
Glossary

“I learned very early the difference between knowing the name of something and
knowing something."

- Richard Feynman

Active control – A controller that expends energy to accomplish a control task.
For example, an automobile cruise-controller will actively control the fuel and
brakes to regulate forward velocity.

Adaptive control – A controller that modifies its action to optimize performance
or account for varying system parameters or externally varying conditions.

Actuator – A device that modifies the system according to the control input. The
actuation effect is typically modeled by the structure of the B matrix in a control
system.

Crossover – A genetic operation where two individuals exchange a portion of
their expression, thereby increasing diversity of the future generation. Crossover
tends to exploit successful patterns in the parent individuals to produce more fit
offspring in future generations.

Closed-loop control – The process of controlling actuators based on sensor mea-
surements.

Clustering – Identifying groups of similar data. If the data are labeled, this is
called supervised, and if the data is not labeled, it is unsupervised.

Coherent structures – A structure in a dynamical system that remains coherent,
or spatially correlated, for some time; here spatial correlation typically refers to
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the state of the dynamical system. In fluids, coherent structures often refer to per-
sistent vortical structures that stay intact despite turbulent fluctuations.

Control theory – The theory of processes which modify a system for an engi-
neering goal, often with actuators and sensors.

Cost function – A function that quantifies the cost or penalty of a given control
law or estimator.

Disturbance – An external perturbation to the system that passes through the
dynamics, also known as process noise. Disturbances are typically seen as un-
wanted perturbations that degrade performance, such as unreliable or unpre-
dictable environmental conditions.

Dynamical system – A model for how a state evolves in time, possibly in re-
sponse to an actuation signal and external disturbances. The dynamical system
may have an output equation that consists of a set of measurements of the state
and actuation signal. A dynamical system may either be nonlinear or linear, and
they are often represented as a system of ordinary differential equations.

Elitism – A genetic operation whereby the best individual(s) from a generation
are automatically copied to the next generation without probabilistic selection
based on fitness.

Estimator – A dynamical system that estimates the state of another dynamical
system from a limited set of measurements. See Kalman filter.

Evolutionary algorithm – An algorithm that adapts over time (generations) ac-
cording to a fitness or cost function.

Exploitation – The process in an evolutionary algorithm whereby successful pat-
terns in individuals of a given generation are exploited to produce more fit indi-
viduals in the next generation. Crossover is a genetic operation that promotes
exploitation.

Exploration – The process in an evolutionary algorithm whereby new, unex-
plored patterns are sought out for individuals in future generations. Mutation
is a genetic operation that promotes exploration.

Expression tree – A function or expression that may be expressed as a tree,
where each node represents a unary or binary mathematical operation, such as
+, �, ⇥, /, sin, cos, etc. Function trees may be quickly evaluated using recur-
sion.
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Feedback control – A closed-loop control architecture, whereby a downstream
sensor measurement is fed back to an upstream actuator.

Feedforward control – A control architecture, whereby an upstream sensor mea-
surement is fed forward to a downstream actuator. Often feedforward control is
used to measure an incoming disturbance and apply preventative control down-
stream; this is known as disturbance feedforward control.

Fitness function – A function that measures the success of an individual expres-
sion in achieving some goal. Often inversely related to the cost function. In ge-
netic algorithms and genetic programming, the fitness function determines the
probability that an individual will be selected for the next generation.

Flow control – The process of modifying a fluid system to achieve some engi-
neering goal. This is often accomplished by active control, whereby energy is
expended to actuate the flow. High-level goals often include lift increase, drag
reduction, mixing enhancement, and these goals may be achieved by physical
mechanisms such as relaminarizing a boundary layer or stabilizing an unstable
shear layer.

Frequency crosstalk – A phenomena in nonlinear dynamics where a signal or
behavior at one frequency can effect or modify a signal or behavior at another
frequency. In a linear system, input forcing at a single fixed frequency will result
in an output response with the same frequency and a new magnitude and phase.
However, in a nonlinear system, forcing a system at a single fixed frequency may
result in an output response where multiple frequencies are modified through
nonlinear coupling mechanisms.

Generation – A collection of individuals to be tested in a genetic algorithm or in
genetic programming. The performance of these individuals are evaluated, and
each individual’s fitness function determines the probability of advancing to the
next generation via the genetic operations.

Genetic algorithm – An evolutionary algorithm to optimize the parameters of
an expression with a pre-specified structure.

Genetic operation – A set of operations to advance individuals from one gen-
eration to the next. These operations include elitism, replication, crossover, and
mutation. Individuals are selected for these operations depending on their fitness
function.

