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Abstract—We demonstrate that the integration of data-
driven machine learning strategies with adaptive control are
capable of producing an efficient and optimal self-tuning algo-
rithm for mode-locked fiber lasers. The adaptive controller, based
upon a multi-parameter extremum-seeking control algorithm, is
capable of obtaining and maintaining high-energy, single-pulse
states in a mode-locked fiber laser while the machine learning
characterizes the cavity itself for rapid state identification and
improved optimization. The theory developed is demonstrated
on a nonlinear polarization rotation (NPR) based laser using
waveplate and polarizer angles to achieve optimal passive mode-
locking despite large disturbances to the system. The physically
realizable objective function introduced divides the energy output
by the fourth moment of the pulse spectrum, thus balancing the
total energy with the time duration of the mode-locked solution.
Moreover, its peaks are high-energy mode-locked states that have
a safety margin near parameter regimes where mode-locking
breaks down or the multi-pulsing instability occurs. The methods
demonstrated can be implemented broadly to optical systems, or
more generally to any self-tuning complex systems.

Index Terms– Mode locked laser, fiber laser, adaptive control,
self-tuning

I. INTRODUCTION

Adaptive, robust, and self-tuning mode-locked lasers have
eluded practical implementation for more than two decades.
The ability to achieve these goals has the potential to revolu-
tionize both the commercial and research sectors associated
with ultra-fast science. This has led to recent efforts of
integrating state-of-the-art adaptive control algorithms [1] with
newly developed servo-control of optical components [2] to
demonstrate the first successful implementations of the long-
envisioned goal of robust, fully self-tuning fiber lasers [3],
[4]. In parallel, data-driven mathematical techniques, often
falling under the aegis of machine learning [5], [6], [7], [8],
are having a transformative impact across the engineering
and physical sciences. By combining such machine learning
methods with adaptive control, we demonstrate that robust and
self-tuning mode-locked operation can be achieved and fiber
laser performance efficiently optimized. To our knowledge,
this is the first demonstration in the optical laser context of the
integration of machine learning techniques with adaptive con-
trol, thus allowing for potentially transformative performance
gains in fiber lasers.

Concurrently, it is anticipated that within the next decade,
mode-locked fiber lasers will close the order-of-magnitude
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performance gap in comparison with their solid-state coun-
terparts [9], a performance gap largely imposed by the multi-
pulsing instability (MPI) [10], [11], [12]. Engineering design
concepts and/or materials are critical to pushing fiber tech-
nology forward. They can help circumvent the performance
limitations that are induced when laser cavities are pushed
to their limits in producing high-power and/or ultra-short
pulses. Interestingly, one of the most intriguing possibilities
for designing around the deleterious MPI is the standard and
well-known mode-locked fiber laser that relies on nonlinear
polarization rotation (NPR) for achieving saturable absorption
using a combination of waveplates and polarizer [13], [14],
[15], [16] (See Fig. 1 (a)).

This NPR based laser concept is more than two decades
old and is one of the most commercially successful mode-
locked lasers due to its reliance on simple off-the-shelf tele-
com components, rendering it a highly cost-effective mode-
locking source. More recently, tremendous performance ad-
vances have been made in power delivery by using all-
normal dispersion fiber cavities [17], [18], [19] and/or self-
similar pulse evolutions [20], [21], [22]. Indeed, a distinct
and critical advantage of such lasers is that the transmission
function generated by the NPR dynamics is periodic, thus
allowing for engineering strategies whereby the MPI can be
circumvented and significant, order-or-magnitude performance
gains can be achieved [12], [23], [24]. In contrast, quantum-
dot [25], carbon nanotube [26], [27], graphene [28], [29],
[30], and/or waveguide array [31], [32] based lasers, for
instance, have transmission functions (saturable absorption)
that simply deteriorate for high powers due to, for example,
three-photon absorption. Thus for high-powers, and from cost
considerations, there is certainly a renewed interest in pushing
the limits of NPR based mode-locked fiber lasers. However,
such commercial lasers must enforce strict environmental
control to maintain performance, i.e., the fiber is pinned into
place and shielded from temperature fluctuations. Such sys-
tem sensitivity has prevented performance advances, limiting
power and pulsewidths. Our adaptive control strategy [3]
overcomes this cavity sensitivity while optimizing, resulting
in significant performance enhancements. It should be noted
that passive techniques for performance stabilization have
also been recently developed in SESAM based lasers using
polarization maintaing and photonics crystal fibers [33], [34],
[35]. In either case, the overarching goal is to remove the
sensitivity to environmental effects.

