swimming mam-
mals routinely harness unsteady and turbulent fluid phe-
nomena to improve their propulsive efficiency, maximize lift
and thrust, and enhance maneuverability [376, 377, 378, 379,
380, 381, 382, 383, 384, 385, 386, 387, 363]. They achieve this
performance with robustness to external factors and distur-
bances, rapid changes in flight conditions, such as gusts, and
even significant changes to body geometry.

Insect flight is particularly remarkable, since aerody-
namic timescales are faster than the time it takes for signal
transduction from the visual system to the central nervous
system [388]. In addition to centralized computations, lo-

cal computations are being performed in the shoulder mus-
cles and these decisions are fed directly to motor neuron out-
puts. Thus, the insect’s neural flight control system is largely
centered around the mechanosensory system, comprised of
sparsely distributed sensors that act on the fastest time scales
and provide the lowest latency [389, 390]. Nearly all fly-
ing insects contain microscopic embedded strain sensors in
their wings, called campaniform sensilla, along with other
mechanosensors, such as antennas and halters, which are
small passive wings that serve as gyroscopes [391]. Moths,
for example, have up to hundreds of these campaniform sen-
sors, more densely spaced at the wing base. Similarly, birds
sense flow disturbances with their feathers [392], and bats
with tiny hairs on the surfaces of their wings [393, 394, 395].

Biological systems suggest a strategy for sensing turbu-
lence based on a large number of relatively inaccurate or
noisy sensors, as opposed to a few accurate, reliable sensors.
In the correct estimation framework, utilizing the law of large
numbers, it is possible that many low-fidelity sensors may be
more accurate and robust in the aggregate than a few accu-
rate sensors. This strategy has already been employed in a
number of diverse settings, ranging from finance to optical
detection with cameras [396] to distributed sensor networks.

8.1.2 Sensor and actuator placement

As discussed above, sensor and actuator placement is of cen-
tral importance in turbulent flow control. This is especially
clear in the context of linear control, where the matrix C is
determined entirely by the sensor placement and type, and
the matrixB is similarly determined by the actuators. These
matrices, in conjunction with the dynamics A, determine to
what extent flow states are observable and controllable.

The optimal locations of a small number of actuators and
sensors were recently determined for theH2 optimal control
of the complex Ginzburg-Landau equation in [37]. In [397]
sensor/actuator placement was investigated in the context of
the cylinder wake, and both direct and adjoint modes were
used to determine regions of high sensitivity to disturbances.
Optimal actuation is also explored in the form of small up-
stream jets to delay the transition to turbulence in a pipe
flow [398, 399, 400]. As mentioned previously, sensor and
actuator placement was also investigated for a transitional
boundary layer [249].

Determining optimal sensor and actuator placement in
general, even for linear feedback control, is an important un-
solved problem. Currently, optimal placement can only be
determined using a brute-force combinatorial search, at least
with existing mathematical machinery. This combinatorial
search does not scale well to larger problems, and even with
Moore’s law, exponentially increasing computer power does
not grow quickly enough to help. Advances in compressive
sensing, however, may provide convex algorithms to almost
certainly find optimal sensor/actuator placement, under cer-
tain conditions. Ideas from compressive sensing have re-
cently been used to determine the optimal sensor locations
for categorical decision making based on high-dimensional
data [401] with applications in dynamic processes [402].
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8.2 Data-driven modeling and control
As researchers strive to make more complete measurements
and simulations of increasingly complex flows, we as a com-
munity find ourselves in a deluge of data. This burden of
data will only become more acute as sensor arrays are man-
ufactured with finer spatial and temporal resolution. Some
of the foundational techniques used in the analysis of big
data [403], such as dimensionally reduction and parallel com-
putation, were developed extensively in the fluids commu-
nity. However, many of the most promising recent tech-
niques have been largely applied to static data problems in
artificial intelligence and computer vision. There is a tremen-
dous opportunity ahead to embrace and innovate new tech-
niques in compressive sensing, machine learning, and other
data-driven methods applied to the rich dynamical system of
turbulence; data-driven methods are also being applied more
broadly in the aerospace industry [404]. For an overview of
data techniques applied to dynamical systems, see [405, 402].

