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Abstract

Unsteady aerodynamic models are necessary to accurately simulate forces and develop feedback controllers for wings
in agile motion; however, these models are often high dimensional or incompatible with modern control techniques.
Recently, reduced-order unsteady aerodynamic models have been developed for a pitching and plunging airfoil by
linearizing the discretized Navier-Stokes equation with lift-force output. In this work, we extend these reduced-
order models to include multiple inputs (pitch, plunge, and surge) and explicit parameterization by the pitch-axis
location, inspired by Theodorsen’s model. Next, we investigate the naïve application of system identification
techniques to input–output data and the resulting pitfalls, such as unstable or inaccurate models. Finally, robust
feedback controllers are constructed based on these low-dimensional state-space models for simulations of a rigid
flat plate at Reynolds number 100. Various controllers are implemented for models linearized at base angles of
attack ↵0 = 0

�, ↵0 = 10

�, and ↵0 = 20

�. The resulting control laws are able to track an aggressive reference lift
trajectory while attenuating sensor noise and compensating for strong nonlinearities.

Keywords: Unsteady aerodynamics, Theodorsen’s model, reduced-order model, state-space realization, robust
control, eigensystem realization algorithm (ERA), observer/Kalman filter identification (OKID).

1. Introduction

Time-varying fluid flows are ubiquitous in modern engineering and in the life sciences, and controlling the
corresponding unsteady aerodynamic forces and moments poses both a challenge and an opportunity. Biological
propulsion illustrates the potential utilization of unsteady forces for engineering design (Daniel, 1984; Allen and
Smits, 2001; Clark and Smits, 2006; Dabiri, 2009). It is observed that birds, bats, insects, and fish routinely
exploit unsteady fluid phenomena to improve their propulsive efficiency, maximize thrust and lift, and increase
maneuverability (Birch and Dickinson, 2001; Combes and Daniel, 2001; Sane, 2003; Wang, 2005; Wu, 2011; Shelley
and Zhang, 2011). They achieve this performance with robustness to external factors, such as gust disturbances and
weather, rapid changes in flight conditions, and even gross bodily harm. At the same time, they do so with fixed
actuators (wing muscles) and a limited number of noisy, distributed sensors throughout the body. As uninhabited
aerial vehicles (UAVs) become smaller and lighter, robust unsteady aerodynamic control will become increasingly
important during agile maneuvers and gust disturbances.

Many aerodynamic models used for flight control rely on the quasi-steady assumption that forces and moments
depend in a static manner on parameters such as relative velocity and angle of attack. In essence, the assumption
is that maneuvers are sufficiently slow so that the flow has time to equilibrate. While these models work well
for conventional aircraft, they do not describe the unsteady aerodynamic forces that are important for small, agile
aircraft to avoid obstacles, respond to gusts, and track potentially elusive targets. Small, lightweight aircraft have a
lower stall velocity. Therefore, gusts and rapid motions excite large reduced frequencies, k = ⇡fc/U1, and Strouhal
numbers, St = fM/U1, where f and M are the frequency and amplitude of motion, respectively. Henceforth,
lengths are nondimensionalized by the chord length c, velocities by the free-stream velocity U1 and time by c/U1.
Loosely speaking, large reduced frequencies are excited when wing motion is so fast that unsteady flow structures
do not have time to convect an entire chord length before new structures are formed. Large Strouhal numbers
are excited by wing motions that are a combination of fast and large amplitude, and these typically result in
complex wake structures. The Strouhal number and reduced frequency may be varied independently by the choice
of frequency f and amplitude M .
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Nomenclature

(A,B,C) State-space model for transient lift
(A,B,C)r Reduced-order model of order r
a Pitch axis with respect to 1/2�chord
b Curvature parameter for step-up maneuvers
c Chord length of plate
CL Lift coefficient [CL , 2L/⇢U2

1c]
C↵ Lift coefficient slope in ↵
e Noisy error signal
f Frequency of maneuver [Hz]
G(s) Transfer function for transient lift
Ga Actuator model
g Horizontal position of plate
Hi i-th Markov parameter
h Vertical position of plate
k Reduced frequency [k , ⇡fc/U1]
L Lift force
Ld Desired loop shape
L Laplace transform
M Amplitude of motion
n Sensor noise

Re Reynolds number [Re , cU1/⌫]
r Reduced-order model order
rL Reference lift
St Strouhal number [St , fA/U1]
s Laplace variable (dimensionless)
t Time (dimensional)
U Vector of input motion
U1 Free stream velocity
u Input to state-space model
x State of state-space model
Y Vector of measurements
y Output of state-space model
↵ Angle of attack of plate
↵e Effective angle of attack
↵0 Base angle of attack
�tc Coarse time-step
�tf Fine time-step
⌫ Kinematic viscosity
⇢ Fluid density
⌧ Time (dimensionless) [⌧ , tU1/c]
⌧h Hold time
⌧r Ramp time

There exist a wide range of unsteady aerodynamic models in the literature (Dowell and Hall, 2001; Leishman,
2006; Amsallem et al., 2010). The classical unsteady models of Wagner (1925) and Theodorsen (1935) are still
used extensively, and they provide a standard of comparison for the linear models that follow them (Bruno and
Fransos, 2008). Wagner’s model constructs the lift in response to arbitrary input motion by convolving the time
derivative of the motion with the analytically computed step response, also called the indicial response. Linear
indicial response models are a mainstay of the unsteady aerodynamics (Tobak, 1954) and aeroelasticity (Marzocca
et al., 2002; Costa, 2007) communities. They may be constructed based on analytical, experimental, or numerical
step-response information. They have been applied to a wide range of problems ranging from understanding the
effect of control surfaces (Leishman, 1994), to the modeling of gusts (Leishman, 1996), and the suppression of
shedding on bridges and buildings (Salvatori and Spinelli, 2006; Costa, 2007). Nonlinear extensions have been
developed (Tobak and Chapman, 1985; Prazenica et al., 2007; Balajewicz and Dowell, 2012).

Theodorsen’s frequency-domain model is equivalent to Wagner’s, using the same model assumptions of an
incompressible, inviscid flow with a planar wake. Although Theodorsen’s model applies only to sinusoidal input
motion, it was suitable for the analysis of flutter instability with the tools available. However, with modern tools,
it is possible to construct a state-space realization based on Theodorsen’s lift model that is useful for time-domain
analysis and feedback control (Brunton and Rowley, 2013). Dinyavari and Friedmann (1986) and Breuker et al.
(2008) construct state-space models for Theodorsen’s transfer function, but not for the entire lift coefficient. Peters
et al. (1995), Peters et al. (2007) and Peters (2008) developed a state-space model based on general potential flow
theory and the Glauert expansion of inflow states, and Theodorsen’s model is a special case.