The adaptive extremum-seeking controllers (ESC) advo-
cated here, circumvent many limitations of standard feedback
control methods. For example, it does not require an under-
lying model, and it works equally well for nonlinear systems
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Fig. 1. Schematic of self-tuning fiber laser. The laser cavity and optic components (a) are discussed in Sec. III-A-III-B. The objective
function (b) is discussed in Sec. III-C. The toroidal search and sparse approximation (c) are discussed in Sec. IV, and the extremum-seeking
controller (d) is discussed in Sec. V.

such as mode-locked fiber lasers. Figure 1 shows the high-
level integration of machine learning and control to close
the loop. In ESC, sinusoidal perturbations are injected into
servo-driven optics, providing an estimate of the objective-
function gradient for fast tracking of the optimal mode-locked
state (Note that Fig. 5, discussed later in the text, shows
the basic operating principles for the ESC component). The
objective function is modular and may be crafted specifically
to yield optimal high-power, ultra-short, or fixed-bandwidth
mode-locked solutions. The algorithm works with either digital
or analog signals and is capable of rejecting significant distur-
bances. The demonstration of the ESC methodology represents
a potentially disruptive technology in the fiber laser commu-
nity, enabling self-tuning to optimal performance [3], while
circumventing strict environmental controls. Such an adaptive
controller presents the only feasible option for manipulating
a multiple NPR system capable of suppressing multi-pulsing
instability and achieving performance levels on par with solid-
state designs [12], [23], [24].

In addition to adaptive control, which effectively becomes
the expert-in-the-loop for optimizing cavity performance, we
also incorporate a machine-learning architecture to character-
ize difficult-to-model system parameters, such as the fiber bire-
fringence [8]. Indeed, the self-tuning adaptive controller devel-
oped here represents a significant technological advancement,
allowing for the continued pursuit of performance comparable
with solid-state lasers at a fraction of the cost. More broadly,
these techniques apply to any tunable laser and/or optical
system, promising superior performance by augmenting the
system with adaptive control and machine learning algorithms.

The paper is outlined as follows: In Sec. II, a high-level
overview of the three key mathematical strategies used in
the laser system is given. Section III presents the governing
equations of the laser cavity and highlights the tunable pa-
rameters available for adaptive control of the laser cavity. The
expert-in-the-loop machine learning algorithm is highlighted in
Sec. IV with the specific application of identifying the average

cavity birefringence. The role of adaptive control is then
demonstrated in Sec. V, showing that optimal performance
can be achieved in an efficient manner. Section VI concludes
with an outlook of the methods applied towards mode-locked
fiber lasers and more broadly to generic complex systems.

II. OVERVIEW OF METHODS

Before proceeding to a detailed quantitative discussion of
the modeling and computational efforts, we highlight some
of the key mathematical strategies used in the self-tuning
architectures. What is particularly attractive about this scheme,
is that it is completely general, and the underlying paradigm
for self-tuning can be applied more broadly to almost any
optical system and/or complex system. A schematic of the
self-tuning fiber laser is shown in Fig. 1.

A. Adaptive control
Feedback control makes it possible to take measurements

of a system and synthesize the values of input variables
to regulate the system behavior. Typically closed-loop feed-
back control will be used to stabilize unstable dynamics,
improve time-domain tracking performance, reject unwanted
disturbances, attenuate sensor noise, and compensate for un-
modeled dynamics. Many powerful tools from control theory
require linear dynamics and rely on an explicit model for
the input-output dynamics. However, the mode-locked laser
is strongly nonlinear, and it is infeasible to parameterize and
model the effect of disturbances such as birefringence.

