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The goal of this work is to develop low-order models for the unsteady aerodynamic forces on a small wing
in response to agile maneuvers and gusts. In a previous study, it was shown that Theodorsen’s and Wagner’s
unsteady aerodynamic models agree with force data from DNS for pitching and plunging maneuvers of a 2D
flat plate at Reynolds numbers between 100 and 300 as long as the reduced frequency k is not too large, k < 2,
and the effective angle-of-attack is below the critical angle. In this study reduced order models are obtained
using an improved method, the eigensystem realization algorithm (ERA), which is more efficient to compute
and fits within a standard control design framework. For test cases involving pitching and plunging motions,
it is shown that Wagner’s indicial response is closely approximated by ERA models of orders 4 and 6, respec-
tively. All models are tested in a framework that decouples the longitudinal flight dynamic and aerodynamic
models, so that the aerodynamics are viewed as an input-output system between wing kinematics and the forces
generated. Lagrangian coherent structures are used to visualize the unsteady separated flow.

I. Introduction

A. Overview

The unsteady flow over small-scale wings has gained significant attention recently, both to study bird and insect flight
as well as to develop advanced aerodynamic models for high-performance micro-aerial vehicles (MAVs). The short
time scales involved in gusts and agile maneuvering make small wings susceptible to unsteady laminar separation,
which can either enhance or destroy the lift depending on the specific maneuver. For example, certain insects1–3 and
birds4 use the shape and motion of their wings to maintain the high transient lift associated with a rapid pitch-up,
while avoiding stall and the substantially decreased lift which follows. The potential performance gains observed in
bio-locomotion make this an interesting problem for model-based control in the arena of MAVs5. For a good overview
of the effect of Reynolds number and aspect ratio on small wings, see Ol et al.6,7.

Most aerodynamic models used for flight control rely on the quasi-steady assumption that lift and drag forces
depend on parameters such as relative velocity and angle-of-attack in a static manner. The unsteady models of
Theodorsen8 and Wagner9 are also widely used. Despite the wide variety of extensions and uses for these theories10,
they rely on a number of limiting idealizations, such as infinitesimal motions in an inviscid fluid, and an idealized
planar wake, that result in linear models. These models do not describe the unsteady laminar separation characteristic
of flows over small, agile wings. During gusts and rapid maneuvers, a small wing will experience high effective angle-
of-attack which can result in unsteady separation. Dynamic stall occurs when the effective angle-of-attack changes
rapidly so that a leading-edge vortex forms, provides temporarily enhanced lift and decreased pitching moment, and
then sheds downstream, resulting in stall.12. This phenomenon is well known in the rotorcraft community10 since it
is necessary to pitch the blades down as they advance and pitch up as they retreat to balance lift in forward flight.
Recently, there have been efforts to model the effect of dynamic stall on lift13,14 as well as the lift coefficient due to
post-stall vortex shedding15.
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The goal of this study is to extend the range of unsteady aerodynamic models in a framework suitable for flight
control, shown in Figure 1. In particular, the aerodynamics will be viewed as an input-output system with flight
kinematic variables as inputs and aerodynamic forces as outputs. This framework has been specifically chosen to
provide insights into how nonlinear dynamics in the aerodynamic model result in new bifurcations in the coupled
flight model. Moreover, this approach most closely matches the DNS framework, which regards wing kinematics as
inputs and provides force data as output.
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Figure 1. Schematic of the natural decoupling of flight dynamic and aerodynamic models. The modularity of this approach allows different
aerodynamic models ranging from thin airfoil to Wagner’s and Theodorsen’s to ERA models can be plugged in with a common interface.

The remainder of the Introduction summarizes two previous studies. The first study15 develops a heuristic model
for the lift coefficient of an impulsively started flat plate at high angle-of-attack which includes a supercritical Hopf
bifurcation to capture the unsteady laminar vortex shedding. The second study16 compares classical unsteady aerody-
namic models with DNS to determine for what flow conditions the model assumptions break down.