8.2.1 Compressive sensing

Compressive sensing [406, 407, 408, 409, 410] has the po-
tential to be a disruptive technology in turbulence control,
marking one of the most important breakthrough in compu-
tational mathematics since the fast Fourier transform (FFT).
Compressive sensing allows complex, high-dimensional sig-
nals and states to be reconstructed from surprisingly few
measurements, as long as the high-dimensional signal is
sparse in some basis. Most natural signals are. Sparsity
means that the vector, written in a transformed basis, con-
tains mostly zeros. For instance, image and audio signals are
sparse in Fourier or wavelet bases, as evidenced by their high
degree of compressibility (e.g. JPEG and MP3 compression).

In fluid dynamics, signals of interest may represent flow
field snapshots with many degrees of freedom from particle
image velocimetry (PIV) [411] or the time-history of hot-wire
measurements in the wake of a turbulent flow. The first ex-
ample is analogous to an image, and the second example is
analogous to a multi-channel audio signal.

The conventional wisdom in signal processing and data
acquisition is that a signal must be sampled at twice the
rate of the highest frequency present, the so-called Shannon-
Nyquist sampling rate [412, 413], for perfect signal recon-
struction. However, when a signal is sparse in some basis,
meaning that its vector representation in those coordinates
contains mostly zeros, it is possible to relax this sampling rate
restriction. A reduction in the sampling rate may have a dra-
matic effect in bandwidth limited control applications.

A vector a ∈ RNa is K-sparse in a transformation basis
Φ ∈ RNa×Na if a = Φξ and ξ ∈ RNa has exactly K nonzero
elements; this means that a may be represented in a low-
dimensional subspace of Φ. Compressive sensing provides a
framework to determine the K nonzero coefficients in ξ, and
therefore to determine a, from the measurements s ∈ RNs :

s = Ca = CΦξ. (63)

The measurements (i.e. rows of C) must be incoherent
with respect to the columns of Φ, meaning that they
are not strongly correlated, and there must be Ns ≥

O(K log(Na/K)) measurements. Note that this is a signifi-
cant reduction in measurements when K � Na. For a signal
a that is sparse in the Fourier domain, Φ is an inverse dis-
crete Fourier transform (iDFT), and spatial or temporal point
measurements are incoherent, since they are broadband in
frequency. This is very convenient, since many signals of in-
terest are sparse in the frequency domain and point measure-
ments are realistic in many engineering applications.

Compressive sensing has recently been applied to re-
duce the data acquisition required in PIV systems [414, 415,
416, 417, 102]. Time-resolved PIV may be prohibitively ex-
pensive for high-speed, high-Reynolds number flows be-
cause of the multi-scale nature of turbulence. PIV systems are
often limited by the bandwidth of data transfer. Reducing the
spatial or temporal sampling rate using compressive sensing
may open up orders of magnitude more complex flows to
PIV analysis. Other advances in time-resolved PIV involve
using a Kalman smoother to combine a time-resolved point
measurement with non-time-resolved PIV data [135].

Before the advent of compressive sensing, finding the
K-sparse solution ξ to Eq. (63) involved a combinatorial
brute force search among all possible vectors. This is a non-
polynomial (NP) hard problem, meaning that the computa-
tional complexity does not scale as a polynomial of the size
of the problem Na. With compressive sensing, it is possi-
ble to find the K-sparse vector in polynomial time with high
probability using techniques in convex minimization [418,
419, 420, 421]. The ability to solve these problems in poly-
nomial time means that we will be able to solve proportion-
ally more challenging problems with the continued progress
of Moore’s law of exponential growth in computing power.
Recently, compressive sensing techniques have been applied
to the (previously) NP hard problem of sensor placement for
categorical discrimination in high-dimensional data [401].

