
Unsteady aerodynamic forces on small-scale wings: experiments,
simulations and models

Steven L. Brunton∗, Clarence W. Rowley†

Princeton University, Princeton, NJ 08544

Kunihiko Taira‡, Tim Colonius§

California Institute of Technology, Pasadena, CA, 91125

Jesse Collins¶, David R. Williams‖

Illinois Institute of Technology, Chicago, IL, 60616

The goal of this work is to develop low order dynamical systems models for the unsteady lift and drag forces
on small wings in various modes of flight, and to better understand the physical characteristics of unsteady
laminar separation. Velocity field and body force data for a flat plate at static angle of attack and in sinusoidal
pitch and plunge maneuvers are generated by 2D direct numerical simulations using an immersed boundary
method at Re = 100. The lift of a sinusoidally plunging plate is found to deviate from the quasi-steady
approximation at a reduced frequency of k = 0.5 over a range of Strouhal numbers. Lagrangian coherent
structures illustrate formation and convection of a leading-edge vortex in sinusoidal pitch and plunge. A
phenomenological ODE model with three states is shown to reproduce the lift on a flat plate at a static angle
of attack above the stall angle. DNS for a 3D pitch-up maneuver of a rectangular plate at Re = 300 shows the
effect of aspect ratio on vortical wake structure and lift. Wind tunnel experiments of a wing in single pitch-up
and sinusoidal pitch maneuvers are compared with a dynamic model incorporating time delays and relaxation
times to produce hysteresis.

I. Introduction

Most models used for flight control rely on the quasi-steady assumption that lift and drag forces depend on param-
eters such as relative velocity and angle of attack in a static manner. While these models work well for conventional
aircraft, they do not describe the unsteady laminar separation characteristics of flows over small, agile wings, for which
the dynamics, or time history, of these parameters become important. Small wings flying at low Reynolds numbers
(say, Re < 20, 000) are susceptible to dynamic stall in the presence of large gusts and rapid maneuvers. Dynamic stall
occurs when the effective angle of attack changes rapidly so that a leading-edge vortex forms, provides temporarily
enhanced lift and decreased pitching moment, and then sheds downstream, resulting in stall1. This phenomenon is
well known in the rotorcraft community2 since it is necessary to pitch the blade down as it advances and pitch up as
it retreats to balance lift in forward flight. It has been shown that certain insects3,4 and birds5, flying at comparable
Reynolds numbers, stabilize the leading-edge vortex to provide greater than expected lift, making this an interesting
area for model-based control in the arena of micro-air vehicles6.

To better study the mechanism underlying transient lift and drag forces due to a disturbance, it is vital to know on
what time scales the disturbance excites unsteady effects, rendering the quasi-steady approximation invalid. Knowl-
edge of relevant time scales and the underlying flow physics is essential for constructing a hierarchy of models for
the unsteady aerodynamics. It is possible to obtain reduced order models by projective methods such as balanced
truncation or proper orthogonal decomposition.7 A bottom-up approach involving simple nonlinear models which are
phenomenologically similar to observed flows may lead to more natural control design, and this is the approach we
pursue here. By analyzing canonical maneuvers such as a plate in pure pitch or pure plunge, we hope to discover
physically relevant state variables and how they relate to the generation of lift, drag and moment.

The organization of the paper is as follows: in Section II., we describe the results of 2D simulations of a low-
Reynolds number plunging plate; in Section III., we use Lagrangian Coherent Structures to visualize the unsteady
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flow in these simulations; and in Section IV. we present a simple phenomenological model for the dynamics of the
flow, valid near the point where unsteadiness first appears. Next, we present some preliminary results of 3D simulations
in section V., and finally we present some wind tunnel experiments on a pitching wing with semi-circular planform,
and comparison with an empirical model previously proposed by Goman and Khrabrov8.