Accurate state-space aerodynamic models are especially important when the flight dynamic and aerodynamic
time scales are comparable. In this case, modern control techniques such as H1-synthesis can be especially useful
for achieving robust performance. Because small, lightweight aircraft have shorter flight dynamic time-scales, small
vehicles and bio-flyers at low Reynolds number, Re = cU1/⌫, between 10

2–10

5 are particularly interesting; here
⌫ is the kinematic viscosity. However, the classical models are limited by the inviscid assumption that allows for
closed-form solution, which makes them less accurate for low Reynolds numbers and at larger angles of attack.

Low-dimensional, state-space models for the viscous unsteady aerodynamic forces on a small-scale wing in
motion were recently developed based on the linearized Navier-Stokes equations with lift-force output (Brunton
et al., 2013). The eigensystem realization algorithm (ERA) (Juang and Pappa, 1985; Ma et al., 2011) was used
to identify balanced reduced-order models from impulse response data, which in turn was obtained from noisy
input–output data using the observer/Kalman filter identification (OKID) (Juang et al., 1991). The resulting
models were inspired by the models of Wagner and Theodorsen, but formulated in state-space and generalized to
include transient viscous fluid dynamic forces specific to a particular wing geometry and Reynolds number. Figure 1
shows the frequency response for a flat plate pitching sinusoidally (±1

�) about its leading-edge at Re = 100 at
a base angle of attack of ↵0 = 20

�. The input is angular acceleration ↵̈ and the output is the lift coefficient
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Figure 1: Bode plot of unsteady lift coefficient, CL, for pitching motion about the leading edge. The model input is ↵̈. Region I
corresponds to low-frequency motion. Region II corresponds to the transient fluid dynamic frequencies. Region III corresponds to high-
frequency motion dominated by added-mass. The angle of attack ↵ has units of degrees, and the input motion is ↵ = ↵0 + 1� sin(2kt).

CL = 2L/⇢U2
1c, where L is the dimensional lift force and ⇢ is the fluid density. Theodorsen’s model does not agree

with the numerically computed frequency response, except at high frequencies when the forces are dominated by
added-mass. The inviscid model over-predicts the low-frequency magnitude since the model uses a 2⇡ lift slope. In
addition, the phase is off at intermediate frequencies because Theodorsen’s model does not accurately capture the
transient viscous dynamics that result from a separation bubble. In contrast, a viscous model with a 7-mode ERA
component, based on methods presented in this paper, accurately captures the entire frequency response.

1.1. Contributions of this work
This work extends the unsteady aerodynamic models presented in Brunton et al. (2013), investigates how to

identify these models from various input–output data, and uses them to develop robust feedback control laws.
Inspired by Theodorsen’s model, we introduce a new multiple-input model that is explicitly parameterized by
pitch-axis location, and is capable of handling simultaneous pitch, plunge, and surge. The model order does not
increase significantly over a single-input model because of the way that viscous fluid forces are modeled using ERA;
the models are shown to be valid up to an effective angle of attack of ↵

eff

= 20

�, for the example considered. Next,
we investigate the correct uses of ERA/OKID to identify these reduced-order models, and illustrate the potential
pitfalls of incorrect modeling. Finally, robust feedback controllers are developed, based on these low-order state-
space models, which are able to attenuate sensor noise and compensate for strong fluid nonlinearities.

This paper is organized as follows: In Section 2, we summarize previous single-input pitch and plunge models,
and then develop a new parameterized multiple-input model. Section 3 presents an overview of how to identify
reduced-order aerodynamic models from input–output data. New results on multiple-input model identification
and the pitfalls of incorrectly applying ERA/OKID are included in Sections 3.5 and 3.6. Section 4 contains the
results of direct numerical simulations of a pitching and plunging flat plate at Re = 100. Models are obtained
using the methods in Section 3 with system identification maneuvers from Appendix A. The performance of these
models is then demonstrated on a different set of maneuvers. The parameterized multi-input model is verified, and
robust feedback controllers are developed from linear models and applied to the full non-linear simulations. The
controllers perform well, even when the flow is massively separated. Section 5 summarizes the results and future
directions. System identification maneuvers are included in Appendix A.

3



2. State-space unsteady aerodynamic models

The unsteady, incompressible Navier-Stokes equations may be linearized about a nominal angle of attack for
various pitch, plunge, and surge motions. The result is a state-space model that is approximated using system
identification and model reduction techniques (see Section 3). We also consider a linearized lift-force output
equation, although other output measurements are also possible, including forces, moments, pressures, etc. The
models in Sections 2.1 and 2.2 have been presented in previous work (Brunton et al., 2013). The new multi-input
model in Eq. (5) is parameterized by pitch-axis location and is inspired by Theodorsen’s model.

2.1. Pitch models
For the case of pitching motion, linearization results in either of the two models:
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The input to the model is ↵̈, where ↵ is the angle of attack, the output of the model is the lift coefficient CL, and x

is a vector describing the fluid state. Eqs. (1) and (2) are related by a coordinate transformation so that the state
in Eq. (1) corresponds to vorticity and the state in Eq. (2) corresponds to velocity (Brunton et al., 2013). Notice
that in Eq. (1) ↵̇ is the input to the transient x dynamics and in Eq. (2) ↵̈ is the input to the x dynamics. This is
because the velocity state responds instantaneously to pitch acceleration and vorticity does not. The coefficient C↵

is the quasi-steady lift coefficient slope, C↵̇ and C↵̈ are added-mass coefficients, and the models (A,B↵̇,C) from
Eq. (1) and (A,B↵̈,C) from Eq. (2) are state-space models for the transient fluid dynamic forces.

2.2. Plunge and surge models
Models for plunge and surge are related to the pitch models above, except that there is no steady-state force

associated with a specific horizontal position g or vertical position h; thus, there are no Cg or Ch coefficients in
the model. Because g̈ and ¨h contribute to the rate of effective angle of attack, ↵̇e, these generate vorticity and are
considered to be the inputs to the transient x-dynamics. A simple plunge model is given by:

d
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Surge is identical, with g replacing h.

