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Abstract—An adaptive controller is demonstrated that is
capable of both obtaining and maintaining high-energy, single-
pulse states in a mode-locked fiber laser. In particular, a multi-
parameter extremum-seeking control (ESC) algorithm is used
on a nonlinear polarization rotation (NPR) based laser using
waveplate and polarizer angles to achieve optimal passive mode-
locking despite large disturbances to the system. The physically
realizable objective function introduced divides the energy output
by the kurtosis of the pulse spectrum, thus balancing the total
energy with the coherence of the mode-locked solution. Moreover,
its peaks are high-energy mode-locked states that have a safety
margin near parameter regimes where mode-locking breaks
down or the multi-pulsing instability occurs. The extremum
seeking controller is demonstrated by numerical simulations of
a single-NPR mode-locked laser and is able to track locally
maximal mode-locked states despite significant disturbances to
parameters such as the fiber birefringence.

Index Terms– Mode locked laser, fiber laser, nonlinear polar-
ization rotation, adaptive control, feedback control, extremum
seeking control.

I. INTRODUCTION

Mode-locked lasers are characterized by the locking of
multiple axial modes in the laser cavity, thus resulting in res-
onant, ultrashort pulsing phenomenon [14, 22, 37, 38, 40, 39].
Over the past decades, such mode-locked lasers have become
commercially and scientifically successful, impacting medical
imaging [18], two-photon microscopy [8, 47], femtosecond
chemistry [48], micro-machining [15, 27], surgery [17, 44,
42, 43], and fusion research [12], for instance. Fiber-based
mode-locked lasers are particularly interesting due to the nu-
merous inherent advantages of the optical fiber platform [40].
Recent trends have shown that these fiber-based lasers may
eventually achieve competitive performance with their solid-
state counterparts [40, 2], thus potentially shifting the field
of ultra-fast, high-power lasers to fiber based technologies.
Closing the order of magnitude performance gap between
fiber and solid-state lasers will require the ability to control
and optimize laser cavity output energy and pulse-width.
This motivates the extremum-seeking control advocated here
whereby optimal cavity performance can be achieved even
with a large parameter space and the effects of considerable
perturbations to the cavity.

One of the most prolific and dominant fiber-based mode-
locking lasers demonstrated to date involves a linear polarizer
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and a number of waveplates to achieve saturable absorption via
nonlinear polarization rotation (NPR) [14, 23, 33, 10]. Such
passive mode-locking is compact, comparatively inexpensive,
reliable, and requires less optical tuning compared with alter-
native ultrafast laser technologies. However, the multi-pulsing
instability (MPI) imposes a fundamental performance limit
on the mode-locked laser cavity, thus preventing fiber lasers
from achieving the desired solid-state performance levels [20].
To overcome MPI, it was recently demonstrated that two
(or more) NPR sections (dual transmission filters) could in-
crease the pulse energy output [25] by circumventing MPI
at high gains [32, 3, 11, 26]. Combined with the recent
experimental demonstration of electronic control of waveplates
and polarizer [41], a genetic algorithm could be implemented
to search through the high-dimensional parameter space for
multiple-NPR lasers in order to find high-energy mode-locked
solutions [13].

Even with such potential advancements, it remains chal-
lenging and expensive to find high-energy, single-pulse so-
lutions in the multiple-NPR case. Moreover, even if mode-
locking is achieved, it may be destroyed by changes to the
birefringence [29, 30], which often varies throughout the day
and may change abruptly if the laser system is physically
perturbed [19]. This requires commercial lasers based upon
NPR, for instance, to enforce strict environmental control in
order to maintain performance, i.e. the fiber is pinned into
place and protected from temperature fluctuations.

Alternatively, feedback control promises significant per-
formance enhancements, including maintaining high-energy,
mode-locked pulses despite large variations in parameters
(e.g., birefringence, thermal/optical, etc.), as suggested in [40].
However, feedback control typically involves a detailed model
of the underlying dynamics, and many of the most power-
ful tools only apply to linear or nearly-linear systems. In
the mode-locked laser, the underlying dynamics are strongly
nonlinear, and the variation with respect to parameters is
difficult to model. In particular, the fiber birefringence lacks a
precise, quantitatively accurate model for its fluctuations and
dependence on bending, temperature, etc.