In contrast to classical linear feedback, adaptive controllers
do not rely on a model, and they may be used on fully
nonlinear systems with varying parameters. Extremum-seeking
control is a method of injecting a sinusoidal input signal to
estimate the gradient of an objective function. It is there-
fore a form of perturb-and-observe control, where the signal
converges more rapidly when there is a large gradient in
the objective function. Recent results establish guaranteed
convergence bounds and stability [1].
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B. Machine learning
The past decade has witnessed the transformative impact

of data-driven methods applied to almost every area of the
physical, biological, and engineering sciences. Often the goal
of machine learning strategies is to reveal critical insight
into underlying, and often dimensionally reduced, correlated
patterns and/or clusters of activity in a given system [5], [6],
[7]. Such underlying patterns are central in creating an expert-
in-the-loop framework that can replace human expertise in
decision making and control strategies. In the framework of
mode-locked fiber lasers, the goal is to use such mathematical
strategies to allow an algorithm to learn the underlying laser
cavity characteristics and behavior, both good and bad. Thus
the algorithm remembers the key operating regimes of the laser
and how to manipulate a mis-aligned or sub-optimal laser
cavity in an efficient manner. With such an algorithm, one
can envision replacing a highly-experienced researcher with a
fully automated and extremely rapid self-tuning system. Given
the successful and highly transformative impact that machine
learning is having across all disciplines, it is natural to also
implement such strategies in fiber laser systems.

C. Genetic algorithm
Optimization of cavity performance is of primary impor-

tance in our advocated self-tuning architecture. However, for
high dimensional parameter spaces, the objective function
landscape often has numerous local minima and maxima,
thus rendering many convex optimization strategies useless
for finding global minima/maxima. For such problems, use
of the so-called genetic algorithms, which are a subset of
evolutionary algorithms, becomes instrumental [42]. The prin-
ciple is quite simple and mirrors what is perceived to occur in
evolution and/or genetic mutations. In particular, given a set
of feasible trial solutions (either constrained or unconstrained),
the objective function is evaluated. In the language of genetic
algorithms, the objective function is now called the fitness
function. The idea is to keep those solutions that give the
maximal value of the objective function and mutate them in
order to try and do even better. Thus beneficial mutations,
in the sense of giving a better maximization, are kept while
those that perform poorly are thrown away, i.e. survival of the
fittest. This process is repeated through a prescribed number of
iterations, or generations, with the idea that better and better
fitness function values are generated via the mutation process.
The advantage of such a strategy is that the maximization
process does not get stuck in local maxima, allowing the
algorithm to find the global maximizer. The genetic algorithm
and machine learning strategy partner naturally to give an
optimal way of informing an expert-in-the-loop strategy.

D. Combining methods
Synthesizing the methods in this paper provides an effective

self-tuning mechanism for fiber lasers. The approach may be
separated into two distinct components. First, laser cavity is
characterized across a range of relevant parameter variation,
and low-dimensional patterns are learned and concatenated

into a library of signature behaviors. In addition, for each
parameter value, the input angles corresponding to high-energy
mode-locked solutions are recorded for quick future access.
Once the machine learned library is assembled, adaptive con-
trol and parameter classification guarantee high-performance
mode-locked solutions with minimal down-time. When the
laser is turned on at the beginning of operation, the algorithm
performs a short toroidal search of the input parameters and
compares the instantaneous cavity signature against the library.
Once the effective birefringence is estimated, the input angles
are set to a known high-energy mode-locked configuration, and
the adaptive extremum-seeking controller is turned on. The
adaptive controller will compensate for moderate disturbances
and slow environmental changes. However, if there is a large
disturbance to the laser cavity, and the objective function
performance drops below a threshold indicating that mode-
locking has failed, the algorithm goes back and performs
another short toroidal search to re-identify the birefringence.

III. GOVERNING EQUATIONS: CAVITY DYNAMICS

We model the laser cavity by evolving the intra-cavity pulse
dynamics in a component by component manner. Thus the
nonlinear propagation in the optical fiber is treated separately
from the discretely applied waveplates and polarizer each
round trip through the cavity. This treatment is discussed in
detail in Refs. [36], [37], [38].

A. Coupled nonlinear Schrödinger equations
The propagation of the slowly-varying envelop of the elec-

tric field in the fiber is well-described by the coupled nonlinear
Schrödinger equation (CNLS) [39], [40]:

i
∂u

∂z
+
D

2

∂2u

∂t2
−Ku+

(
|u|2 +A|v|2

)
u+Bv2u∗ = iRu,

i
∂v

∂z
+
D

2

∂2v

∂t2
+Kv +

(
A|u|2 + |v|2

)
v+Bu2v∗ = iRv.