II. Unsteadiness in 2D pure plunge maneuvers

To understand the onset of unsteady effects in a moving airfoil, we initially investigate the relationship between
reduced frequency and the lift of a flat plate sinusoidally plunging over a range of Strouhal numbers.

Using a fully resolved direct numerical simulation based on an immersed boundary method developed at Cal-
tech9,10, it is possible to construct incompressible flow experiments at low Reynolds numbers (< 500) and obtain
velocity snapshots of the flow field. Here, we describe the results of 2D simulations performed at Reynolds number
100 on a spatial domain of 4 × 4 (nondimensionalized by the chord length), with grid resolution 200 × 200. We
computed the steady-state lift of a flat plate for angle of attack α ∈ [0, 90], discovering a Hopf bifurcation in lift at
αc ≈ 28◦. For α > αc, a stable limit cycle develops, corresponding to periodic vortex shedding from the leading and
trailing edge.

It is well known11,12 that under the quasi-steady approximation, a slowly plunging airfoil with center of mass
motion h(t) = (A/2) sin(2πft) may be related by a geometric transformation (at each instant) to a static airfoil at an
effective angle of attack:

αeff = tan−1

(
ḣ

U

)
U ≡ free stream velocity

The maximum magnitude of αeff for a plunging flat plate at 0◦ angle of attack bias is determined by the Strouhal
number, St = fA/U , by αmax

eff = tan−1(πSt). To determine when the quasi-steady approximation breaks down,
we ran a number of simulated plunging maneuvers at fixed Strouhal number, but with different reduced frequency
k = 2πfc/(2U). Figures 1 and 2 show the observed lift curve against the quasi-steady approximation. Over a
moderate range of Strouhal numbers, St ∈ {.032, .064, .127}, the observed lift curve begins to deviate from the
CL(αeff) curve at a reduced frequency of k ≈ 0.5, at which point the phase of the effective lift curve begins to lag
the actual lift curve. Also, for each Strouhal number, at k ≈ 1, the phase difference reaches a maximum of −π/2
at which point doubling the frequency results in doubling the lift. This suggests that there are two time-scales on
which the quasi-steady model breaks down in the case of pure plunge. For larger Strouhal numbers, St ≥ .255,
even low reduced frequency maneuvers deviate from the quasi-steady model since the range of αeff includes the Hopf
bifurcation at α ≈ 28◦ seen in Figure 6. Similar experiments can be done with pure pitching maneuvers by relating
the pitching motion to an effective camber.
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Sinusoidal Plunging @ St = .032

Figure 1. Comparison of actual CL vs. αeff approximation for plate in sinusoidal plunge maneuver at St = .032. Center of mass of plate
is h(t) = (A/2) sin(2πft); Strouhal number is St = fA/U ; reduced frequency is k = 2πfc/(2U). Deviation from quasi-steady occurs at
k ≈ 0.5. (Left) CL vs. time (Right) CL vs. αeff.
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Figure 2. Comparison of actual CL vs. αeff approximation for plate in sinusoidal plunge maneuver at St ∈ {.064, .127, .255}. Center
of mass of plate is h(t) = (A/2) sin(2πft); Strouhal number is St = fA/U ; reduced frequency is k = 2πfc/(2U). Deviation from
quasi-steady occurs at k ≈ 0.5. (Left) CL vs. time (Right) CL vs. αeff.
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III. Lagrangian coherent structure visualizations

To begin characterizing the fundamental unsteady fluid dynamics of airfoils at low Reynolds numbers, it is neces-
sary to identify separated regions and wake structures. For an unsteady flow field, it is not possible to identify separated
regions with streamlines alone. Instead, we use Lagrangian coherent structures13,14 (LCS), which are computed from
a time-resolved sequence of snapshots of an unsteady flow. These LCS are ridges in the field of Finite Time Lyapunov
Exponents (FTLE), and indicate regions of large stretching between nearby particles. FTLE fields may be computed
using backward (resp. forward) time integration, in which case the LCS represents attracting (resp. repelling) material
lines and isolate regions of separated flow around the plate and in the wake. In the following visualizations we ex-
clusively use FTLE fields measuring stretching in backward time to obtain structures which are attracting in forward
time. LCS for four interesting cases are shown in Figure 3. The validation of the LCS as attracting material lines is
shown in the Appendix.