2.3. Combined pitch, plunge and surge models
It is possible to combine the pitch, plunge and surge models above into a single state-space representation. We

may use either pitch formulation above (with either ↵̇ or ↵̈ as input to the state x). Combining the pitch model in
Eq. (2) with plunge and surge models in Eq. (3) yields the following multiple-input, single-output (MISO) model:
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The model in Eq. (4) is linearized about a base angle of attack ↵0 for a specific pitch-axis location a, which is
measured with respect to the 1/2-chord (e.g., pitching about the leading edge corresponds to a = �1/2, whereas the
trailing edge is a = 1/2). However, it is possible to obtain a model that is parameterized by the pitch-axis location
a. All pitch motions about a given point a may be considered a combination of pitch about the mid-chord (or
any point of interest) and an induced plunge and surge motion. The magnitudes of the induced plunge and surge
motions at the middle-chord location are aC0↵̈ and aS0↵̈, respectively, where C0 = cos(↵0), and S0 = sin(↵0). Note
that this is not an approximation, but is an exact kinematic transformation; this idea originates from Theodorsen
(1935), but is generalized here to be valid for large angles of attack. A model parameterized by the pitch-axis
location a is given by the following MISO model:
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Here, (A,B↵̈,Bḧ,Bg̈,C) are from the model in Eq. (4) for the case of pitch about the mid-chord. Mid-chord
pitching is particularly simple for a symmetric plate, since there are no added-mass lift forces from ↵̈, so C↵̈ = 0.

Alternatively, one may use body-frame coordinates (⇠, ⌘,↵), where ⇠ is parallel to the airfoil, ⌘ is normal, and
↵ is the pitch angle. At a base angle ↵0, the induced acceleration at the mid-chord is entirely in the direction ⌘:
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The B and D matrices in Eq. (6) are simple compared with those in Eq. (5); in the case of ↵0 = 0

�, they are equal.
The ⇠ term may often be neglected for a flat plate, since parallel motion generates significantly less induced fluid
velocity than normal motion, meaning that B⇠̈, C⇠̇ and C⇠̈ are generally small compared with B⌘̈, C⌘̇ and C⌘̈.

Note that the various A and C matrices above are not necessarily equal to one another, although they are equal
for Eqs. (4) and (5). The A,Bi, and C matrices and the coefficients C↵̇ and C↵̈ in Eqs. (1), (2), and (4) depend
on the pitch-axis location a. Finally, the matrices and constants for every model in this paper depend on the base
angle of attack ↵0, wing geometry, and Reynolds number. A remarkable property is that the multiple-input models
tend not to require increased model order of the x-dynamics, indicating that the reduced-order models for pitch
and plunge motions share similar transient viscous fluid dynamics, at least for the examples considered here.

3. Reduced-order aerodynamic modeling procedure

The algorithms in this section provide a methodology for obtaining low-dimensional representations for the
unsteady aerodynamic models in Section 2 from either numerical or experimental data. There are three basic
algorithms which may be extended or modified as necessary. These methods are presented for a pitching input
(u = ↵̈) and lift coefficient output (y = CL). However, they may be generalized to include plunge and surge input
motions, as well as drag and moment coefficient outputs, as discussed in Section 3.5. These algorithms have been
used previously to obtain single-input models (Brunton et al., 2013), although the details presented here are new.
Sections 3.5 and 3.6 present new material on multiple-input models and modeling pitfalls, respectively.
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The following methods rely heavily on the eigensystem realization algorithm (ERA) and the observer/Kalman
filter identification (OKID) method. The ERA was developed by Juang and Pappa (1985) to extend the minimal
realization theory of Ho and Kalman (1965) to systems with noisy data. The ERA produces reduced-order models
of a linear time-invariant system based on its Markov parameters, Hi, which are the output history from impulse-
response experiments of a discrete-time system. When these parameters decay slowly, as in lightly damped systems,
the ERA involves computing the singular value decomposition of a large matrix. For this reason, the ERA is often
used in conjunction with OKID (Juang et al., 1991), which constructs an asymptotically stable observer to identify
the system. OKID identifies the system Markov parameters using input–output data from realistic maneuvers,
such as actual flight data, as in Valasek and Chen (2003).

Recently, Ma et al. (2011) have shown that the ERA efficiently produces the same reduced-order models as the
method of snapshot-based balanced proper orthogonal decomposition (BPOD) (Rowley, 2005), without the need
for adjoint simulations. Balanced models have been effectively used for feedback control on a number of physical
applications including the flat-plate boundary layer (Bagheri et al., 2009), a flat plate at high incidence (Ahuja
and Rowley, 2010), cavity resonances and combustion oscillations (Illingworth et al., 2010), and the transitional
channel flow (Ilak and Rowley, 2008). The work of Silva and Bartels (2004) has used the ERA and OKID to obtain
reduced-order models from CFD for the unsteady aerodynamics excited by aeroelastic modes. In many examples,
the performance of balanced models is striking when compared against Galerkin projection onto POD modes.

It may appear at first glance that it would be simplest to use the ERA/OKID method to identify the entire
model in Eq. (1) or Eq. (2). However, the structure of the model, with added-mass forces proportional to ↵̈ and
quasi-steady forces proportional to ↵, makes it important to subtract these off before modeling the remaining
transient dynamics with the ERA. This concept is illustrated in Section 3.6.

3.1. Common features of all methods
All of the algorithms below share some common features. Each is based on a discrete-time impulse response

in either ↵̇ or ↵̈, which corresponds to a step response in either ↵ or ↵̇, respectively. The step response may be
obtained directly or estimated from a frequency-rich input–output maneuver using the OKID method. Various
maneuvers for system identification are presented in Section A.

After obtaining a discrete-time step response in either ↵ or ↵̇, the quasi-steady and added-mass coefficients
C↵, C↵̇, and C↵̈ are identified and subtracted from the measured response. After subtracting off these effects, the
last step is to identify the remaining transient dynamics using the ERA. The transient portion (A,B,C) of the
model in Eqs. (1) and (2) is approximated by the ERA model (A,B,C)r of order r ⌧ n = dim(A); the input is
either ↵̇ or ↵̈, and the output is CL. This splitting of quasi-steady, added-mass, and transient effects is illustrated
in Figure 2 (a) for Eq. (1), where G(s) = C(sI �A)

�1
B↵̇ is the transfer function for the transient dynamics. The

general procedure is summarized as follows:

1. Obtain the impulse response in either ↵̇ or ↵̈, possibly via OKID.
2. Determine C↵, C↵̇, and C↵̈. The coefficients C↵ and C↵̈ guarantee correct low-frequency and high-frequency

behavior of the model, respectively.
3. Identify a reduced-order model for remaining dynamics with the ERA.