Although compressive sensing has been extremely suc-
cessful in image processing, it has not been widely applied
to dynamical systems, with some notable exceptions [422, 423,
424, 425, 426]. In fact, fluid dynamics is one of the first fields
in dynamical systems to adopt compressive sensing tech-
niques. Compressive sensing and other sparsity-based ideas
have been used recently in the computation of the dynamic
mode decomposition (DMD) [427, 102, 428, 429]. In addition,
POD modes have been used as a data-driven sparsifying ba-
sis [430, 416, 431, 102]. Indeed, the application of dimension-
ality reduction and compressive sensing to dynamical sys-
tems is synergistic, since low-rank attractors facilitate sparse
measurements. Other applications of compressive sensing in
fluids include [432, 433, 434].

8.2.2 Machine learning

Machine learning (ML) comprises a set of tools that extend
classic dimensionality reduction techniques to automatically
generate models that both learn from and improve with more
data [274, 275, 276, 405]. In fluid dynamics, dimensionality
reduction techniques such as POD or DMD may be thought
of as library building. In ML, these low-rank libraries are
stored for each dynamic regime, and they may be used to
rapidly characterize a system. These models are used for cat-
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egorical decision, pattern recognition, high-dimensional re-
gression, occlusion inference in data with incorrect or miss-
ing values, and outlier rejection. Moreover, these methods
improve as more data is collected, and they may either be
trained by expert supervision or used in an unsupervised
context to elucidate underlying patterns that may not have
been readily apparent to a human investigators. Machine
learning offers a paradigm shift in modeling and control
based on engineering data, leveraging both human expertise
and the statistical power of a large sample size for quantifi-
ably improved decisions and diagnostics based on features
mined from high-dimensional data.

Turbulence control may be characterized by many dif-
ferent attractors in a small region of parameter space. With
classification protocols, it is possible to characterize under-
lying bifurcation parameters from relatively few measure-
ments of a complex system [430, 435, 436]. Once the system
is characterized, the high-level control system may jump to a
previously determined control strategy, which may be good
but suboptimal for the particular instantaneous parameters.
Then, feedback may be applied to reduce errors. If a new re-
gion is found that is not amenable to previous controllers, it
is characterized and incorporated into the library.

System identification may be thought of as a form of
machine learning, where training data is used to generate a
model based on observed patterns. It is hoped that the model
is valid on new inputs that were not used for training, pro-
viding a so-called cross-validation. Decreasing the amount
of data required for the training and execution of the model
is often important when a prediction or decision is required
quickly, as in turbulence control. Compressive sensing and
machine learning have already begun to be combined for
sparse decision making [437, 405, 431, 401, 402], which may
dramatically reduce the latency in a control decision. Many
of these methods involve clustering techniques, which are
a cornerstone of machine learning. Cluster-based reduced
order models (CROMs) are especially promising and have
recently been developed in fluids [438], building on cluster
analysis [439] and transition matrix models [440].

Turbulence control based on genetic programming has
had a number of recent successes in canonically challenging
flow control problems [325, 326, 327, 328, 264, 262]. These
advances motivate renewed effort to integrate aspects of ma-
chine learning and control theory. For instance, adding ref-
erence tracking and robust performance to machine-learning
control may provide the best of both strategies.

8.2.3 Uncertainty quantification and equation-free
methods

Although many engineering phenomena satisfy governing
equations, it is often the case that the high-level questions of
interest are far removed from first-principles analysis. More-
over, initial conditions, parameters, and even the equations
of motion may only be known with some certainty. As an
alternative to classical equation-based approaches, model-
free methods have emerged in the past decade and have
the potential to transform the control of complex systems.
Equation-free analysis [441, 442, 443, 444] and uncertainty

quantification (UQ) [445, 446, 447] are two crucial fields that
have direct relevance for turbulence modeling and control.