PlungeStatic 35

PitchStatic 25

Figure 3. Lagrangian coherent structures for a variety of stationary and moving plates. (Top Left) Stationary plate at α = 25◦ (Bottom
Left) Stationary plate at α = 35◦ (Top Right) Pitching plate (Bottom Right) Plunging plate with 20◦ bias.

Figure 4 shows LCS visualizations of the formation and convection of a leading-edge vortex (LEV) on a flat plate
in periodic pure-pitch and pure-plunge maneuvers. Understanding the role of the the LEV and dynamic stall vortex
(DSV) on the lift, drag and moment of a rapidly maneuvering airfoil is essential to building a set of physical models
suitable for control even in the presence of large disturbances and transients. Moreover, LCS illustrate structures
in flow fields of interest such as the point of high lift in a post-stall airfoil which will lend insight into the design of
model-based controls to steer the flow into desired states. It is interesting to note the similarity between the Lagrangian
Coherent Structures shown in Figures 3 and 4 and classic flow visualizations, such as those of Koochesfahani15.

Pitch 

Plunge 

Figure 4. Visualization of leading-edge vortex (LEV) formation and convection using Lagrangian coherent structures (LCS). (Top) Plate
pitching about trailing edge with amplitude of 20◦, Strouhal number .342 and reduced frequency k = .25 (Bottom) Plate with 20◦ bias
plunging with Strouhal number .3 and reduced frequency k = .25.
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IV. Semi-empirical nonlinear models

A simple system of differential equations which describes the transient and steady-state lift associated with an
impulsively started 2D plate at a fixed angle of attack includes a Hopf bifurcation and a decoupled first-order lag

ẋ = (α− αc)µx− ωy − ax(x2 + y2)

ẏ = (α− αc)µy + ωx− ay(x2 + y2)
ż = −λz

 =⇒
ṙ = r

[
(α− αc)µ− ar2

]
θ̇ = ω

ż = −λz

(1)

The z direction is decoupled and represents the exponential decay of transient lift generated from the impulsive start.
Transforming the (x, y) system into polar coordinates, it becomes clear that there is a fixed point at r = 0. This fixed
point undergoes a subcritical Hopf bifurcation at α = αc resulting in an unstable fixed point at r = 0 and a stable
limit cycle with radius R =

√
(α− αc)µ/a. The limit cycle represents the fluctuations in lift due to periodic vortex

shedding of a plate at an angle of attack which is larger than the stall angle. Thus, at a particular angle of attack α, the
unsteady coefficient of lift CL is constructed from the average lift C̄L and the state variables y and z as follows

CL = C̄L + y + z

With knowledge of the actual lift vs. time from numerical experiment, it is possible to tune the parameters (µ, λ, ω, a)
with the rates of decay, period of shedding and amplitude of stable lift fluctuations. Initial conditions of the model are
chosen to start the system with the right transient lift and phase. By properly tuning the constants with experimental
data, this model will closely reproduce the transient lift dynamics of a stationary plate for a wide range of angles of
attack α. Figure 5 shows a typical example, for α = 35◦.
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Figure 5. Coefficient of lift vs. time for stationary plate at post-stall angle α = 35◦. The solid line represents the oscillating lift curve
obtained from direct numerical simulation and the dashed line is a the output of a low order ODE model with a Hopf bifurcation and a lag.
The inset panels show coherent structures in the flow field at instances of high, moderate and low lift.