Extremum-seeking control (ESC) is an adaptive method of
finding local maxima of an objective function on the output
of a dynamical system that bypasses many of the aforemen-
tioned issues. The controller does not require a model of
the underlying dynamics, which is advantageous for complex,
nonlinear systems with parameter dependence that is difficult
to model, such as the laser cavity birefringence, which can
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easily corrupt performance. Extremum-seeking has recently
been made mathematically rigorous [1, 21, 7], and stability
guarantees have been proven under certain conditions.

Extremum-seeking control has been applied to a wide range
of problems, including maximum-power point tracking for
photovoltaic power optimization [24, 5, 6] and wind turbine
optimization [31], reducing the noise of a jet [28], active shear
layer control for drag reduction in fluids [35], maximizing
the pressure rise in an axial flow compressor [46], optimizing
bioreactors [45], controlling the current profile in a Toka-
mak [34], and in active braking systems for automobiles [49].
The above examples involve a single control variable, using
what is known as single-parameter extremum seeking. Multi-
parameter extremum seeking, involving the simultaneous con-
trol of multiple inputs, has been applied to the problem of
formation flight [4], and also to laser pulse shaping [36].

In this paper, we apply multi-parameter extremum seeking
control to find and maintain locally optimal single-pulse laser
solutions. A single-NPR cavity laser is simulated according
to the model described in Section II, and a new objective
function is developed in Section III that has high-energy
mode-locked pulses as local maxima. The extremum-seeking
control architecture is described in Section IV. Section V
contains the numerical results demonstrating the effectiveness
of the adaptive controller both to find local maxima for fixed
birefringence, and to track these high-energy, single-pulse
solutions when the birefringence is varying. The variations
in birefringence may be viewed as a general disturbance to
the system, either due to thermal fluctuations, or physical
perturbations to the laser system. The results are summarized
in Section VI, and future directions are discussed, including
the extension of these methods to multiple-NPR cavities in
experiments.

II. MODEL OF SINGLE-NPR MODE-LOCKED LASER

A schematic of the laser is shown in Figure 1. We model the
laser by describing the intra-cavity pulse evolution in a com-
ponent by component manner. Thus the nonlinear propagation
in the optical fiber is treated separately from the discretely
applied waveplates and polarizer each round trip through the
cavity. This treatment is discussed in detail in [10].

A. Coupled Nonlinear Schrödinger Equations
The optical field propagation in the fiber are well-described

by the coupled nonlinear Schrödinger equations (CNLS) [29,
30]:
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In the above equations, u(z, t) and v(z, t) are the two orthog-
onally polarized electric field envelopes in an optical fiber. t is
time non-dimensionalized by the full-width at half-maximum
of the pulse, and z is the propagation distance normalized by
the cavity length. The functions u and v are often referred
to as the fast and slow components, respectively. K is the
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Fig. 1. Schematic of mode-locked laser with passive nonlinear
polarization rotation (NPR). The quarter-waveplate angles are α1

and α2, the half-waveplate angle is α3, and αp is the angle of the
polarizer. There is additionally the birefringence parameter K that
arises due to the fiber geometry and its material properties.

birefringence, D is the average group velocity dispersion of the
cavity. The nonlinear coupling parameters A and B correspond
to the cross-phase modulation and the four-wave mixing,
respectively. They are determined by physical properties of the
fiber, and A + B = 1. For this case (a silica fiber), A = 2/3
and B = 1/3. The dissipative terms Ru and Rv account for
the saturable, bandwidth-limited gain and attenuation arising
from the Yb-doped amplification. The operator R is given by

R =
2g0

(
1 + τ∂2t

)
1 + (1/e0)

∫∞
−∞ (|u|2 + |v|2) dt

− Γ,

where g0 is the non dimensional-pumping strength, and e0
is the non-dimensional saturating energy of the gain medium.
The pump bandwidth is τ and Γ quantifies losses due to output
coupling and fiber attenuation.