For instance, in fluid dynamics, DMD has been use-
ful for identifying important spatial-temporal coherent struc-
tures that are spatially correlated and share the same time dy-
namics (i.e., growth, decay, oscillation, etc.) [98, 99, 100, 101].
This method is purely data-driven, making it equally useful
for data from simulations and experiments. Moreover, a low-
order dynamical system is identified, which may be used for
short-time predictions and closed-loop feedback control to
shape the system dynamics towards a desired outcome. Re-
cently, DMD has been extended to disambiguate the internal
dynamics from externally applied control [195]. Other exten-
sions to DMD include video analysis [448], streaming data
sets [449] and data with noise [450].

Two of the defining characteristics of turbulent flows
are that they are chaotic and that it is difficult or impossi-
ble to measure every scale simultaneously with arbitrary pre-
cision. The inherent uncertainty in the measured flow state
may dramatically affect future predictions as the uncertainty
propagates through the dynamical system. This is especially
challenging when the dynamics are chaotic, as probabilis-
tic descriptions of the uncertainty will become stretched and
folded by the nonlinearity [451]. The field of uncertainty
quantification has arisen to characterize such systems. Gen-
eralized polynomial chaos (gPC) provides a modern perspec-
tive on an old technique [452], approximating the evolution
of stochastic dynamical systems through a Galerkin projec-
tion using a set of orthogonal polynomials. These polyno-
mials are chosen to describe the probability distribution of
uncertain quantities [445, 446, 447]. gPC can become quite
expensive for long-time evaluation of uncertain quantities,
because of the significant distortion of trajectories and proba-
bility densities. To address this, various extensions have been
developed, such as multi-element gPC [453], time-dependent
gPC [454], and gPC based on short-time flow-map composi-
tion [455]. There has been a recent explosion of interesting
methods for UQ [456] and stochastic dynamics [457, 458].

In addition, the finite-time Lyapunov exponent (FTLE)
has been a rapidly developing data-driven technique in the
analysis of time-varying fluid fields [459, 460, 461, 462, 463,
464, 465, 466]. Like DMD, this method only relies on velocity
field measurements, either from simulations or experiments.
FTLE analysis identifies time-varying coherent structures in
fluids that are analogous to stable and unstable manifolds.
Thus, FTLE provides a quantitative technique to visualize
flows and identify regions of separation, recirculation, dis-
persion, material attraction, and high sensitivity to pertur-
bations. This method has been used to analyze aortic blood
flows for predictions involving recirculation regions, separa-
tion, and stenosis [467]. FTLE has also been used to study
bio-propulsion [468, 469, 470], fluid mixing in large bodies
of water [471, 472, 473], and to understand turbulent struc-
ture [462, 463, 474, 466]. FTLE provides a measure of sensitiv-
ity, which is essential in the quantification and management
of uncertainty. Sensitivity and coherence are closely related
to the calculation of almost invariant sets [475, 476, 477], us-
ing set-oriented methods [478, 479], and to eigenvectors of
the Perron Frobenius operator.
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8.2.4 Design of experiments

Many of the data-driven techniques discussed above suggest
innovations in experimental design. Understanding what
measurements must be acquired to design models and con-
trollers from experimental data is an important part of tur-
bulence control. Uncertainty quantification and sensitivity
analysis can offer some guidance about what design factors
have the most impact on measurement quality, and where
the flow is most sensitive to actuation. Compressive sensing
may allow for improved bandwidth through a principled re-
duction in the spatial and temporal resolution of measure-
ments required for signal reconstruction. Machine learning
provides an exploratory protocol for actuating the system
into new and beneficial dynamic regimes.