It is important to note that the model (1) is specifically chosen to exhibit a supercritical Hopf bifurcation as the
angle of attack α varies through αc. Such a bifurcation is observed in simulations and experiments (Figure 6), so for a
fixed set of parameters, the model (1) may be tuned to match the observed behavior over a range of angle of attack α.
Theoretically, one would expect such a model to be valid only for values of α close to the bifurcation value αc, but in
practice we have observed that, even for fixed parameters, the model (1) may be tuned to match simulations reasonably
closely over a wide range of parameter values, from α = 0 to at least 35◦.
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Figure 6. Lift vs. angle of attack for fixed plate at Re = 100. Hopf bifurcation occurs at α ≈ 28◦. Dashed line represents average post-stall
lift and dotted lines represent minimum and maximum post-stall lift.

It also is possible to model the transient lift from the impulsive start by coupling z and (x, y):

ẋ = (α− αc)µx− ωy − axz

ẏ = (α− αc)µy + ωx− ayz

εż = −z + (x2 + y2)

 =⇒
ṙ = r [(α− αc)µ− az]

θ̇ = ω

εż = −z + r2

(2)

For ε � 1, trajectories quickly settle to the “slow” manifold z = x2 + y2, which reduces to our original dynamics.
This method has been useful in characterizing transients in the wake of a cylinder16. Because the flat plate at high
angles of attack is a bluff body, its wake topology should be structurally equivalent to the wake behind a cylinder.

The models (1) and (2) capture reasonable dynamic behavior, but they have a severe limitation for the present
application, since the initial values of the states (x, y, z) need to be carefully chosen in order to match the transient lift
response. In practice, this transient response is precisely what we are interested in modeling, but these initial conditions
are not known. Instead, these states are excited by external factors, such as disturbances or changes in angle of attack α
(which can lead to the formation of leading-edge vortices, as stated earlier). One idea for incorporating these effects
is to add impulsive forcing to the model ẋ = . . . + f(α, α̇), so that the terms f can excite the states x through a change
of angle of attack. Such models are the subject of our present work.

V. Three-dimensional simulations

The three-dimensional results discussed here are preliminary in nature and are intended to highlight the similarities
and differences between the two- and three-dimensional flows. Emphasis is placed upon introducing the overall vortex
dynamics behind a rectangular plate undergoing a pitch-up motion.

We simulate flow behind a rectangular plate of AR = 2, in a pitch-up motion using the three-dimensional
immersed-boundary projection method of Taira and Colonius10. First, to obtain a suitable initial condition for simulat-
ing the pitching plate, the plate is instantaneously materialized (or impulsively translated) in uniform flow and is kept
at zero angle of attack. The Reynolds based on the freestream velocity and chord length is set to Re = U∞c/ν = 300.
The simulation is performed for 40 convective time units to allow the flow field to reach a steady state, which is then
selected as the initial condition for the pitching plate study. With this initial condition, we now gently pitch the plate
from α = 0◦ to 30◦ about the mid-chord in the following fashion:

α(t) = αmax
1
2

[
1 + erf

(
t− ta√

2σ

)]
and α̇(t) = αmax

1√
2πσ

exp
[
− (t− ta)2

2σ2

]
, (3)

where αmax = 30◦, ta = 3σ and σ = 3 are chosen. The motion is considered to be completed after t = 2× 3σ = 18
from the initial condition. In order to focus on the formation of tip vortices and the interaction of wake vortices, we
only consider the plate to go under a pitch up motion, which can be thought of a model for a half-cycle of an entire
pitching period. Further details on the numerical setup and validation are provided in Taira and Colonius10.
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A. 3D flow profile

Snapshots in Figure 7 illustrate the evolution of the vortical wake during the pitch-up process. As the plate starts
to pitch up, a low pressure region is created above the top surface keeping the vortical structure from the leading
edge closely attached. Concurrently, the tip vortices are formed by rolling the vortex sheets from the tip and trailing
edges. Transient features of the tip vortices show up with spiraling motion which eventually decay with the loss of
the columnar structure of the tip vortices. As the tip vortices decrease their strengths, the downward induced velocity
pressing down the leading-edge vortex weakens its influence and allows the leading-edge vortex to separate and shed
into the wake.

t = 0 (α = 0◦) t = 10 (α = 18.9◦)

t = 15 (α = 29.3◦) t = 20 (α = 30.0◦)

Figure 7. Snapshots of the wake evolution behind a rectangular flat plate of AR = 2 pitching from α = 0◦ to 30◦ at Re = 300. Isosurfaces
of ‖ω‖ = 3 and Q = 3 are shown in gray and aquamarine, respectively. Viewing downward from the port side of the plate.