B. Jones Matrices for Waveplates and Polarizers
The application of the waveplates and passive polarizer after

each round trip through the cavity may be modeled by the
discrete application of Jones matrices [16, 20, 9]:

Wλ/4 =

[
e−iπ/4 0

0 eiπ/4

]
,Wλ/2 =

[
−i 0
0 i

]
,Wp =

[
1 0
0 0

]
.

Here, Wλ/4 is the quarter-waveplate (α1 and α2), Wλ/2 is
the half-waveplate (α3), and Wp is the polarizer (αp). If the
principle axes of these objects are not aligned with the fast
field of the cavity, it is necessary to include the addition of a
rotation matrix:

Jj = R(αj)WjR(−αj), R(αj) =

[
cos(αj) − sin(αj)
sin(αj) cos(αj)

]
,

where αj is a waveplate or polarizer angle (j = 1, 2, 3, p).
These rotation angles will be the control variables, allowing
us to find mode-locked solutions. Recent experiments show
that these control variables can be easily manipulated through
electronic control [41].
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Fig. 2. Objective function E/κ (solid black), energy E (dashed red) and kurtosis of the spectrum κ (blue dots) for varying waveplate and
polarizer rotation angles α1, α2, α3 and αp. Single-pulse mode-locking occurs in the white regions. As each angle is varied, all other angles
are held fixed at locally maximizing values, indicated by black diamonds.

TABLE I
SINGLE-NPR COMPUTATIONAL PARAMETERS

τ Γ A B D K g0 e0 Lt Nt

0.1 0.1 2/3 1/3 -0.4 0.1 1.73 4.23 60 256

C. Numerical Integration Scheme
The CNLS equations are solved in the spectral domain

by using the fast Fourier transform (FFT) along with an
adaptive-step, fourth-order Runge-Kutta scheme to integrate
initial conditions one round trip through the cavity. The Jones
matrices are then applied to model the discrete application of
waveplates and polarizer, and the entire process is repeated.
Mode-locking spontaneously arises from white-noise initial
conditions after a short number of round trips. The numerics
used in this work are an extension of the methods developed
in [10, 13]. Typical parameters used in these simulations are
given in Table I. The round-trip length is 1.5 dimensionless
units.

III. OBJECTIVE FUNCTION

For any extremum-seeking controller to be effective, we re-
quire an objective function with local maxima that correspond
to high-energy mode-locked solutions. Although we seek high-
energy solutions, there are many chaotic waveforms that
have significantly higher energy than mode-locked solutions.
Therefore, energy alone is not a good objective function.
Instead, we divide the energy function (E) by the kurtosis (κ)
of the Fourier spectrum of the waveform, which is large for
undesirable chaotic solutions. This objective function is large

when we have a large amount of energy in a tightly confined
temporal wave packet. The kurtosis of a signal x is given by
the fourth moment about the mean divided by the square of
the variance: κ = E

[
(x− x̄)4

]
/E
[
(x− x̄)2

]2
.

Figure 2 shows the new objective function (solid black),
energy (red dash), and the kurtosis of the spectrum (blue dots)
for various slices of the rotation angles αj . In each panel,
one of the angles is rotated from −90◦ to 90◦ while the
other angles are held fixed at values that locally maximize the
objective function. These locally optimal values are obtained
by applying the extremum-seeking controller developed in the
next sections. In each panel, the maximal energy occurs away
from the regions of single-pulse mode locking, shown by the
white-regions, and tracking energy alone would lead to chaotic
solutions (grey regions). In contrast, the new objective function
has local maxima in the single-pulse mode-locked regions, and
there is a buffer between the peak in objective function and the
grey region where mode-locking fails. The white regions are
determined manually by checking if the solution has a single
pulse. These regions are not used by the control algorithms, but
are included to illustrate the regions of stability. The spectral
kurtosis (blue dots) is small in the single-pulse mode-locking
regions (white) and is much larger in the grey regions because
of multi-pulse or chaotic solutions. Thus, dividing energy by
the spectral kurtosis penalizes non-mode-locking solutions.