B. Enhanced Models for Separated Flow

A simple heuristic model which describes the transient and steady-state lift associated with an impulsively started 2D
plate at a fixed angle-of-attack includes a Hopf bifurcation15,18 in α and a decoupled first-order lag

ẋ = (α− αc)µx− ωy − ax(x2 + y2)

ẏ = (α− αc)µy + ωx− ay(x2 + y2)
ż = −λz

 =⇒
ṙ = r

[
(α− αc)µ− ar2

]
θ̇ = ω

ż = −λz
(1)

The z direction is decoupled and represents the exponential decay of transient lift generated from the impulsive start.
The fixed point at r = 0 undergoes a supercritical Hopf bifurcation at α = αc resulting in an unstable fixed point at
r = 0 and a stable limit cycle with radius R =

√
(α− αc)µ/a. The limit cycle represents fluctuations in lift due to

periodic vortex shedding of a plate at an angle-of-attack which is larger than the angle at which the separation bubble
bursts. Thus, at a particular angle-of-attack α, the unsteady coefficient of lift CL is constructed from the average lift
C̄L and the state variables y and z as follows

CL = C̄L + y + z

Proper orthogonal decomposition and Galerkin projection have also been shown to produce modes and models
which preserve Lagrangian coherent structures16. In both models, the unsteady vortex shedding around a fixed plate at
Re = 100 and α = 30◦ is well characterized by a 2-mode model. However, there are fundamental limitations to these
models such as the need to precisely tune model (1) and the limited range of angle-of-attack and Reynolds number. It
is also unclear how to incorporate external forcing into the model ẋ = . . .+ f(α, α̇), so that the terms f can excite the
states x through a change of angle-of-attack or center-of-mass motion. This is the subject of current research.
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C. Breakdown of Classical Models at High Angle-of-Attack

When modeling the aerodynamic forces acting on an airfoil in motion, it is natural to start with a quasi-steady ap-
proximation. Thin airfoil theory assumes that the airfoil’s vertical center-of-mass, y, and angle-of-attack, α, motion is
relatively slow so the flow field locally equilibrates to the motion. Thus, ẏ and α̇ effects may be explained by effective
angle-of-attack and effective camber, respectively.

CL = 2π
(
α+ ẏ +

1
2
α̇

(
1
2
− a
))

(2)

Lengths are nondimensionalized by 2b and time is nondimensionalized by 2b/U∞, where U∞ is the free stream
velocity, b is the half-chord length and a is the pitch axis location with respect to the 1/2-chord (e.g., pitching about
the leading edge corresponds to a = −1, whereas the trailing edge is a = 1).

Theodorsen’s frequency domain model includes additional terms to account for the mass of air immediately dis-
placed (apparent mass), and the circulatory lift from thin airfoil theory is multiplied by Theodorsen’s transfer function
C(k) relating sinusoidal inputs of reduced frequency17 k to their aerodynamic response.

CL =
π

2

[
ÿ + α̇− a

2
α̈
]

︸ ︷︷ ︸
Added-Mass

+ 2π
[
α+ ẏ +

1
2
α̇

(
1
2
− a
)]

︸ ︷︷ ︸
Circulatory

C(k) (3)

Using Wagner’s time domain method9 it is possible to reconstruct the lift response to arbitrary input u(t) using
Duhamel superposition of the “indicial” lift response CδL(t) due to a step-response in input, u̇ = δ(t).

C
α(t)
L (t) = CδL(t)u(0) +

∫ t

0

CδL(t− τ)u̇(τ)dτ (4)

In a previous study16, thin airfoil theory, Theodorsen’s model, and Wagner’s indicial response were compared with
forces obtained from DNS for pitching and heaving airfoils. Theodorsen’s model showed agreement for moderate
reduced frequencies k < 2.0 for a range of Strouhal numbers for which the maximum effective angle-of-attack is
smaller than the critical stall angle. However, none of the models agreed with DNS when the actual or effective
angle-of-attack exceeded the critical stall angle, which is a fundamental limitation of each method.

St = .274 St = .032, Reduced Frequency k = 4.0
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Figure 2. Each curve is a plot of lift coefficient vs. time for a sinusoidally pitching (left) or plunging (right) flat plate at Re = 100. The
blue curve is the CL from DNS, the red curve is computed using thin airfoil theory, Eq. (2), the black curve uses an effective angle-of-
attack approximation, and the green curve is Theodorsen’s prediction, Eq. (3). Theodorsen’s model does not agree with DNS for reduced
frequencies k > 2.0 or for Strouhal numbers exceeding .256, corresponding to large maximum effective angle-of-attack.
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II. Methods