The corresponding lift and drag coefficients of the plate are shown in Figure 8. It can be seen that the maximum
lift is achieved when a large leading-edge vortex is closely formed above the plate at t ≈ 10. This time also coincides
with the time at which the maximum angular velocity is experienced by the plate for this example. As the vorticity
accumulates, a hairpin vortex is formed between t = 12–15 which eventually is released into the wake around t ≈ 20.
During this shedding stage, the lift is significantly decreased due to the loss of the spanwise circulation and the low-
pressure region above the plate.

Compared to the two-dimensional flows, the three-dimensional analogs have significant influence from the tip
vortices in stabilizing the attachment of the leading-edge vortex. In a complete pitching motion, tip vortices will
interact strongly with the wake vortices while affecting the attachment of the leading-edge vortex∗∗. Despite the
differences, the force exerted on the low-aspect-ratio plate shows a trend similar to the two-dimensional flow. The
sharp increase in lift and drag are observed during the pitch-up phase from the existence of the leading-edge vortex
followed by a decrease in lift due to the loss thereof. In the three-dimensional case, there is a secondary peak generated
(around t ≈ 12.5) in the force coefficients following the maximum, due to the interaction of the leading-edge and tip
vortices. Since this fluctuation is much smaller than the dominant peak, its secondary effect may not be much of a
concern. Hence, it is expected that the previous two-dimensional low-order model can be extended to capture the
qualitative force history. In order to capture secondary effects resulting from the interaction of wake vortices, it may
be necessary to increase the number of terms but again would be of minor correction to the overall model.

∗∗In pure translating flights, strengthening the tip vortices with actuation were found to enhance lift. Strong downward induced velocity from the
tip vortices retained the LEV closer to the top surface over time 10.
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Figure 8. Lift and drag coefficients for the rectangular plate of AR = 2 over time, shown by the red and blue lines, respectively. Overlaid
circles denote the time at which snapshots are available in Figure 7. Bottom plot shows the corresponding time trace of the angle of attack
of the plate.

VI. Wind tunnel experiments

A state-space model capable of representing certain aircraft characteristics at high angles of attack was presented
by Goman and Khrabrov in 19958. The model was useful in representing the dynamic effects on lift associated with
the dynamic stall vortex produced during rapid pitching maneuvers. We are interested in exploring how well this
model fits the measurements of lift obtained from a semi-circular wing model pitching in a wind tunnel, and if some
physical insight can be gained.

Figure 9. Partial separation develops with increasing angle of attack. The variable x represents the degree of flow attachment.

The underlying concept of the G-K model is to represent the degree of flow attachment by a parameter x, in which
x = 1 represents fully attached flow, and x = 0 represents fully separated flow. The sketches in Figure9 illustrate how
the fully attached flow at low angles of attack (x = 1) evolve into a fully separated flow (x = 0) as the angle of attack
of the wing increases. The lift coefficient is written as a function of angle of attack α, and the attachment parameter x.
The state space model for the lift coefficient is written as

τ1
dx

dt
+ x = x0(α− τ2α̇) (4)

CL(α, x) = 0.61
π

2
sinα(1 +

√
x) (5)

where τ1 and τ2 are time constants used to fit the data. The constant τ1 can be interpreted as the relaxation time for the
lift coefficient to respond to a change in angle of attack. The constant τ2 is a time delay related to the dynamic motion
of the wing. The function x0(α) is the degree of separation measured in static tests as the angle of attack is varied over
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a wide range. Figure 10 shows the measured static function x0(α) as the blue line on the left side of the figure. The
effect of the time delay τ2 = 0.1 on x is shown by the red line in the middle. The effect of the setting the relaxation
time τ1 = 0.1 is illustrated by the green line on the far right side of the figure. The constant 0.61 is a correction to the
lift-curve slope related to finite span wing effects.