It may be tempting to use an angle that is right at the edge
of the white region with higher energy, for example in the third
panel in the second white region. These edge points, although
they do contain more energy, correspond to fat mode-locked
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Fig. 3. Zoom in near peak in objective function (�). (a) The objective
function (–), energy (- -), and kurtosis (· · · ) versus half-waveplate
angle α3. (b) Energy of the waveforms versus time for the cases
shown in diamond (�), square (�), and triangle (4). The peak of the
objective function (�) is a localized pulse, and the peak of the total
energy (4) is a chaotic solution.

pulses and are not as favorable as the tight pulses at the peak of
the black curves. In addition, being close to the grey boundary
makes this solution susceptible to disruption by any manner of
disturbance to the system (e.g., birefringence, thermal optical,
etc.).

Consider Figure 3, which is a zoom-in of the third panel
of Figure 2. As we vary α3 with all of the other angles
held fixed, the energy function increases monotonically in
the single-pulse mode-locked regions. An extremum seeking
controller maximizing the energy would climb this function
past the largest single-pulse energy solution (�) to the peak
energy solution (4) which is in the middle of the grey region,
and is chaotic. In the second panel of Figure 3, we see this
chaotic solution (4), as well as the fat pulse at the edge of the
white region (�), and the desirable tight mode-locked pulse (�)
that maximizes the new objective function. Table II shows the
energy E, kurtosis of the spectrum κ, and the new objective
function E/κ for each of these three cases.

TABLE II
COMPARISON OF THREE LASER STATES.

Energy, Kurtosis, Objective,
E κ E/κ

Tight Pulse, (�) 3.9314 17.6153 0.2232
Fat Pulse, (�) 8.7932 88.6002 0.0992
Chaotic, (4) 11.0067 229.2296 0.0480

It is important to note that this objective function is not
the only good choice, and others may be more readily deter-

mined from experimental measurements. We have chosen an
objective function that balances the total energy in a pulse with
some measure of the width of the pulse, which selects for tight
mode-locked pulses. However, if a fat pulse is more favorable
in a given application, it is possible to construct an objective
function for which these waveforms are local maxima. The
following control laws will work for any objective function
whose local maxima are mode-locked pulses of the desirable
shape and characteristics.

IV. EXTREMUM-SEEKING CONTROLLER

Extremum-seeking control (ESC) is an adaptive control law
that finds and tracks local maxima of an objective function by
sinusoidally varying a set of input parameters and measuring
the consequent variation of the objective function [21, 7, 1].
The resulting controller does not rely on a model of the dynam-
ics that relate the input parameters to the objective function,
making it is especially useful for complex, nonlinear systems
with disturbances that are difficult to model. Instead, the
measured variation in the objective function is compared with
the varying input signal to dynamically improve an estimate of
the optimal input parameter. If designed correctly, extremum-
seeking is guaranteed to stably converge to a neighborhood
of the control input u∗ that yields a local maximum of the
objective function.

Figure 4 shows an extremum-seeking controller for the
laser system with a single-input and a single-output (SISO).
The input variable is a single polarizer angle, and the output
is the objective function E/κ discussed in Section III. The
algorithm works by adding a perturbation signal a sin(ωt+β)
to the best guess of the input û that maximizes the quantity
of interest, namely, the objective function. The perturbation
passes through the system and results in a perturbation in the
output. The high-pass filter of this output is a signal ρ that
oscillates about zero mean. Multiplying the high-pass filtered
output by the input perturbation yields a demodulated signal
ξ that is positive when û < u∗ and negative when û > u∗.
Finally, integrating ξ into our estimate û brings the estimate
û closer to the optimal value u∗ corresponding to a local
maximum. The input and output sinusoids are plotted with
the demodulated signal ξ in Figure 5.

There are a number of important considerations when
designing an extremum-seeking-controller. First, there are
three distinct time-scales of interest in the problem:

1. slow - external disturbances to be rejected,
2. medium - perturbation frequency ω,
3. fast - internal system dynamics.

The perturbation frequency ω must be chosen to be faster than
the external disturbances (such as slow changes in birefrin-
gence) and slower than the internal system dynamics. For
the laser system, the internal dynamics are extremely fast
compared with the time it takes to change the polarizer angles.