8.3 Advanced nonlinear models, con-
trollers and closures

As discussed above, there may be serious limitations to
physics-based modeling of flows with strongly nonlinear dy-
namics. Consequently, model-based control will be chal-
lenged by the accuracy of the model. In addition, control de-
sign methods generally assume either a working linearized
model or a well understood nonlinearity. At the same time,
dramatic advances in data-driven methods, such as system
identification and machine learning, have produced power-
ful new tools in turbulence control. This trend is accelerated
by the tremendous global resource investment in machine
learning across all physical sciences. However promising
these new methods are, there will continue to be many com-
pelling reasons to develop improved nonlinear models, con-
trollers and closures. First, physics-based models are inter-
pretable and allow for the inclusion of expert human knowl-
edge. Second, understanding the fundamental reasons why
a given controller works is central in developing this human
intuition. Such intuition is critical when deciding on what
control strategy (hardware, logic, etc.) to employ in a new sit-
uation. Third, a physically interpretable model might lead to
a simple control law with one or a few easily tunable param-
eters. These first-principles models can be expected to de-
velop more slowly as the mathematical challenges are enor-
mous. Yet, they will undoubtedly remain a critical part of
engineering turbulence control. Hence, understanding of the
physical mechanisms underlying effective turbulence control
will remain a critical enabler — regardless of the control strat-
egy, lest we lose mastery of the machinery we employ.

There are a host of advanced modeling techniques, in-
cluding powerful generalizations of POD that are useful for
obtaining efficient parameterized models of complex turbu-
lent flows using high performance computation [480, 481,
482, 483]. The gappy POD method provides the ability to
sparsely sample a system and still evaluate the POD and
terms in the Galerkin projection [484, 485]. In addition, there
are reduced-basis methods for PDEs [486] and the associ-
ated discrete empirical interpolation method (DEIM) [487,
488, 489], which approximates nonlinear terms by evaluat-
ing the nonlinearity at a few specially determined points.
There have also been powerful advances in the filtering of

turbulent systems [490, 491, 492, 433]. Finally, robust con-
trol has also been used as a method of understanding un-
derlying nonlinear mechanisms in turbulence [493]. In ad-
dition, advanced measurement capabilities contribute to im-
proving our understanding of high Reynolds number turbu-
lent flows [494, 495].

These advanced models are broken into three critical
pieces — modeling, closure and control design — although
the true division may be more subtle. First, nonlinear model
identification needs to be advanced comprising both struc-
ture and parameter identification. Significant progress has
been made with 4D VAR methods [496, 497]. Second, tur-
bulence closures have always been a critical part of reduced-
order turbulence models. Yet, eddy-viscosity based subscale
models are too coarse to resolve critical frequency cross-talk
mechanisms. Closure schemes based on a Gaussian approxi-
mation [272], on a maximum entropy principle [498, 499, 500]
and on finite-time thermodynamics [501, 502, 503] hold cor-
responding promises. Finally, the nonlinear theory of control
needs to be significantly advanced. It is currently unclear
how nonlinear models and closures will be used by control
theorists, motivating the need for a common framework, like
the state-space and frequency domain framework in Sec. 4
for linear systems.

8.3.1 Graph-theoretic flow control

Advances in network science have recently been applied
with success in fluid systems [504], providing a new set of
mathematical techniques for complex systems. The result-
ing graph models may be based on snapshot clusters [438],
or on a sparsified graph model for the underlying vortex net-
work [310]. The integration of methods from network science
and network control theory in turbulence control is promis-
ing, especially since many network control techniques have
been developed to handle nonlinear systems.