0 5 10 15 20 25 30 35 40

0.2

0.4

0.6

0.8

1

degree of flow attachment − pitch up

α, [degrees]

X

Figure 10. Static flow attachment function x0(α) (blue, leftmost curve); shift to higher angles associated with τ2 delay (red, middle curve);
relaxation and shift associated with τ1 and τ2 (green, rightmost curve).

A. Single pitch-up maneuver

The wing was pitched up in a single sweeping motion from α = −40◦ to +40◦ at three different pitch rates. One was
a very slow pitch rate of 0.5 deg/s simulating quasi-static behavior. The second and third pitch rates were at 40 deg/s
and 80 deg/s, respectively. The experimental results and comparison with the G-K model are shown in Figure 11. The
blue, green and red lines correspond to the 0.5, 40 and 80 deg/s pitch rates. A comparison with the G-K model is also
shown using τ1 = 0.02 s and τ2 = 0.06 s. The experimentally measured lift curves are shifted slightly to the right
relative to the G-K model predictions. The shift is consistent with a change in the relative angle of attack associated
with the rotation of the leading edge of the wing. Reasonably good agreement between the maximum lift coefficient
and the relaxation after complete flow separation in the dynamic cases was found.

−40 −30 −20 −10 0 10 20 30 40
−2
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QS 1
QS 2
QS 3
pr40 d/s 1
pr40 d/s 2
pr80 d/s 1
pr80 d/s 2
QS GK
pr40 GK
pr80 GK

Figure 11. Single pitch-up maneuver from α = −40◦ to +40◦, showing quasisteady results (QS), and pitch rates of 40 and 80 deg/sec,
comparing experimental data with results from the calibrated Goman-Khrabrov model (indicated by GK).
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B. Oscillating pitch maneuver

In the oscillating pitch maneuver the wing is positioned at a mean angle of α = 19◦, then oscillated with a ±4 degree
amplitude. The experiment and G-K model are compared in Figure 12 for an wing oscillation frequency of 0.5 Hz.
The baseline static lift curve is also plotted for reference. Because the flow over the wing is partially separated, a
hysteresis loop in the lift curve is formed. The same time constants were used in the G-K model as in the steady
pitch up maneuver discussed before, except that the frequency of oscillation was increased by a factor of 4. This is
equivalent to increasing the delay time constant τ2 by a factor of 4.

−40 −30 −20 −10 0 10 20 30 40
−1.5

−1

−0.5

0

0.5

1

1.5

α, [degrees]

C
L

Oscillatory pitch comparison

 

 

run 1
run 2
run 3
0.5 Hz
GK mod 2 Hz

Figure 12. Oscillating at 0.5 Hz. Red line: experiment; Brown line: G-K model assuming an “artificial” oscillation rate of 2.0 Hz.

Figures 13 and 14 show the same type of oscillatory wing motion, but at higher frequencies of 1 Hz and 2 Hz,
respectively. A significant change in the shape of the hysteresis loop occurs as the frequency increases. The changes
in shape of the hysteresis loops could be mimicked by the G-K model, but it was necessary to increase the delay time
constants by a factor of 4 and 6 for the 1.0 Hz and 2.0 Hz oscillation cases.