Identification of C↵, C↵̇ and C↵̈ is discussed in Section 3.2. C↵̇ is determined explicitly in method 1, but this
is optional in the other algorithms. When ↵̈ is the input to the transient dynamics, (A,B↵̈,C), as in Eq. (2), the
C↵̇ contribution is captured by lims!0 C(sI � A)

�1
B↵̈ = �CA

�1
B↵̈.

Before providing details of each specific method, it is helpful to consider a typical step response for an unsteady
aerodynamic system modeled by Eq. (1) or Eq. (2). The actual aerodynamic step response has many temporal
and spatial scales, due to the order of magnitude difference in various forces at different frequencies. Therefore, to
make the individual features more apparent, we use a slower version of the step maneuver from Section A.1 on a
modified system with many of the same features as the aerodynamic systems we seek to model.

Figure 2 (b) shows an approximate sketch of a typical ramped step response in ↵ for a wing pitching about
a point ahead of the mid-chord. The top plot shows the lift coefficient history throughout the step, and the
bottom three plots show the angle of attack and its derivatives throughout the maneuver. The step response is
characterized by large added-mass forces during the step (1 and 2), followed by a transient lift (3) which decays to
a steady-state value (4) after a large number of convective time units. The added-mass forces are a combination of
terms proportional to ↵̇ and ↵̈, and may be written as C↵̇↵̇ + C↵̈↵̈. The steady-state lift is given by C↵↵, where
C↵ is the lift coefficient slope. Finally, the transient lift in region (3) comes from unsteady fluid dynamic effects,
for example due to separation bubble dynamics, or other boundary layer effects. This may be represented by Cx,
where x represents the generalized fluid dynamic state. This yields the following:

CL(↵, ↵̇, ↵̈,x) = C↵↵ + C↵̇↵̇ + C↵̈↵̈ + Cx. (7)
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Figure 2: (a) Schematic of reduced-order model (1), where G(s) = C(sI�A)�1B↵̇. (b) Sketch to illustrate a typical aerodynamic step
response for pitch point ahead of the mid-chord. (top) The lift coefficient may be characterized by the following forces: 1. added-mass
proportional to ↵̈, 2. added-mass proportional to ↵̇ plus quasi-steady forces (proportional to ↵), 3. transient dynamics plus quasi-steady
forces, and 4. quasi-steady forces. The lift coefficient is for illustration purposes only, and is not based on computational data.

The coefficients C↵,↵̇,↵̈ in Eq. (7) are related to the stability derivates CL↵ , @CL/@↵, CL↵̇ , @CL/@↵̇, and
CL↵̈ , @CL/@↵̈ and the expression is generalized to include additional dynamics via the state x.

In the following, �tf is the time step for time-resolved measurements and �tc is the time step for coarse sampling
and the resulting discrete-time model. Further, let Y =

⇥
Y0 Y1 . . . YN

⇤T be a vector of lift coefficient outputs,
Yk = CL(k�tf ), and U =

⇥
U0 U1 . . . UN

⇤T be a vector of inputs, Uk = ↵̈(k�tf ), measured at times k�tf .
The number of samples, N , must be sufficiently large that transients have died out.

3.2. Method 1: Model (1) from ramped-step response in ↵

This method is based on the lift output in response to a ramped step maneuver in ↵ from ↵0 to ↵0 + M ,
and is used primarily with direct numerical simulations to identify models of the form in Eq. (1). The step
maneuver described in Section A.1 is a smoothed linear ramp function that may be viewed as a time-resolved,
smoothed approximation to a discrete-time impulse in ↵̇ of magnitude M/�tc, where �tc is the duration of the
step maneuver. A small step amplitude, M 2 [0.1�, 1�

], and duration, �tc 2 [0.01, 0.1] convection time units, yields
a response that is approximately linear and has sufficiently large high-frequency transients.

The lift slope C↵(↵0) is equal to (YN � Y0)/M , where YN is the steady-state lift, measured long after the step,
and Y0 is the initial lift at a fixed angle ↵0 before the step. We subtract C↵↵(k�tf ) from each Yk.

The added-mass coefficient C↵̈ may be solved for in the equation Y ⇡ C↵̈U , which is approximately true during
the step maneuver when U is large. We find a least squares fit for Y in terms of U by taking the pseudoinverse:
C↵̈ = U

†
Y , U

⇤
(UU

⇤
)

�1
Y . It is important to use only portions of Y and U restricted to the step maneuver

where the added-mass forces dominate. We now subtract C↵̈Uk from each Yk.
After subtracting off C↵↵ and C↵̈↵̈ from the step response, the remaining transient dynamics may be modeled

using the ERA. In order to determine a model using the ERA, we require Markov parameters Hi, which are the
outputs yk from a discrete-time impulse response. It is possible to obtain Hi by sampling the signal with time step
�tc starting from the middle of the discrete impulse in ↵̇. With the Markov parameters, it is possible to identify
the remaining portion of the model corresponding to C↵̇↵̇ + Cx:

• C↵̇ = H0�tc/M , (since the magnitude of the discrete pulse in ↵̇ is M/�tc),

• {Hj�tc/M | j � 1} ! (A,B↵̇,C)r, from Eq. (1), using the ERA.

Finally, the reduced-order, discrete-time model (A,B↵̇,C)r may be converted to continuous time, since the dy-
namics at very high frequencies are dominated by added-mass terms.

As an aside, it is possible to refine the estimate for C↵̈ by subtracting off C↵̇↵̇ and correcting for the change in an-
gle of attack during the step: C↵̈ = U

†
˜

Y where ˜

Y =

⇥
˜Y0

˜Y1 . . . ˜YS

⇤T and ˜Yk = (Yk�C↵̇↵̇(k�tf ))/ cos(↵(k�tf )).
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However, the effects of C↵↵ and C↵̇↵̇ are generally orders of magnitude smaller than the added-mass force C↵̈↵̈
during the step, and may be neglected in practice.

3.3. Method 2: Model (2) from ramped-step response in ↵

To obtain a model of the form in Eq. (2), it is not practical to directly obtain an impulse in ↵̈, since this
corresponds to a step in ↵̇ and a ramp in ↵; constant growth of ↵ will quickly take us out of the linear regime.
Instead, we start with a ramped-step in ↵ and subtract off the quasi-steady lift coefficient, C↵, as in the previous
section. Next, the coefficient C↵̇ may be identified by sampling the measured lift during the middle of the impulse
in ↵̇, when ↵̈ is zero. To identify C↵̈, the remaining signal is integrated to give the step response in ↵̇ (impulse
response in ↵̈), less the C↵ and C↵̇ contributions. Sampling the remaining signal yields the Markov parameters
Hi for an impulse in ↵̈, which are synthesized into C↵̈ and a low-order, discrete-time model (A,B↵̈,C)r for the
transient dynamics (A,B↵̈,C) in Eq. (2).