(1)

In the above equations, u(z, t) and v(z, t) are the two or-
thogonally polarized electric field envelopes in the optical
fiber. The variable t is time in the frame of reference of the
propagating pulse non-dimensionalized by the full-width at
half-maximum of the pulse, and z is the propagation distance
normalized by the cavity length. The functions u and v are
often referred to as the fast and slow components, respectively.
The parameter K is the average birefringence while D is the
average group velocity dispersion of the cavity. The nonlinear
coupling parameters A and B correspond to the cross-phase
modulation and the four-wave mixing, respectively. They are
determined by physical properties of the fiber, and A+B = 1.
For this case (a silica fiber), A = 2/3 and B = 1/3.
The dissipative terms Ru and Rv account for the saturable,
bandwidth-limited gain (for instance, from the Yb-doped
fiber amplification) and attenuation. They satisfy the following
equation:

R =
2g0

(
1 + τ∂2t

)

1 + (1/e0)
∫∞
−∞ (|u|2 + |v|2) dt

− Γ
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where g0 is the non dimensional-pumping strength, and e0
is the non-dimensional saturating energy of the gain medium.
The pump bandwidth is τ and Γ quantifies losses due to output
coupling and fiber attenuation.

B. Jones matrices for waveplates and polarizers
The application of the waveplates and passive polarizer after

each round trip through the cavity may be modeled by the
discrete application of Jones matrices [41].

Wλ/4 =

[
e−iπ/4 0

0 eiπ/4

]
,Wλ/2 =

[
−i 0
0 i

]
,Wp =

[
1 0
0 0

]
.

Here, Wλ/4 is the quarter-waveplate (α1 and α2), Wλ/2 is
the half-waveplate (α3), and Wp is the polarizer (αp). If the
principle axes of these objects are not aligned with the fast
field of the cavity, it is necessary to include the addition of a
rotation matrix:

Jj = R(αj)WjR(−αj), R(αj) =

[
cos(αj) − sin(αj)
sin(αj) cos(αj)

]

where αj is a waveplate or polarizer angle (j = 1, 2, 3, p).
These rotation angles will be the control variables, allowing
us to find mode-locked solutions. Recent experiments show
that these control variables can be easily manipulated through
electronic control [2].

C. Optimizing performance: Objective function
Given the governing equations, extensive numerical sim-

ulations can be performed in order to identify parameter
regimes where mode-locking occurs. Each of these regimes
can in turn be evaluated for their ability to produce high-
energy, high-peak-power mode-locked states. In addition to
being a costly exercise, such studies also rarely match the
real cavity dynamics since, for instance, parameters like the
fiber birefringence K are unknown. This motivates our use of
machine learning, optimization and adaptive control strategies
for characterizing the laser cavity. Interestingly, the integration
of all three methods can be achieved without a detailed
theoretical knowledge of the cavity equations, i.e. they are
equation-free methods in the sense that learning the laser
characteristics and applying adaptive control only relies on
experimental measurements of the underlying system.

For any such data-driven strategy to be effective, we require
an objective function, with local maxima that correspond to
high-energy mode-locked solutions. Although we seek high-
energy solutions, there are many chaotic waveforms that have
significantly higher energy than mode-locked solutions. There-
fore, energy alone is not a good objective function. Instead, we
divide the energy function E by the fourth-moment (kurtosis)
M4 of the Fourier spectrum of the waveform

O =
E

M4
,

which is large for undesirable chaotic solutions. This objective
function, which has been shown to be successful for applying
adaptive control, is large when we have a large amount of
energy in a tightly confined temporal wave packet [3].

IV. LEARNING THE CAVITY DYNAMICS

Exploring the input parameter space is a central part of
the overall control strategy. There are a number of direct
benefits to a simple, fast, and robust method of characterizing
the cavity dynamics. First, it is necessary to identify a set
of candidate high-energy mode locked solutions for use with
the adaptive control algorithm. Ideally, these peaks would
have the broadest support possible in parameter space. It
is possible to use either a toroidal search [8] or a genetic
algorithm [24] to find these high-energy candidate solutions.
In addition to a set of candidate peaks, the toroidal search
algorithm also provides a well-stereotyped pattern that changes
with parameters (e.g., birefringence) that may be otherwise
difficult to measure directly. Therefore, we use the library-
building phase to construct a library of toroidal search patterns
as we slowly vary the birefringence, as in [8].

Once the library is built, when we turn the laser cavity
on, or when it suffers from a large disturbance and mode-
locking is broken, we repeat a short toroidal search protocol
and compare against our library to estimate the underlying
parameter values. These parameters do not need to be numer-
ical values, but may instead refer to proxy quantities, such as
“birefringence A”, “birefringence B”, etc. Once the parameters
are identified, it is possible to go directly to the pre-determined
optimal input angles. At this point, the adaptive controller
is applied to compensate for any uncertainty or error in the
parameter estimation, and also to track slowly varying changes
to parameters.