Next, the amplitude of the perturbation a is chosen suffi-
ciently large so that there is a measurable perturbation in the
output of the system; larger a also results in faster convergence
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Fig. 5. (a) Illustration of sinusoidal perturbation to the input û near
an optimal value u∗. (b) The input and high-pass filtered outputs are
multiplied to give the black curves (ξ). If û < u∗, then ξ is purely
positive, and û moves to the right towards u∗. Similarly, if û > u∗

then ξ is purely negative and û moves left. When û = u∗, then the
integral of ξ is zero, and û doesn’t move. Notice that the signal ξ is
larger when the slope of the function is larger.
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Fig. 6. Schematic for multiple-input, single-output (MISO)
extremum-seeking controller. Each ESC block is a SISO unit as
shown in Figure 4.

to the optimal u∗. However, a should not be so large that there
is significant steady-state error due to oscillations about the
peak. Faster convergence is also attainable by increasing the
integrator gain k, although this will destabilize the system for
large enough k. Finally, we choose the cut-off frequency ωh
for the high-pass filter based on the perturbation frequency ω.

Figure 6 shows a multi-parameter extremum-seeking con-
troller for the laser system with multiple-inputs, and a
single-output (MISO). This consists of a number of separate
extremum-seeking loops (labeled ESC 1 through ESC n), each
with their own perturbation signal and magnitude, high-pass
filter, and integrator. It is generally more involved to develop
a well-tuned extremum-seeking controller for a MISO system,
although guidelines for stable controllers do exist [1].

The perturbation frequencies of each extremum-seeking
loop must satisfy the following property: ωi + ωj 6= ωk for
any i, j, k = 1, 2, . . . , n. This protects against the possibility
of bias arising from demodulation. It is also possible to use
the same perturbation frequency for each pair of even and odd
controllers, so that ωk = ωk+1 as long as they are out of phase:
βk = 0 and βk+1 = π/2. In practice, we designed each of the
single-parameter controllers in isolation and then sequentially
combined parameters and refined the design.

It is important to note that the extremum-seeking controller
will only find local maxima of the objective function. There-
fore, it is important to start with a reasonably good mode-
locked solution as the initial condition. One potential way to
ensure that good solutions are used in the extremum-seeking
controller is to first apply a genetic algorithm to find suitable
regions of performance [13]. However, there are also other
methods as outlined in the next section.
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V. PERFORMANCE OF EXTREMUM-SEEKING

CONTROL

The results in this section demonstrate the utility of
extremum-seeking control for the mode-locked laser. In the
first two sections, the controller is used to find locally optimal
polarizer angles for a fixed birefringence K. In the third
section, the controller is used to track a high-energy mode-
locked state despite significant variations in birefringence that
occur on the order of minutes. This is designed to be a
worst-case scenario to demonstrate the high performance of
the controller. It is expected that typical disturbances will
be more mild, both in terms of amplitude and frequency of
disturbances.

Since the extremum-seeking controller only finds local
maxima, there are initial conditions that yield poor locally
optimal solutions that are not mode-locked. Similarly, drastic
perturbations may knock the system far enough from the local
maximum that the controller is unable to recover. We envision
a start-up routine to select good initial conditions at the begin-
ning of operation and after drastic perturbations, whereby each
of the polarizer/wave-plate angles are varied simultaneously at
different, incommensurable rates. This strategy has been tested
in simulations, and it is possible to find sub-optimal mode-
locked solutions very quickly, within a relatively small number
of whole revolutions of the slowest angle. From this starting
condition, we then turn the extremum-seeking controller on.

There is no guarantee that the extremum-seeking controller
will arrive at the same local maximum, given different initial
conditions. In fact, it is impossible to tell if the extremum-
seeking controller arrives at the globally maximizing solution
without a full parametric study, which may be prohibitively
expensive. However, the general approach of cycling each
control angle at incommensurable rates is guaranteed to pass
arbitrarily close to every possible configuration in a finite
amount of time without sampling the same condition twice.
This provides a powerful and flexible strategy for mapping
configuration space. After a favorable mode-locked solution
is found, the extremum-seeking controller is turned on to
first obtain and then maintain the local maxima, despite
disturbances.