The signal might have a steady-state value after integration, which may be removed and added to the coefficient
C↵̇; if it is not removed manually, then it will be absorbed in the term �CA

�1
B↵̈, using the matrices in Eq. (1).

Similarly, it is not strictly necessary to identify and remove the C↵̇ term before integrating, as this will also be
captured by the transient dynamics. This is simply a statement of the fact that state-space representations are not
unique. Alternatively, we may consider the Laplace transforms of the lift coefficient, Y (s) = L[CL(t)], and angular
acceleration, U(s) = L[↵̈(t)], resulting in the unique transfer function for Eq. (2):

Y (s) =


C↵

s2
+

C↵̇

s
+ C↵̈ + G(s)

�
U(s), (8)

where G(s) = C(sI � A)

�1
B↵̈ is a stable, strictly proper transfer function for the additional transient dynamics.

3.4. Method 3: Model (2) from impulse response in ↵̈ (OKID)
This method develops models of the form in Eq. (2) from realistic input–output maneuvers, such as those

developed in Section A.2. In particular, the OKID method is used to obtain the Markov parameters for the
linearized impulse response in ↵̈. From the impulse response, one may identify the parameters C↵, C↵̇, and C↵̈ as
well as a low-dimension ERA model (A,B↵̈,C)r using a technique similar to the method in Section 3.3.

The OKID method provides Markov parameters for a discrete-time impulse response in ↵̈ given the input–
output data for a frequency-rich maneuver, such as the maneuvers in Section A.2. Typically the input–output pair
used with OKID have been sampled from the time-resolved input motion ↵̈(t) and lift signal CL(t). The sample
time �tc is the desired coarse time step for the discrete-time model of the transient dynamics. For wind-tunnel
experiments, a time step of �tc = 0.1 convective time is sufficiently fast to correctly identify added-mass forces.
It has been determined that this time step is small enough to capture the relevant frequencies for the transient
dynamics, since higher frequency motions are dominated by added-mass forces, which are accurately captured by
the coefficient C↵̈ in the continuous-time model, Eq. (2).

Figure 3 shows the Markov parameters from OKID, which are the discrete-time impulse response parameters
in ↵̈ for a linearized system of the form in Eq. (2). Because an impulse in ↵̈ is a step in ↵̇ and a ramp in ↵, there is
a linear growth in the lift coefficient as the angle of attack increases linearly with time. Clearly it is not possible to
obtain the impulse response of the linearized system from a step in ↵̇ in a real experiment, since the linear growth
in ↵ would quickly excite nonlinear phenomena; this is one motivation for the OKID method, which estimates the
linear impulse response from a bounded maneuver in a region where the linear approximation is valid.

To identify a model of the form in Eq. (2), we first identify the lift coefficient slope C↵. After subtracting off C↵↵,
C↵̇ is the steady-state value (since this is a step in ↵̇). After these modifications, the first Markov parameter is C↵̈,
and the remaining parameters are used by the ERA to obtain a low-dimensional, discrete-time model (A,B↵̈,C)r

for the transient dynamics (A,B↵̈,C) in Eq. (2).

3.5. Identifying multi-input, multi-output models with the ERA
It is possible to extend the methods above to identify models with multiple inputs and multiple outputs (MIMO),

such as a model with pitch, plunge, and surge inputs, as in Eqs. (4), (5), and (6). As with the single-input, single-
output (SISO) case, this starts with impulse-response data for each separate input, possibly estimated using OKID.
All of the remaining steps in the procedure are identical, including identifying the quasi-steady and added-mass
coefficients for each input–output pair, and formatting the remaining dynamics into a sampled discrete-time impulse.
ERA is used to identify a model for the remaining transient dynamics, and so a Hankel matrix is constructed from
the MIMO Markov parameters, which each have size q ⇥ p, where q is the number of outputs and p is the number
of inputs. ERA will then identify the remaining dynamics as before without a significant increase in model order.
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Figure 4: Correct and incorrect use of OKID to model pitch dynamics. (a) Bode plot, and (b) pitch-up, hold, pitch-down maneuver.

3.6. Application of the ERA/OKID to systems with added mass
One may attempt to identify the entire model in Eq. (1) or Eq. (2) using ERA directly on the Markov parameters

from OKID. However, simply applying ERA to the Markov parameters from OKID, which correspond to an impulse
response in ↵̈, will result in an unstable model because of the linear growth in CL. The transfer function from ↵̈ to
CL contains a double integrator, which is unstable. These Markov parameters are shown in Figure 3. In addition, if
one applies ERA/OKID to the pair {↵̇, CL} instead of {↵̈, CL}, the resulting model will have input u = ↵̇ and will
not capture the correct added-mass forces. The transfer function from ↵̇ to CL is improper, requiring a derivative
to capture ↵̈ forces. It is impossible to represent the derivative of an input in state-space, and so approximating
the derivative term (u̇ = ↵̈) will be inaccurate and require high model order. Therefore, the correct input to the
system is ↵̈, and the C↵ and C↵̈ terms must be identified and removed before applying ERA.

Examples of these systematic failures are shown in Figure 4. The correct model based on the method in
Section 3.4 is labeled “modified OKID (↵̈)”. The two incorrect uses of ERA/OKID are labeled “incorrect OKID.”
Direct numerical simulation at Re = 100 (see Section 4) are labeled “DNS.” The incorrect OKID model with input ↵̈
is unstable, as seen in Figure 4 (b). The incorrect OKID model with input ↵̇ is unable to capture the added-mass
peaks in Figure 4 (b). Increasing the model order does not significantly improve this behavior. However, the
modified OKID model is stable and is accurate at all frequencies (nearly indistinguishable from DNS).
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Figure 5: Illustration of wing motion (a) in the wind-tunnel frame and (b) in the wing-fixed frame.