The past two decades have marked numerous advances
in graph-theoretic control theory surrounding multi-agent
systems, and network science has experienced significant re-
cent attention [505, 506, 507, 508, 509]. Networks are of-
ten characterized by a large collection of individuals (rep-
resented by nodes), that each execute their own set of local
protocols in response to external stimulus [510]. This analogy
holds quite well for a number of large graph dynamical sys-
tems, including animals flocking [511, 512], multi-robotic co-
operative control systems [513], sensor networks [514, 515],
biological regulatory networks [516, 517], and the inter-
net [518, 519], to name a few. Similarly, in a fluid packets of
vorticity may be viewed as nodes in a graph that interact col-
lectively according to global rules (i.e., governing equations)
based on local rules (diffusion, etc.) as well as their exter-
nal inputs summed across the entire network (i.e., convection
due to induced velocity from the Biot–Savart law) [310].

In large multi-agent systems, it is often possible to ma-
nipulate the large-scale behavior with leader nodes that en-
act a larger supervisory control protocol to create a system-
wide minima that is favorable [511, 520, 521]. The fact that
birds and fish often act as local flows with large-scale coher-
ence, and that leaders can strongly influence and manipulate
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the large-scale coherent motion [511, 512], is promising when
considering network-based fluid flow control. Based on the
network-control methodology used to analyze schooling fish
and flocking birds [511, 512], there is an appealing goal of
schooling turbulence by collecting and harnessing distributed
multi-scale eddies into a collective organization, or commu-
nity, with favorable large-scale properties.

Recent work investigating the number of leader nodes
required for structural controllability of a network [521] sug-
gests that large, sparse networks with heterogenous degree
distributions4,such as scale-free turbulence networks, are es-
pecially difficult to control. In particular, the number of
driver nodes may be quite large for these systems, as com-
pared with a regular or random graph with more homoge-
neous degree distribution. However, full structural control-
lability of a turbulent vortex network is not necessarily a rea-
sonable or desirable goal. In fact, these results are consistent
with physical intuition that controlling every single turbu-
lent eddy would require immense control authority with dis-
tributed actuation over a number of spatial locations.

In flow control, especially for turbulent fluids, the goal
is not necessarily to control every minor eddy in the flow,
but rather to manipulate the base flow and large-scale coher-
ent structures that mediate quantities of interest (lift, drag,
etc.). In addition, practically, we are more interested in the
degree of controllability [522], rather than structural controlla-
bility, of large-scale vortical structures in order to manipulate
the base flow. Even with the goal of increasing mixing, which
involves increasing the level of turbulence, individual eddies
need not be controlled, but rather control should manipulate
the statistical distribution of eddies that determine dominant
energy balances in the fluid.

8.3.2 Markov model-based control

One elegant strategy comprising modeling, closures and
control design starts with the Liouville equation for the prob-
ability distribution [523]. The probability density p(a, t) of
Eq. (2a) evolves according to the Liouville equation

∂tp(a, t) +∇a · [f(a, b) p(a, t)] = 0,

where ∇a is the Nabla operator in the state space. The ele-
gance lies in the fact that this evolution equation is a linear
conservation equation for the probability distribution and
thus allows to take advantage of the sophisticated linear con-
trol design methods for nonlinear dynamics. In addition, the
probability distribution gives immediate access to engineer-
ing goals, like average drag, average lift or level of fluctua-
tion. Such averages are not provided by linear(ized) mod-
els. However, the challenge is that the Liouville equation
of the Navier-Stokes equation [524] is a functional equation
and thus computationally far more demanding than the orig-
inal equation. Yet, a suitable cluster-based phase-space dis-
cretization may reduce this Liouville equation down to a
low-dimensional linear Markov model [439, 438] providing

4The degree distribution of a network is the distribution of how
many other nodes each node is connected to. All scale-free networks
are inherently sparse, with heterogeneous degree distribution [508].

easy access to linear control design. Intriguingly, the adjoint
of the Liouville equation is related to the Koopman operator
[438, 525, 526]. This deep relation still waits to be exploited in
probability control. In summary, there are plenty of promis-
ing opportunities advancing nonlinear model-based control.
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ten, Siniša Krajnović, Jacques Lewalle, Kervin Low, Robert
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Nomenclature
A Matrix function of the dynamics
A0 Jacobian of dynamics at as