A. Single-Parameter Extremum-Seeking Control for
Fixed Birefringence K

Figure 7 shows the extremum-seeking controller for a
single-input, single-output (SISO) case. The polarization angle
αp is the control variable. Both the objective function and
the energy rise from the initial value as the controller tracks
the (locally) optimal parameter value. Steady-state tracking is
achieved within approximately 30 seconds. Although the input
parameter continues to oscillate after the extremum is found,
the oscillations in the objective function are quite small since
the first derivative is zero at the peak. The parameter values
of the extremum-seeking controller used in Figure 7 are given
in Table III.

Single-parameter extremum-seeking control has also been
simulated numerically for the other waveplate angles, α1, α2,
and α3 independently, and the results are qualitatively the
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Fig. 7. Extremum-seeking controller for a single parameter (αp)
with a fixed birefringence, K = 0.1.

same as Figure 7. In experiments, the presence of sensor noise
may motivate an increase in the amplitude of oscillation a, a
decrease in the frequency of oscillation, or both. Time delays τ
in the sensing and actuation may be incorporated into the phase
delay φ according to the formula φ = τω so that the high-
pass filtered measurement and input perturbation are aligned.
Note that there is no convergence criterion, after which the
controller is shut off; even after it converges on the local
maximum, the controller continues to adaptively correct for
slow disturbances.

TABLE III
EXTREMUM-SEEKING PARAMETER VALUES (SINGLE-INPUT)

ω β φ a ωh k
(rad/s) (rad) (rad) (deg) (rad/s)

αp 2π π/2 0 0.5 2π 10

B. Multi-Parameter Extremum-Seeking Control for
Fixed Birefringence K

Figure 8 shows the extremum-seeking controller for the
multiple-input, single-output (MISO) case where we are
controlling all four polarizer angles simultaneously. The
extremum-seeking control parameters are shown in Table IV.
The multi-parameter design is more complicated than the
single parameter case, and involves first designing single-
parameter controllers and then combining them pairwise and
modifying until the desired performance is achieved.

The multi-parameter extremum-seeking controller takes
longer to converge to a local maximum than the single-
parameter case, approximately 2 minutes as opposed to 30
seconds. There are two main reasons for this slower conver-
gence: 1) the angle α1 is being oscillated more slowly, and
2) as the angles are varied simultaneously, they affect each
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Fig. 8. Multi-parameter extremum-seeking controller with a fixed
birefringence, K = 0.1.

TABLE IV
EXTREMUM-SEEKING PARAMETER VALUES (MULTI-INPUT)

ω β φ a ωh k
(rad/s) (rad) (rad) (deg) (rad/s)

α1 1.2π 0 0 0.5 2π 5
α2 4.512π π/2 0 0.5 2π 50
α3 2π 0 0 0.5 2π 50
αp 2π π/2 0 0.5 2π 20
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other, and larger overall excursion of the angles is required to
reach the maximum. Because parameters are all being varied
simultaneously at incommensurable rates, occasionally there
will be a large excursion in each of the angles, resulting in
a large radius in parameter space from the optimal values.
Since the mode-locked state is sensitive to large amplitude
excursions to the input angles, this may present a challenge to
incorporate more input parameters into the extremum-seeking
control algorithm.

Finally, it is important to note that for this particular
configuration, the extremum-seeking controller performance
is sensitive to the control parameters for the α1 variable.
The oscillation frequency for α1 is chosen to be the slowest
frequency and the gain k is also the smallest among the input
angles. If either of these values are increased significantly, then
the controller may get stuck in a periodic-orbit configuration
where the variable α1 precesses at a slow rate, while the other
variables rapidly adjust to compensate. Although this is not
shown, it is quite interesting that during this precession, the
objective function remains relatively constant, suggesting that
there are a family of favorable mode-locked states parameter-
ized by α1. In practice, this might suggest that the variable
α1 is redundant, which is the subject of current investigation.

C. Multi-Parameter Extremum-Seeking Control for
Varying Birefringence K

Figure 9 shows the objective function and energy for a
range of birefringence K for a set of fixed input angles; the
angles are chosen to (locally) maximize the objective function
at K = 0.1 as in Figure 8. On either side of K = 0.1 the
objective function decreases, although there is a steep drop-
off for larger positive values of K, corresponding to the loss
of mode-locking.