4. Results

The multi-input models and modeling procedures of the previous sections are demonstrated on a pitching and
plunging flat plate at Reynolds number 100 using direct numerical simulations. In addition, robust controllers are
developed, based on reduced-order models for pitch, to track reference lift coefficients at various angles of attack.
The controllers accurately track a reference lift despite significant sensor noise and nonlinear flow separation. Note
that the models are constructed using system identification maneuvers from Appendix A. They are then tested on
independent maneuvers and control scenarios covering a range of timescales and amplitudes. In computations, as
long as the step-up identification maneuver is sufficiently fast to excited a relevant range of frequencies, models will
be quite accurate; fast-enough typically means that the airfoil motion takes place in less than 0.1 convective time
units. For experiments with noisy measurements, the pseudo-random identification maneuvers provide a robust
means of obtaining models.

The numerical results in this paper are based on direct numerical simulations (DNS) of the incompressible two-
dimensional Navier-Stokes equations using the fast multi-domain immersed boundary projection method (IBPM)
of Taira and Colonius (2007); Colonius and Taira (2008). The boundary conditions are a specified velocity vB

at points on the immersed body and uniform flow in the far field, which is valid for a large enough domain. An
efficient multi-domain approach is used, consisting of a series of nested grids, each twice as large as the last. The
Poisson equation is solved on the largest grid with uniform flow boundary conditions. Next, the interpolated stream
function from the larger grids are used as boundary conditions for the Poisson equation on the next smaller grid.
This method has been rigorously validated in two-dimensions, as well as in three-dimensions against an oil tow-tank
experiment at Re = 100 for a flat rectangular wing with low aspect ratio (AR = 2) at ↵ = 30

�.
Instead of solving the equations of motion in the wind-tunnel frame, we solve them in the body-fixed frame of

the wing by introducing a moving base flow with uniform and purely rotational components. The wing kinematics
in each frame is shown in Figure 5. In the body-fixed frame, boundary points are fixed relative to the grid regardless
of wing motion. Therefore, the matrix involved in solving for the boundary forces does not change in time and
can be decomposed by a Cholesky factorization once at the beginning of the simulation. This is faster and more
accurate than iterative methods when the boundary points on the wing move relative to the grid.

The computational domain consists of five nested grids, the finest covering a domain of 4c⇥ 4c and the coarsest
covering a domain of 64c ⇥ 64c, where c is the chord length of the plate. Each grid has resolution of 400 ⇥ 400,
which is sufficient for converged results. Specifically, we performed a convergence study, both in space and time,
until vorticity structures and force coefficients converged within a small tolerance. The code has also been validated
on steady and unsteady cylinder wakes, matching Strouhal number, lift and drag coefficients, and also separation
points and wake profile. The predecessor to our code has also been validated on a low Reynolds number oil tow-tank
experiment (Colonius and Taira, 2008).

4.1. Reduced-order models for flat plate at Re = 100

We develop models for plunge and pitch about different pitch-axis locations at various base angles of attack, ↵0.
At ↵0 = 0

�, we construct a multiple-input model, as in Eq. (5), for pitch and plunge motion that is parametrized
by pitch-axis location a. In particular, pitching motion about any point may be considered equivalent to pitching
about the mid-chord in addition to an induced plunge motion. This is kinematically exact, although the fluid
dynamic response is not necessarily the sum of the individual mid-chord pitching response and plunging response;
this only holds if the responses are linear so that superposition applies. Having identified models for pitching at
the mid-chord and plunging, it is possible to reconstruct the model for pitch about the leading-edge and quarter-
chord based on a linear combination of these two models. The model agreement is nearly exact, as shown in
Figure 6, because the responses are approximately linear and superposition holds. This is similar to the pitch-point
parameterization in Theodorsen’s model, except that we identify separate models for pitch and plunge dynamics.

The models in Eq. (1) and (5) agree well with the indicial response model and DNS for small-amplitude
maneuvers, and so we try maneuvers with a larger amplitude. Because both the reduced-order model and the
indicial response method are linear, they should continue to agree with each other for large amplitude motions,
even if they disagree with DNS. However, the actual flow physics is nonlinear, and so comparison with DNS on a
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larger maneuver provides a more challenging test case for the models. Additionally, comparison with Theodorsen’s
model will highlight the advantages of the reduced-order model.

A large amplitude combined pitch/plunge maneuver is shown in Figure 7 (a). The pitching portion of the
maneuver consists of a pitch-up, hold, pitch-down about the leading edge with a maximum angle of 10

�. The
plunging portion of the maneuver consists of a step-down in vertical position which is the negative integral of the
step-up, hold, step-down maneuver, and is chosen to have a maximum effective angle of attack based on vertical
velocity of 10

�. The motion of ↵ and ˙h are given by the following expression for u:

G(t) = log


cosh(b(t � t1)) cosh(b(t � t4))

cosh(b(t � t2)) cosh(b(t � t3))

�
, u(t) = u

max

G(t)

max(G(t))
; (9)

where b = 11, ↵
max

= 10

� and ˙h
max

= �0.1745, which corresponds to ↵e = 10

�. For the pitching motion,
t1 = 1, t2 = 3, t3 = 4, t4 = 6, and for the plunging motion, t1 = 2, t2 = 4, t3 = 5, t4 = 7. These maneuvers are based
on the canonical pitch-up, hold, pitch-down maneuver of Eldredge et al. (2009); OL et al. (2010).

Figure 7 shows the performance of each model on the combined pitch/plunge maneuver (a). The bottom plot
shows the lift coefficient of each model throughout the maneuver. The combined pitch/plunge model agrees with
DNS, and outperforms Theodorsen’s model, which over-predicts the lift throughout due to the idealized 2⇡ lift
slope. The indicial response model agrees with the reduced-order model (1), although it is not plotted.

The frequency response for the reduced-order model at a base angle of ↵0 = 20

� is shown in Figure 1. The lift
coefficient slope decreases as the angle of attack increases, as observed by the decrease in low-frequency asymptote.
In addition, the model takes longer to equilibrate to motion or disturbances at low frequencies since the low-
frequency phase converges to its asymptote at a lower frequency. There is a strong resonance between 1 and 10

rad/s c/u corresponding to a mode that will become unstable and lead to vortex shedding (Brunton et al., 2013).

4.2. Feedback control of unsteady lift coefficient by varying pitch angle
Robust feedback controllers are developed, based on reduced-order models for pitch, to track a reference lift

coefficient, rL, while rejecting low-frequency disturbances and attenuating high-frequency sensor noise. We desire
robust controllers for unsteady aerodynamic applications for a number of reasons. First, the actual unsteady fluid
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dynamics are governed by the nonlinear Navier-Stokes equations, so there are unmodeled dynamics corresponding
to the nonlinear terms. In addition, if control of micro aerial vehicles is the end-goal, it is important to be able
to track a reference trajectory despite large gust disturbances and possible environmental disturbances, such as
rain or unpredicted changes to the vehicle (damage, change in payload, etc.). Finally, sensor measurements are
inherently noisy, and this is especially a concern at low flow velocities. The controller schematic is shown in Fig. 8.