Ai Matrix of the quadratic nonlinearity
(A,B,C,D) Linearized state-space system

(Ad,Bd,Cd,Dd) Discrete-time system
(Ar,Br,Cr,Dr) Reduced-order model

(Â, B̂, Ĉ, D̂) Controller state-space system
a Model state
â Estimated model state
as Steady fixed point
b Actuation input
b∗ Optimal actuation
B Balancing transformation
C Controllability matrix

Cd Discrete-time controllability matrix
D Dissipation in TKE
D Discretization operator
E Expectation value
e Error signal

Fk Pre-filter for mixed sensitivity synthesis
f Dynamics
G Forcing in TKE
g Volume force
H Hankel matrix
H2 Hardy space with bounded two norm
H∞ Hardy space with bounded infinity norm
h Impulse response function
hk Volterra kernels
I Identity matrix
J Cost function
K Controller
Kd Disturbance feed-forward control
Kf Kalman filter
Kr Regulator
Kref Reference feed-forward control
K Turbulent kinetic energy (TKE)
kD Derivative control gain
kI Integral control gain
kP Proportional control gain
ki Gain of the Galerkin system
L Loop transfer function (L = PK)
L Laplace transform
lij Coefficients of the linear term in the

Galerkin system
M Amplitude of ESC input
MS Maximum peak of sensitivity function
m Output function
Na Number of states
Nf
a Number of fast states
Nb Number of actuators
Ns Number of sensors
Nr Number of reduced-order states
O Observability matrix

Od Discrete-time observability matrix
P Plant model
Pd Disturbance model
Pdes Desired plant
Pr Reduced-order plant model
P Production in TKE

Q LQR state weight
qijk Coefficients of the quadratic term in the

Galerkin system
R LQR actuation weight
Re Reynolds number
S Sensitivity function
Sd Sensitivity function to disturbance
Sref Sensitivity function to reference
s Sensor output
ŝ Estimated sensor output
T Complementary sensitivity
t Time

∆t Time step
U Left singular vectors from SVD
Ur First Nr columns of U
V Right singular vectors from SVD
Vr First Nr columns of V
Vd Disturbance covariance
Vn Noise covariance

u(x, t) Fluid velocity field
u′(x, t) Velocity fluctuations
us(x) Steady Navier-Stokes solution

uu(x, t) Unsteady component
u∆(x, t) Mean-flow deformation
ua(x, t) Actuation component

Wc Controllability Gramian
Wo Observability Gramian
w Exogenous inputs
wd Disturbance
wn Sensor noise
wr Reference input
X Unknown variable in Riccati equation
x Position vector
Y Unknown variable in dual Riccati equation

δ(t) Dirac delta function
µ Bifurcation parameters
ω Oscillation frequency
φ Phase variable
ζ Laplace variable
ξ Sparse vector for compressive sensing
τ Time delay
Σ Singular values from SVD

Σr First Nr ×Nr singular values
Φ Direct BPOD modes

Φr First Nr Direct BPOD modes
Ψ Adjoint BPOD modes

Ψr First Nr Adjoint BPOD modes
σu Growth rate associated with uu

ωu Frequency associated with uu

αu Manifold parameter associated with uu

αa Manifold parameter associated with ua

βu Nonlinear damping parameter
γu Nonlinear frequency parameter
σa Growth rate associated with ua

ωa Frequency associated with ua

σc Designed growth rate with control
βuu Nonlinear damping parameter of uu on uu

βau Nonlinear damping parameter of uu on ua

βua Nonlinear damping parameter of ua on uu

βaa Nonlinear damping parameter of ua on ua

γ∗∗ Nonlinear frequency parameter
(superscripts have analogous meaning as in β)
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[278] Krstić, M. and Wang, H. Stability of extremum seeking feedback for
general nonlinear dynamic systems. Automatica, 36:595–601, 2000.
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