A. Immersed boundary method

Using a fully resolved direct numerical simulation based on an immersed boundary method developed by Taira and
Colonius19,20, it is possible to construct incompressible flow experiments at low Reynolds numbers and obtain velocity
snapshots of the flow field. Here, we describe the results time resolved 2D simulations performed at a Reynolds
number range of 100-300. The velocity field is defined on five nested grids; the finest grid covers a 4× 4 domain and
the coarsest grid covers a 64× 64 domain, non-dimensionalized by chord length. Each grid has resolution 400× 400.
In a previous study15, the steady-state lift of a flat plate was computed for angle-of-attack α ∈ [0, 90], exhibiting a
Hopf bifurcation in lift at αc ≈ 28◦. For α > αc, a stable limit cycle develops, corresponding to periodic vortex
shedding from the leading and trailing edge.
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Figure 3. Lift vs. angle-of-attack for fixed plate atRe = 100. Hopf bifurcation occurs at α ≈ 28◦. Dashed line represents average post-stall
lift and dotted lines represent minimum and maximum post-stall lift.

B. Finite Time Lyapunov Exponents

To characterize the unsteady fluid dynamics of airfoils at low Reynolds numbers, it is important to identify regions of
separated flow as well as wake structures. For an unsteady flow field, it is not possible to identify separated regions with
streamlines alone21. Lagrangian coherent structures22–25 (LCS), which are computed from a time-resolved sequence
of snapshots of an unsteady flow, indicate regions of large stretching between nearby particles as ridges in the field
of finite time Lyapunov exponents (FTLE) that satisfy an additional hyperbolicity condition21. FTLE fields may be
computed using backward (resp. forward) time integration of particle grids, in which case the LCS represents attracting
(resp. repelling) material lines and isolate regions of separated flow around the plate and sluggish flow in the wake.
In the following visualizations, FTLE fields measuring stretching in backward time are used to obtain structures that
attract particles in forward time. FTLE fields for four interesting cases are shown in Figure 4, where ridges, plotted in
blue, indicate the boundaries of a separation bubble. For the case of a stationary plate at α = 25◦, the ridges coincide
with streamlines outlining the separation bubble, since the flow field is steady; however, for each of the other three
unsteady cases, the FTLE ridges are not the same as streamlines.

C. Eigensystem Realization Algorithm (ERA)

The Eigensystem Realization Algorithm (ERA)27 is a method of obtaining reduced order models for high dimensional
linear dynamical systems. It has recently been shown that ERA provides the same reduced order models as the
method of snapshot-based balanced proper orthogonal decomposition (BPOD), more efficiently and without the need
for adjoint simulations26.
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(a) (b) (c) (d)

Figure 4. Lagrangian coherent structures for a variety of stationary and moving plates. (a) Stationary plate at α = 25◦ (b) Stationary plate
at α = 35◦ (c) Pitching plate (d) Plunging plate with 20◦ bias. Ridges in the FTLE field are plotted in blue and represent the boundaries of
a separation bubble. The flow field associated with a stationary plate at α = 25◦ is the only steady case, and in thus FTLE ridges coincide
with streamlines. In each of the other cases, FTLE ridges do not coincide with streamlines.

Consider a stable, discrete-time system with high dimensional state x(k) ∈ Rn and multiple inputs u(k) ∈ Rp
and outputs y(k) ∈ Rq . The goal of reduced order modeling is to obtain a low dimensional system of order r � n
that preserves the input-output dynamics:

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k)

}
Reduction−−−−−→ xr(k + 1) = Arxr(k) +Bru(k)

y(k) = Crxr(k) (5)

ERA is a method of model reduction based on impulse-response simulations. Following26 ERA consists of three steps:

1. Gather (mc+mo)+2 outputs from an impulse-response simulation, wheremc andmo are integers representing
the number of snapshots for controllability and observability. The outputs y(k) = CAkB are called Markov
parameters, and are synthesized into a generalized Hankel matrices:

H =


CB CAB · · · CAmcB
CAB CA2B · · · CAmc+1B

...
...

. . .
...

CAmoB CAmo+1B · · · CAmc+moB

 (6)

H ′ =


CAB CA2B · · · CAmc+1B
CA2B CA3B · · · CAmc+2B

...
...

. . .
...