Figure 9 shows the frequency response of controllers (left) designed for quarter-chord pitching at various base
angles of attack using H1 loop-shaping (Skogestad and Postlethwaite, 2005). We use loop-shaping because we
are able to specify a desired open-loop transfer function (right) to meet given performance specifications, such
as disturbance rejection and reference tracking at low frequencies and noise attenuation at high frequencies. The
desired transfer function is then modified slightly to improve stability margins and robustness while maintaining
the overall shape and performance. The desired loop shape, shown in the plot on the right, is given by Ld =

960(s + 4)/s2(s + 80). This transfer function is chosen to have a double integrator (s�2
) for good low-frequency

tracking, a cross-over frequency of around 10 rad/s c/U , and a fast magnitude decay at high frequencies for noise
attenuation. The H1 loop-shaping procedure modifies the loop shape slightly to increase the phase margin at
crossover.

We also include an actuator model, given by Ga = 500/(s+500), since all realistic actuators will have magnitude
roll-off at high frequencies. This is especially important to include in unsteady aerodynamic control problems
where the aerodynamic model is proper but not strictly proper because of added-mass forces (i.e., the degree of the
numerator and denominator are equal in the model transfer function). The additional actuator roll-off is essential to
include, otherwise the controllers will assume that the aerodynamic model can respond instantly, and the resulting
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Figure 9: Bode plots for controllers (left) and loop shape (right) for ↵0 = 0�, ↵0 = 10�, and ↵0 = 20�. Desired loop shape (right) is
given by dashed line.

closed-loop system will be unstable in the presence of even small time delays.
The left panels of Figure 10 show the response of the closed-loop system to a commanded step in CL from

CL(↵0) to CL(↵0) + 0.5, followed by a step back down to CL(↵0) five convective time units later. The right panels
show the lift coefficient and angle of attack, shifted by CL(↵0) and ↵0, respectively. Differences in the lift response
and commanded angle of attack indicate the nonlinearity of the system; if the system were truly linear and the
models were equivalent, then the angle of attack curves would collapse. Because of the significantly decreased
quasi-steady lift slope at ↵0 = 20

�, it is necessary for the controller to command significantly larger angles of attack
to achieve the desired step in lift. All of the shifted lift coefficient curves collapse during the pitch-up portion of the
maneuver, although the lift for the maneuver based at ↵0 = 20

� deviates after the pitch-down. For this large ↵0

case, the transient large angle of attack (⇠ 60

�) results in vortex shedding during the step-down. The subsequent
flow is strongly nonlinear and is not well approximated by the ↵0 = 20

� model.
Figure 11 shows the three model-based controllers on an aggressive reference lift tracking maneuver about the

various base angles of attack, ↵0. White noise, n, with 0.001 variance is added to the sensor; the noisy input to
the controller, e = rL � CL � n, and corresponding noiseless error signal, rL � CL, are shown in the bottom right
panel for the ↵0 = 10

� case. To track the reference lift, the controller commands an input ↵̈, which is shown in
the bottom left panel. There are no disturbances added since the large angle of attack nonlinearity is disturbance
enough. All of the controllers track the maneuver quite well. However, the angle of attack curve for the ↵0 = 20

�

maneuver deviates significantly from the other curves, indicating the nonlinearity excited at large angles, as well as
differences in the controller. The controller based at ↵0 = 20

� must command larger changes in the angle of attack
to achieve the same relative change in unsteady lift coefficient because of the decreased lift coefficient slope.

5. Discussion

This work demonstrates the use of low-order, state-space aerodynamic models, such as those previously devel-
oped in Brunton et al. (2013), for robust closed-loop feedback control. We first extend these models to include
multiple inputs and explicit parameterization by the pitch-axis. These models are state-space realizations of accu-
rate indicial response models obtained from direct numerical simulations, and they capture the transient, viscous
effects that are not modeled by inviscid theories. In addition to extending these models, a careful methodology is
presented to identify models from input–output data. In particular, multiple-input, multiple-output extensions are
discussed and case studies of the incorrect application of ERA/OKID are illustrated with likely pitfalls.

The modeling and control results are demonstrated for a pitching and plunging flat plate at Reynolds num-
ber 100. A robust feedback controller is developed to track reference lift coefficients while attenuating noise and
compensating for disturbances. Three controllers are constructed based on models linearized at ↵0 = 0

�, ↵0 = 10

�,
and ↵0 = 20

�. All three controllers perform well on a step-up in lift coefficient from CL(↵0) to CL(↵0) + 0.5, as
well as on an aggressive maneuver with additive sensor noise. In each case, the controller based at ↵0 = 20

� must
command larger relative angles of attack for the same lift, due to the decrease in lift coefficient slope C↵.
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Figure 10: Step response plots from CL(↵0) to CL(↵0)+ 0.5 and back down for base angle of attack ↵0 = 0�, ↵0 = 10�, and ↵0 = 20�.
(a) Unmodified lift coefficient and angle of attack, (b) Shifted lift CL � CL(↵0) and angle ↵ � ↵0 curves. Reference steps are dashed
lines. (c) Vorticity fields at specific times during maneuver.

The excellent controller performance, despite highly nonlinear separated flow effects, is due in large part to the
instantaneous added-mass forces in response to accelerations of the plate. For pitching between the leading-edge
and mid-chord, these forces are favorable and have the same sign as the quasi-steady forces. Right half plane zeros
appear for pitching aft of the mid-chord, as the added-mass forces change sign. In this case, a plate undergoing fast
pitch-up will experience a brief dip in lift coefficient, due to negative added-mass, before the circulatory forces kick
in and the lift rises. This non-minimum-phase behavior, due to the appearance of right-half-plane zeros, complicates
controller design and limits the controller bandwidth. Developing controllers for pitching aft of the mid-chord, and
investigating the consequent performance limitations is the subject of future work.

Finally, generalizing the methods in this work to include nonlinear flow phenomena will be an important
contribution. The goal is a nonlinear model that yields the models from this work when linearized about a specific
angle of attack, yet has the correct nonlinear structure for large amplitude maneuvers such as in Noack et al. (2003).
In contrast to developing fully nonlinear models, gain-scheduled controllers are a plausible solution for control.
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Figure 11: Controller performance on aggressive maneuver with the addition of sensor noise.