A. Toroidal search
We describe a toroidal search algorithm both to identify

mode-locked states that may be used in conjunction with
the adaptive controller, and also to identify and estimate the
underlying parameters, which was advocated in [8]. All of
the control inputs are periodic, so the input space forms a
high-dimensional torus. It is possible to efficiently sample
this toroid by increasing each of the control angles at incom-
mensurate angular rates. This means that the ratio of each
of the angular rates is an irrational number, and it is simple
to show that after large enough time, the sampling scheme
will approach arbitrarily close to every point in the input
space. It turns out that for two rotating angles, the optimal
incommensurate rates will be related by the golden ratio.

Because of the nature of some servomotors or stepper
motors, it may be necessary to build in a mechanism for
zeroing out the angles at the beginning of the search. This may
be achieved by placing a small weight on each of the rotating
optical components so that when power is cut to the motor,
they all drop down to a zero-degree dead-center position. This
is important when comparing two toroidal search profiles for
the birefringence estimation.

Figure 2 shows the results from a typical toroidal search
obtained by varying the parameters α3 and αp while holding
α1 and α2 fixed. After less than two minutes, the algorithm
has identified multiple candidate mode-locked states. The third
figure panel shows examples of states with high and with low
objective function. For multiple NPR cavities where a much
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Fig. 2. Illustration of toroidal search for high-energy mode-locked states. Parameters α3 and αp are increased at an incommensurate rate
α3/αp =

√
17/
√
19, while holding α1 = −0.3755 and α2 = 0.0496 fixed with K = 0.1 (values are chosen for consistency with ref. [8]).

The two-dimensional parameter space is colored by objective function on both the universal cover (a) and the torus (b) obtained by identifying
opposite sides of (a). Sampled points are shown as black circles. Pulse profiles with high and low objective function are shown in (c).

higher parameter space is required to manipulate, the toroidal
search may be replaced with a genetic algorithm [24].

B. Sparse approximation in library for recognition
Practically speaking, one of the most challenging techno-

logical issues around the NPR-based mode-locked fiber laser
is its sensitivity to birefringence changes. Indeed, temperature
changes and/or small physical modifications of the fiber itself
can easily compromise what was an ideal mode-locked state.
This is why commercial versions of this laser must enforce
strict environmental control to maintain performance, i.e., the
fiber is pinned into place and shielded from temperature fluc-
tuations. Such system sensitivity has prevented performance
advances, limiting power and pulsewidths.

State-of-the-art theoretical models for characterizing bire-
fringence have treated the birefringence as a stochastically
varying parameter along the length of fiber. But even this
is unsatisfactory since a user of a fiber laser needs to know
precisely, and at all times, the birefringence in order for models
to accurately predict the cavity dynamics. This is virtually an
impossible task given the fact that temperature fluctuations
and/or physical placement of the fiber can significantly alter
the birefringence distribution. The machine learning algo-
rithms advocated in [8] simply learn a relationship between
the average birefringence and the objective function, thus
recognizing uniquely the average cavity birefringence and ad-
justing the cavity parameters accordingly in order to optimize
performance. Such a recognition task is significantly faster
than re-executing the toroidal or genetic algorithm search as it
allows one to move immediately to near the optimal solution
where adaptive control can then maintain peak performance.

The recognition task developed in [8] is based upon
producing a spectrogram of the objective function from the
time-series output of the toroidal search in Fig. 2. For dif-
ferent average birefringence values, unique spectrograms are
produced, thus providing an underlying pattern that can be
used for recognition and evaluation of the K value. In practice
then, what is required is a method for classifying the current
state or the system with a birefringence library. The algorithm
implemented here creates a large number of objective function
spectrograms by using the toroidal search. These are then

0 20 40 60 80 100
−0.5

0

0.5

K

(a)

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

Trial

O
bj

 

 

ML off
ML on

(b)

Fig. 3. Comparison of laser performance, measured by objective
function (obj), with machine learning (ML) on and off (b). The
birefringence is varying across trials (a). With ML off, the objective
function value falls several times, indicating failure to mode-lock.
With ML on, the laser maintains a high energy mode-locking state.

correlated with each other via a singular value decomposition
(SVD). Only the dominant SVD modes (capturing 99.9% of
the energy) are retained and used to characterize that particular
birefringence. Thus for a large number of birefringence values,
a library of dominant modes, Ψ is constructed. Once the library
is built, it can be used for future evaluation of the state of the
system using sparse approximation [43], [8].