CAmo+1B CAmo+2B · · · CAmc+mo+1B

 (7)

2. Compute the singular value decomposition of H:

H = UΣV ∗ =
[
U1 U2

] [Σ1 0
0 0

] [
V ∗1
V ∗2

]
= U1Σ1V

∗
1 (8)

3. Finally, let Σr be the first r × r block of Σ1, Ur, Vr the first r columns of U1, V1, and the reduced order
Ar, Br, Cr are given as follows:

Ar = Σ−1/2
r U∗rH

′VrΣ−1/2
r (9)

Br = first p columns of Σ1/2
r V ∗1 (10)

Cr = first q rows of UrΣ1/2
r (11)
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III. Results

Using the immersed boundary method, step-responses are simulated for pitch-up and plunge-up maneuvers. The
lift coefficientCL is viewed as the output, and the inputs are either angle-of-attack α or vertical center-of-mass velocity
ẏ. Applying the eigensystem realization algorithm (ERA) to the step-response data results in reduced order models
which accurately reproduce the input-output behavior between the pitch and plunge inputs and the output CL.

A. Impulsive-Response Data

In order to obtain reduced order models using ERA, it is necessary to obtain impulse-response data. Here, the two
impulse-response experiments correspond to an step increase of 1◦ in angle-of-attack, α̇ = δ(t), rotated about the
mid-chord, and a step increase of .01 in plunging velocity, ÿ = .01 · δ(t). To numerically simulate a step-response in
a given variable u, instead of setting u̇ = δ(t), it is convenient to set u equal to a sharp sigmoidal function. Figure 5
shows the step-response lift data (top), along with the sigmoid (bottom). The step-response in pitch angle is simulated
with time-step .0001 and sigmoidal step duration .01, and the step-response in vertical velocity is simulated with
time-step .001 and sigmoidal step duration .011; this yields step-responses which are resolved in time.
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Figure 5. Lift coefficient vs. time for step-response at Re = 300. (Left) 1◦ pitch-up about mid-chord , (Right) plunge-up to ẏ = .01.
(Top) Non-zero steady state lift for large times, (Middle & Bottom) Transient lift for short times.

In order to visualize the unsteady flow field associated with pitch-up and plunge-up maneuvers, it is helpful to use
a sigmoid with a larger magnitude, spread out over a longer time. Figure 6 shows the lift coefficient plotted against
time for exaggerated pitch-up and plunge maneuvers. Additionally, snapshots from DNS are shown in Figures 7 & 8.
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Figure 6. Lift coefficient vs. time for step-response at Re = 300. (Left) 8◦ pitch-up, (Right) plunge-up maneuver to ẏ = .375.

6 of 12

American Institute of Aeronautics and Astronautics



t = 0.0 t = 0.6 t = 1.2 t = 1.8 t = 2.4

t = 3.0 t = 3.6 t = 4.2 t = 4.8 t = 5.4

Figure 7. Snapshots for a sigmoidal pitch-up maneuver. Blue regions have large finite time Lyapunov exponent, illustrating the boundary
layer, separated flow, and wake structures.

t = .05 t = .30 t = .75 t = 1.2 t = 1.65

t = 2.1 t = 2.55 t = 3.0 t = 3.5 t = 4.0

Figure 8. Snapshots for a sigmoidal plunge-up maneuver. Blue regions have large finite time Lyapunov exponent, illustrating the boundary
layer, separated flow, and wake structures.

B. Model Comparison– Pitching Maneuvers

The step-response in pitch angle α is used to construct a mc ×mo Hankel matrix with mc = mo = 500. A 4−mode
ERA model captures the step-response well, as shown in Figure 9.
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Figure 9. Step-response (left) and Hankel singular values (right) for 1◦ pitch-up. DNS (black) is compared with a 4-mode ERA model (red).

Figure 10 shows a comparison of the ERA model with direct numerical simulation (DNS) as well as Theodorsen’s
and Wagner’s models for a number of pitching maneuvers. All pitching maneuvers are performed at the mid-chord
to eliminate added-mass terms. Note the striking similarity between the ERA model and Wagner’s indicial response.

7 of 12

American Institute of Aeronautics and Astronautics



This is to be expected, since as more modes are retained in a ERA model, the response should converge to Wagner’s
indicial response.

Figure 10. Comparison of lift models for sinusoidal pitching at Re = 100 (left) and impulse pitch-up maneuvers at Re = 300 (right).

The input to the ERA model is the time-derivative of the angle-of-attack, denoted uα̇. Because the steady-state lift
coefficient is nonzero for α(t) = 1◦, it is important to include a nonzero lift slope CLα in the model by augmenting
the ERA state x with angle-of-attack α and including CLα in the C matrix as shown in Equation (12):
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d

dt

[
x
α

]
=
[
AERA 0

0 0

] [
x
α

]
+
[
BERA

1

]
uα̇

(12)

CL =
[
CERA CLα

] [x
α

]
CLα = .079 is the steady state value of the step-response. AERA, BERA, CERA, DERA are given in Appendix A.