In Figure 10 we vary the birefringence K according to
a large-amplitude saw-tooth pattern (left) and according to
a pseudo-random walk (right). In each of these cases, the
extremum-seeking controller is compared with the case when
no control is applied and the polarizer angles are fixed at
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Fig. 10. Multi-parameter extremum-seeking controller with a varying birefringence, K. (left) The birefringence varies as a sawtooth function,
and (right) the birefringence varies according to a pseudo random walk.

the optimal values for K = 0.1. For both aggressive K dis-
turbances, the extremum-seeking controller maintains a high-
energy mode-locked state, although the uncontrolled system
frequently loses mode-locking. It is interesting to note that
the fourth input parameter, αp tracks the K disturbance nearly
linearly. The objective function fluctuates slightly in the case
with controller, since the local maximum value varies with the
birefringence K.

As noted in Table II, the quality of the mode-locked pulse
is significantly degraded for an objective function value near
0.1, and the solution is fully chaotic near 0.05. Thus, without
control, the laser performance is severely effected by variations
in birefringence.

VI. CONCLUSIONS AND DISCUSSION

We have developed a fast, stable extremum-seeking con-
troller for the passively mode-locked fiber laser based upon
NPR. The controller simultaneously varies the four angles
corresponding to waveplates and polarizer in a single-NPR

laser to maintain a high-energy mode-locked state despite
large, rapid changes in the birefringence K. The amplitude and
frequency of the disturbance are chosen to be more aggres-
sive than expected values, demonstrating that the controller
successfully rejects disturbances in a worst-case scenario.

A new objective function was developed for use with the
multi-parameter extremum-seeking controller. This objective
function divides the energy of a solution by the kurtosis of
the Fourier spectrum of the waveform. There are two main
criteria for this objective function: 1) high-energy mode-locked
states appear as local maxima of the objective function with a
buffer between the maxima and chaotic or multi-pulse regions,
and 2) it is expressed in terms of experimentally measurable
quantities. The objective function developed in this work is
not necessarily the only or best function. We might also
incorporate quantities such as the average power, full-width
at half-maximum of the pulse, or autocorrelation into another
objective function depending on specific design goals. It is
also possible to use high-frequency sampling to time-average
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and reduce measurement noise in experiments.
The control architecture demonstrated in this paper gener-

alizes to multiple-NPR laser systems. However, these systems
are extremely expensive to simulate because of the multiple
time-scales, especially for a long, time-resolved signal, as
in Figures 10. A next-step is to apply these methods in
an experiment, and begin increasing the number of NPR
sections, which will result in a higher energy pulse. Indeed,
the extremum seeking control advocated here may be the
only practical way to explore such high-dimensional parameter
regimes. The methods in this paper rely on a decent set of
starting parameters, so that we are in the attracting basin of
a local maximum. For multiple-NPR systems, this parameter
space is high-dimensional, and new techniques will need to be
developed to identify good starting guesses for the extremum-
seeking controller. This may well involve the use of machine
learning and data reduction techniques, as in [13].

The extremum-seeking controller may also be used to
simply monitor and maintain robust operation of a mode-
locked laser. For instance, it may be beneficial to turn on the
extremum-seeking controller for a short time to search for the
locally optimal parameter values and then fix the angles during
operation for improved pulse uniformity. The objective func-
tion can be continually monitored, even without perturbing the
input parameters, allowing for the construction of a switching
criteria to turn on the extremum-seeking controller.

Finally, given the success of the algorithm in the NPR
laser, one can easily imagine applying the same techniques
to other classes of both solid state and fiber lasers. As long
as one can clearly identify parameters which manipulate the
mode-locking, then these parameters can be controlled by the
algorithm. Alternatively, one can use the algorithm with an
objective function that seeks to recover other mode-locking
states of interest, wether they be the fastest temporal pulses,
pulses with prescribed spectral shapes, etc. Thus it is a
general framework that can be easily integrated into practical
photonics systems with the potential of great success.
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