The improvement of system performance by using sparse
approximation to recognize the birefringence is shown in
Fig. 3. As the birefringence is varied stochastically across 100
trials, the sparse approximation algorithm accurately predicts
the birefringence K for over 90% of the trials. Even when
the algorithm predicts the wrong value for K, it predict a
neighboring K so that the system remains mode-locked. In
contrast, without machine learning, the system performance is
severely degraded by changing birefringence.

The machine learning algorithm is designed to re-identify
a mode-locked solution when a large disturbance or environ-
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Fig. 4. Schematic of sinusoidal perturbations used for extremum-
seeking control. When û < u∗, the product of the output and input
signals is purely positive, indicating that û must move right. Similarly,
when û > u∗, the demodulated signal is negative, so û moves
left. Notice that the output sinusoid has larger magnitude when the
function gradient is larger.

mental variation causes mode-locking to break down. Once
significant objective function variation is detected, exceeding
a threshold, the system undergoes performs the birefringence
recognition algorithm described above, which involves a brief
toroidal sample in parameter space followed by a sparse classi-
fication in a pre-learned library. After the birefringence value is
identified, a high-energy mode-locked solution is chosen from
the library, and the servomotors bring the laser into alignment.
Finally, the adaptive controller from the next section is turned
on, allowing robust tracking of the optimal mode-locked
solution despite significant exogenous disturbances.

V. ADAPTIVE CONTROL

The adaptive control strategy advocated here does not rely
on an underlying model and may be used on fully nonlinear
systems with varying parameters. In this method, a sinusoidal
input signal is injected into the system to estimate the gradient
of our objective function. It is therefore a form of perturb-
and-observe control, where the signal converges more rapidly
when there is a large gradient in the objective function.
Figure 4 illustrates the extremum-seeking algorithm on a
quadratic cost function. A sinusoidal perturbation is added to
the current estimate of the best control signal û. This results
in a perturbation on the output, which may be attenuated or
phase shifted, but will have the same frequency as long as
the perturbation is slow compared with the system dynamics.
The product of the high-pass filtered output signal and input
perturbation will be positive when the mean of the control
signal is to the left of the optimum point u∗ and will be
negative when the mean is to the right of the optimum. This
demodulated signal is then integrated to the mean and the
controller faithfully tracks the optimum.
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Fig. 5. Schematic of closed-loop extremum-seeking controller.
The input to the controller is the objective function, and the output
are reference angles for the servo-motor actuators for each optical
component.

In many ways the laser cavity is ideal for the extremum-
seeking control method since the transient dynamics operate
on a timescale many orders of magnitude faster than the
physical actuation of wave plate and polarizer angles [3].
This means that the only limitation on tracking bandwidth is
imposed by the measurement and actuation hardware.

Figure 5 is a schematic illustrating the extremum-seeking
controller in combination with the mode-locked laser. The
input to the controller is the external perturbation a sin(ωt)
as well as a measurement of the objective function output of
the laser cavity. The controller outputs a signal that goes to
four servo motors connected to the optical components. We
see that in addition to maximizing the objective function, the
pulse energy increases.

Figure 6 shows the multiple-parameter extremum-seeking
controller tracking the maximum of the objective function
despite large variations in the birefringence occurring on the
order of minutes. This presents a significant disturbance to the
controller; however, performance is not effected, and instead,
the controller adjusts the operating angles to compensate for
this disturbance. In contrast, when no control is applied, the
system performance is heavily degraded, and mode-locking
fails at a number of instances in time. It is important to
note that the slow drift in the mean of the oscillating input
parameters suggests that the extremum-seeking controller will
not track arbitrarily high frequency disturbances. For large
enough disturbances, the controller will fail to track, and the
birefringence identification from the previous section will be
re-applied.