A. System identification maneuvers

The maneuvers in this section are used in conjunction with the algorithms in Section 3 to develop models of the
form in Section 2 from either numerical or experimental data (Brunton et al., 2013). The algorithms in Sections 3.2
and 3.3 rely on the step response of ↵ (or ġ, ˙h). A smoothed step function that is useful in simulations is discussed
in Section A.1. Section A.2 presents maneuvers that are used with the OKID method in Section 3.4 to obtain the
impulse response in ↵̈ (or g̈, ¨h) from a more realistic input maneuver. These aggressive pseudo-random maneuvers
are particularly useful for experiments, since they excite various frequencies and overcome noisy measurements.

The measurements from a direct numerical simulation (DNS) of the Navier-Stokes (NS) equations or from a
wind tunnel experiment are necessarily a discrete-time signal. A fine timestep �tf is required for the DNS to
remain stable and approximate the continuous-time NS equations. The transient aerodynamic effects, however, are
modeled as a discrete-time system with a coarse timestep �tc � �tf . Thus, we command maneuvers defined by a
coarse discrete-time signal uk, and simulate a corresponding smoothed discrete-time signal ũj with timestep �tf .

A.1. Smoothed step functions
For a number of reasons, an actual step response is non physical. First, it is impossible to command in

experiments or simulations, because it would correspond to a body instantaneously dematerializing and then
rematerializing it in another location. An alternative is to use a smoothed step maneuver and approach the
limit as the maneuver becomes very rapid. As the maneuver becomes increasingly rapid, the added-mass forces
begin to dominate; in fact, a good rule of thumb is to choose a maneuver rapid enough that the lift response for
the duration of the maneuver is dominated by added-mass forces. This is typically achieved for a step-up duration
of  0.1 convective time units.

The duration of the step maneuvers used for the results in this paper are either �tc = 0.01 or �tc = 0.1
convective time units. The amplitude is either M = 0.1� ⇡ 0.0017451 rad in the case of pitching or M = 0.0017451
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chord lengths per convection time in the case of vertical velocity, corresponding to 0.1� change in effective angle of
attack. This is sufficiently rapid for the added-mass forces to dominate for the duration of the maneuver. To obtain
a model for plunging, we use a step-up in vertical velocity. Larger amplitude maneuvers will also yield accurate
models as long as the maneuver does not excite nonlinearities.

A pitch-up, hold, pitch-down maneuver was introduced by Eldredge et al. (2009) as a canonical pitching maneu-
ver to compare and study various experiments, simulations and models. The linear ramp-step maneuver is based
on the pitch-up, hold portion of the canonical maneuver, and the equations for u and u̇ are:

u(t) = M
G(t)

max G(t)
u̇(t) = M

tanh(b(t � t1)) � tanh(b(t � t2))

max G(t)
(10)

where
G(t) = log


cosh(b(t � t1))

cosh(b(t � t2))
· cosh(bt2)

cosh(bt1)

�
. (11)

The maneuver is shown in Figure 12 (a) for a step in angle of attack, u = ↵. The start of the maneuver is
t = t1 and the duration of the ramp-up is �tc = t2 � t1. The parameter b effects how gradual or abrupt the ramp
acceleration is. By choosing large b, it is possible to obtain a maneuver where the ü acceleration effects are localized
near time t1 = 0 and t2 = �tc, and the velocity u̇ is constant throughout much of the maneuver. This results in
an approximately piecewise linear ramp-up, with smooth transitions at t1 = 0 and t2 = �tc.

The linear ramp maneuver is a natural choice, since the boxy profile of the velocity u̇ resembles a discrete-time
impulse in u̇ with timestep �tc. Thus, it is possible to run simulations with a fine timestep �tf that fully resolve
the maneuver in time, and then down-sample to obtain a coarse discrete-time signal with sample time �tc.

A.2. Maneuvers for OKID method
The observer/Kalman filter identification (OKID) algorithm is useful for obtaining the Markov parameters

(impulse response parameters) from more realistic input–output data. For example, in an experiment, it may be
difficult to obtain an impulse response in ↵̈ because of the accompanying linear growth in ↵. Therefore, it is
desirable to use a realistic maneuver with bounded ↵ and estimate what the impulse response would be for the
linearized system. We seek models of the form in Eq. (2) with ↵̈ as the input, so the maneuvers must have rich
frequency content in ↵̈ to excite a large range of unsteady flow phenomena.

Gaussian white noise may be used as the input to ↵̈, as shown in Figure 12 (b). The sample time for the white
noise process is �tc = 0.1 convective time. This maneuver is primarily used with simulations, since the lift effect
from various parts of the maneuver are subtle and may be overwhelmed by noise in an experiment.

A system identification maneuver for wind tunnel experiments must satisfy a number of criteria. Because the
input to the model is ↵̈, we ultimately need a maneuver with rich ↵̈ content. Also, because we are identifying
various stability derivatives, C↵, C↵̇, and C↵̈, we need the contribution from individual changes in ↵, ↵̇, and ↵̈ to
be distinguishable in the measured lift force. Most importantly, obtaining high reduced frequencies in wind tunnel
experiments typically involves lower tunnel velocity, which results in a low signal-to-noise ratio. Therefore, the
maneuver must be sufficiently aggressive so that the forces generated provide large signal to noise.
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Figure 13: Aggressive maneuvers for identifying (a) pitch dynamics and (b) plunge dynamics.

The maneuver, shown in Figure 13 (a), is constructed as a pseudo-random sequence of ramp-up, hold and
ramp-down, hold maneuvers, from Section A.1, which are related to the canonical maneuvers in Eldredge et al.
(2009). The equations for u and u̇ for a single pitch-up, hold are given in Eq. (10), with u = ↵.

The duration of the ramp ⌧r = t2�t1 and hold ⌧h = t3�t2 are bounded Gaussian white noise processes. The step
amplitude M is also sampled from a Gaussian distribution, with the constraint that the maneuver amplitude never
exceeds ±10

�. This maneuver is attractive because ↵̈ consists of pseudo-randomly spaced pulses at the beginning
and end of each ramp; the pseudo-random pulses are inspired by the work of Kerstens et al. (2011). The result is
that the large added-mass forces are similarly spaced pulses. The large ramp-up and ramp-down maneuvers result
in forces that are large compared with sensor noise. A similar maneuver is generated for plunging motion, shown in
Figure 13 (b). Because there is no steady-state lift associated with a fixed vertical position h, it is unnecessary for
the maneuver to sample different vertical positions during the hold periods, in contrast to the pitching maneuver.
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