C. Model Comparison– Plunging Maneuvers

The step-response in vertical velocity ẏ is used to construct a mc × mo Hankel matrix with mc = mo = 500. A
6−mode ERA model captures the impulse-response behavior, as shown in Figure 11.
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Figure 11. Step-response (left) and Hankel singular values (right) for plunge-up maneuver to ẏ = .01. DNS (black) is compared with an
6−mode ERA model (red).

The input to the ERA model is the vertical acceleration of the plate, uÿ . Because the steady-state lift coefficient is
nonzero for ẏ(t) 6= 0, it is important to include the nonzero lift slope CLẏ in the model by augmenting the ERA state
x with the plunging velocity ẏ and including CLẏ in the C matrix:

d

dt

[
x
ẏ

]
=
[
AERA 0

0 0

] [
x
ẏ

]
+
[
BERA

1

]
uÿ

(13)

CL =
[
CERA CLẏ

] [x
ẏ

]
CLẏ = −4.56 is determined from the steady-state value of the step-response.

Figure 12 shows a comparison of the ERA model with direct numerical simulation (DNS), Theodorsen’s model and
Wagner’s model for several sinusoidally plunging plates with center-of-mass motion y(t) = −A sin(ωt). Because the
ERA model captures the step-response behavior, the close agreement with Wagner’s indicial response is not surprising.
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Figure 12. Comparison of DNS (black), Theodorsen’s model (blue), Wagner’s indicial response (green) and ERA (red) for sinusoidal
plunging maneuver at Re = 100 with vertical motion y(t) = −A sin(ωt).

IV. Conclusions

We have investigated the unsteady aerodynamic forces on low-Reynolds number wings in pitch and plunge ma-
neuvers using 2D direct numerical simulations. The eigensystem realization algorithm (ERA) has been used to obtain
reduced order models from step-response simulations in pitch angle α and vertical center-of-mass velocity ẏ. The
ERA models for pitching and plunging plates yield an approximate lift coefficient that is strikingly similar to that
obtained by Wagner’s indicial response. This is to be expected since Wagner’s method is based on the step response,
which ERA approximates with a low order model.

Although the ERA models to not outperform Wagner or Theodorsen’s models in reconstructing the lift force, they
provide an important first step in developing a systematic framework for modeling and control. A low-order ERA
model is significantly more efficient and tractable than Wagner’s indicial response, which involves a convolution of
the impulse-response with the control signal. Moreover, the ERA model fits naturally into the standard linear control
theory framework and nicely decouples from the flight dynamic equations. Future work involves separating added-
mass forces and viscous forces, and extending this framework to develop models for the viscous terms alone. Finally,
augmenting the existing ERA models with nonlinear stall and separation models will be important for improved lift
modeling.

10 of 12

American Institute of Aeronautics and Astronautics



Appendix A

ERA Pitching Model

AERA =


−122.1 2022 −38.02 −6.645
−2022 −2322 62.73 100.6
38.02 62.73 −1.716 −4.151
−6.645 −100.6 4.151 −.5052

 (14)

BERA =
[
2.493 8.378 −.2037 .0885

]T
(15)

CERA =
[
2.493 −8.378 .2037 .0885

]
(16)

and DERA = 0. The eigenvalues of AERA are

λ1,2 = −1222± 1699i (17)
λ3,4 = −0.77± 2.06i (18)

ERA Plunging Model

AERA =


−.099 6.962 1.433 −43.7 −.103 .602
−6.962 −75.96 −1143 658.1 6.084 −23.5
1.433 1143 −24.67 3694 2.183 −14.77
43.7 658.1 −3694 −5815 −68.14 234.5
−.103 −6.084 2.183 68.14 −.297 3.52
−.602 −23.5 14.77 234.5 −3.52 −66.96

 (19)

BERA = 100
[
.066 1.246 −.6835 −9.47 .038 .198

]T
(20)

CERA =
[
.066 −1.246 −.6835 9.47 .038 −.198

]
(21)

and DERA = 0. Here the BERA matrix is multiplied by 1/.01 = 100 because the above model was calculated for a
step-response in vertical velocity to ẏ = .01. The eigenvalues of AERA are

λ1,2 = −1995± 1846i (22)
λ3 = −1935 (23)
λ4 = −56.8 (24)
λ5 = −1.9 (25)
λ6 = −0.3 (26)
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