VI. CONCLUSIONS AND OUTLOOK

We have demonstrated the practical implementation of an
adaptive, robust, and self-tuning algorithm that can be used in
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conjunction with mode-locked fiber lasers. Such a scheme has
eluded practical implementation for more than two decades.
But with state-of-the-art machine learning and state classifi-
cation methods, along with adaptive control schemes that are
model independent, the critical components are now in place
to revolutionize both the commercial and research sectors as-
sociated with ultra-fast science. Although we demonstrate the
methodology within the context of NPR-based fiber lasers, due
to newly developed servo-control of optical components [2],
[3], [4], the data-driven strategies are generic and capable of
self-tuning almost any laser system. Here, by combining such
machine learning strategies [8] with adaptive control [3], we
demonstrate that robust and self-tuning mode-locked operation
can be achieved and fiber laser performance efficiently opti-
mized. To our knowledge, this is the first demonstration in the
optical laser context of the integration of machine learning
techniques with adaptive control, thus allowing for potentially
transformative performance gains in fiber lasers.

The success of such self-tuning strategies hinges on two
critical components: (i) identifying input (control) parameters
and (ii) constructing an appropriate objective function that is
feasible and serves well as a proxy for cavity performance.
The algorithms for both learning the cavity behaviors and
applying adaptive control are both equation-free methods [42].
Thus they do not rely on one’s ability to construct accurate

model equations. Rather, all characterization is done directly
from experimental data and no reliance is made on a faithful
model. Such strategies are highly advantageous since modeling
often fails to provide accurate quantitative prediction of laser
cavity dynamics. Even in the two decade old problem of NPR-
based mode-locking, models have proved to be of value for
qualitative modeling, but have had limited quantitative use
since phenomenon such as the randomly varying birefringence
simply are beyond our capabilities to model due to their ex-
treme sensitivity and stochastic nature. The methods advocated
here do not suffer from such sensitivity, they simply adapt to
the changes and optimize for global performance.

Naturally, the methods presented have limitations and their
own performance barriers. But we believe that many of these
can be overcome with additional work in this area. Moreover,
one may wish to use fully passive stabilization techniques,
like those recently developed for SESAM based lasers [33],
[34], [35], whenever possible over active techniques. But
ultimately, it comes down to tradeoffs between performance
gains and cost, something which would need to be evaluated
on a laser by laser basis. For the NPR-based laser considered
here, the potential for engineering the transmission curve
for significant improvements in high-power performance [12],
[23], [24] is the impetus for the implementation of an adaptive
control strategy. In any case, intelligent systems and their
design/implementation are ultimately desirable given their
long-term potential impact in the field of mode-locked fiber
lasers. The following subsections outline some broader issues
to be pursued in future work as it relates directly to fiber laser
performance and scalability of high-energy delivery.

A. Need for dimensionality reduction on input space

Extremum-seeking does not scale well with arbitrarily many
input variables. This provides a complication for use with the
multiple NPR case [12], [23], [24], regardless of the significant
potential benefits in scaling the power delivery of mode-locked
fiber lasers, i.e. making them competitive with their solid-
state counterparts. There are two reasons for the difficulty.
First, the controller convergence takes significantly longer with
multiple parameters, and the design is more complicated. In
addition, the radius of perturbation grows with the number of
parameters, and for the mode-locked laser, this perturbation
may kick the system into an unstable or chaotic regime. This
is compounded by the need for a sufficiently large perturbation
signal to achieve a reasonable signal to noise ratio.

The use of dimensionality reduction techniques such as
principal components analysis (PCA) may allow us to deter-
mine low-dimensional control inputs that reduce the dimension
of the input space. Just like the machine learning methods
demonstrated, the key is to identify low-dimensional spaces
that provide an accurate representation of the laser cavity
dynamics. The low-dimensional input space has fewer degrees
of freedom required to adjust and adapt in order to maintain
the high-energy states.
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B. Adaptive control and learning of complex systems
Every part of the algorithm advocated in this manuscript

can be applied broadly to many complex systems. In particular,
the specific advantage of the machine learning and adaptive
control being equation-free allows it to be applied across
the engineering, physical and biological sciences. What is
critical is to identify the input space for control and a suitable
objective function to optimize. The algorithm developed can
simply be wrapped around a generic complex system with the
goal of producing similar optimization results. In particular,
Fig. 1 can be modified so that the mode-locked laser block
in the purple box is replaced by another complex system. Of
course, this does not guarantee you can control the complex
system. But if the control inputs are indeed capable of sig-
nificant manipulation of the system, then adaptive control in
conjunction with machine learning may be used effectively to
automate the expert-in-the-loop. In summary, the method is
applicable in a much broader context than mode-locked fiber
lasers.
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