The ability of the model to capture the general features of the lift hysteresis suggests that time delays and relaxation
times play a major role in determining the instantaneous forces acting on the maneuvering wing. The fact that the delay
time constant needed to be changed to fit the specific case indicates the model is incomplete, and suggests the physics
responsible for the time delay are different between the single pitch maneuver and the oscillating wing maneuver.
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Figure 13. Oscillating at 1.0 Hz. Light green: experiment; Dark green: G-K model assuming an “artificial” oscillation rate of 4.0 Hz.
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Figure 14. Oscillating at 2.0 Hz . Light blue: experiment; Dark blue: G-K model assuming an “artificial” oscillation rate of 12.0 Hz.

VII. Conclusions

We have investigated the unsteady forces on low-Reynolds number pitching wings using 2D and 3D direct nu-
merical simulations, and wind tunnel experiments. The onset of unsteadiness in a sinusoidally plunging plate with
AR = ∞ has been identified with a reduced frequency k = 0.5 over a range of moderate Strouhal numbers. At first
glance, the independence on Strouhal number may be surprising, but one would expect that the reduced frequency k
should be the most important parameter for determining when it is critical to model the unsteadiness, since it relates
the timescale of the motion to the particle advection time. Note that when k < 0.5, the period of the motion is longer
than the time it takes a particle to convect one chord length, so that the flow has time to relax into quasi-steady state.
Additionally, we have visualized the formation and convection of a leading-edge vortex in sinusoidal pitch and plunge
maneuvers. We have also determined the stall angle of a stationary flat plate and have used the computed average,
maximum and minimum coefficient of lift and frequency of vortex shedding for α ∈ [0, 90] to construct a three-state
nonlinear ODE model which agrees well with the transient and steady state lift on an impulsively started plate at fixed
angle. Although this model must be tuned using the parameters extracted from experiments, it shows that because the
behavior is deterministic, it is possible to construct a relatively low order model which agrees very well with data.

DNS for a 3D pitch-up maneuver of a rectangular plate with AR = 2 shows similarities and differences between
2D and 3D results. For instance, the stabilizing influence of tip vortices on the attachment of the leading-edge vortex
is unique to 3 dimensional wings. However, the force exerted on a low-aspect-ratio plate in a pitch-up maneuver is
qualitatively similar to the force on an impulsively started 2D plate, suggesting that the low-order model constructed
for 2D impulsively started wings may be extended.

Finally, wind tunnel data for a semi-circular wing in single pitch-up and sinusoidal pitch maneuvers was compared
with an empirical model proposed by Goman and Khrabrov8 to demonstrate the importance of time delays and re-
laxation times in determining the forces on a maneuvering wing. An interesting feature of the G-K model is that it
is based on a physical variable, the degree of flow attachment x, and physical time scales. Models based on relevant
physical variables, such as attachment point or vortex size, strength, and aspect ratio will be important in determining
the relationship between excitation/relaxation time scales and a particular maneuver at a given state.

It will be interesting to extend this analysis in a number of directions. As in the case of a sinusoidally plunging
plate, it is possible to relate the lift of a sinusoidally pitching plate to that of a stationary plate with an effective
camber. It is also possible to extend the low-order model to capture the coefficients of moment and drag CD, CM for
static attack angles and compare the model for maneuvers which are known to have hysteresis, as in the G-K model
comparison. In addition to analyzing backward time LCS (forward time attracting sets) it will be useful to visualize
forward time LCS (forward time repelling sets) and to extend the LCS computation to 3D flow fields. This will provide
a more complete picture of flow structures and lead to a better understanding of the physical mechanism underlying
these transient flow events. It will also be interesting to extend our low order model to include physically relevant
variables such as leading and trailing-edge vortex strength and position.
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Appendix

Figure 15. Validation of Lagrangian coherent structures with a grid of points integrated forward along velocity field snapshots. Time and
flow move from left to right. Slow particles collect on these attracting lines. (Top) Stationary plate at α = 35◦ > αcrit (Middle) Plate
pitching about quarter-chord with amplitude of 20◦, Strouhal number .2565 and reduced frequency k = .25 (Bottom) Plate with 20◦ bias
plunging with Strouhal number .3 and reduced frequency k = .25.
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