Genetic programming – An evolutionary algorithm to optimize both the struc-
ture and parameters of an expression or a function; often referred to as semantic
regression.
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Genetic programming control – The process of discovering an effective con-
trol law by using genetic programming to construct functions relating sensor
measurements to an actuation signal.

Individual – A candidate expression in a genetic algorithm or genetic program-
ming. Each individual is tested, resulting in a fitness function that determines its
probability of propagating to the next generation.

Kalman filter – A dynamical system that estimates the full-state of another dy-
namical system from measurements of the sensor outputs and actuation inputs.
The Kalman filter is an optimal state estimator for a linear system with additive
Gaussian process and measurement noise.

Linear system – A dynamical system where superposition holds for solutions.
This implies that doubling the initial condition and the control input signal will
result in exactly twice the output. Often, the system will be a linear time invari-
ant (LTI) system, so that the dynamics may be characterized entirely by linear
operators (matrices).

Linear quadratic Gaussian (LQG) – An optimal sensor-based feedback con-
trol law that consists of a linear quadratic regular feedback law applied to the
full-state estimate from a Kalman filter. The LQG controller is optimal for a lin-
ear system with the same quadratic cost function as in LQR and additive Gaus-
sian white process and measurement noise of known magnitude.

Linear quadratic regulator (LQR) – An optimal full-state feedback control law
to stabilize the state of a linear system while not expending too much actuation
energy. LQR is optimal with respect to a quadratic cost function that balances
deviation of the state and control expenditure.

Linearization – The process of approximating a nonlinear dynamical system by
a linear dynamical system near a fixed point or periodic orbit by truncating a
Taylor series of the dynamics at first order. Linearization is valid for small state
perturbations in a small neighborhood of the fixed point or periodic orbit.

Machine learning – A set of techniques to automatically generate models from
data that may be generalized and improve with more data. Machine learning is
often applied to high-dimensional data where it is difficult to identify patterns and
relationships in the data. Common techniques include classification and regres-
sion tasks, and these may be either supervised by expert input or unsupervised
algorithms.

Machine learning control – The process of determining effective control laws
through the use of machine learning methods. Controllers are learned through
a guided process that is informed by measured performance data as opposed to
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being derived from first principles or optimization routines.

Mean-field model – In fluid mechanics, a mean-field model is a low-order Galer-
kin model linking base-flow changes with fluctuations. In the most simple case,
a mean-field model describes the soft onset of an oscillation via a supercritical
Hopf bifurcation. This is also referred to as Watson-Stuart model or weakly non-
linear theory and implies the famous Landau equation for a supercritical Hopf
bifurcation. Generalized models may incorporate several frequencies and do not
require the closeness of a bifurcation.

Measurement noise – Noise that is added to the output equation of a dynami-
cal system, thus not being affected by the dynamics. Often simply referred to as
noise.

Model – A mathematical expression that describes a system. Often, a model
is derived from first-principles by physical arguments, such as conservation of
mass, momentum and energy. Alternatively, a model may be derived from obser-
vational data about the system, as in statistics, system identification, and machine
learning. Dynamic models are often represented as a coupled system of differen-
tial equations relating the various quantities under observation.

Model reduction – The process of approximating a high-fidelity model with a
smaller, more computationally efficient model in terms of fewer states. Model
reduction is an important step when controlling high-dimensional systems, since
determining and evaluating control laws based on high-fidelity models is often
computationally prohibitive. Moreover, control performance may be limited by
the latency of a control decision, so faster decisions resulting from reduced-order
models are often beneficial.

Mutation – A genetic operation where a portion of an individual in the current
generation is randomly altered to produce a new individual in the next generation.
Mutation tends to promote exploration in the search space of possible individuals.

Open-loop control – A method of control that specifies a pre-determined input
sequence without correction or adaptation via sensors. A common method of
open-loop control is periodic forcing.

Neural network – A network representation of an input–output function that at-
tempts to mimic the computational flexibility observed in biological networks
of neurons. A neural network consists of a group of individual computational
components, or neurons, that are connected in a network or graph structure to
perform some computation. Neural networks are typically characterized by their
adaptability and trainability to new stimulus.
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Noise – A quantity that varies randomly in time and is added to some variable
in a dynamical system. If added to the state equation, it is also known as a dis-
turbance or process noise, and if added to the output equation, it is also known
as measurement noise. Noise is often assumed to follow a Gaussian white noise
process, although it may also be correlated or colored.

Nonlinear system – A system of equations or a dynamical system that is charac-
terized by nonlinear dynamics. As opposed to a linear system, a nonlinear system
does not satisfy superposition of solutions, resulting in complex behavior, includ-
ing frequency crosstalk and chaos.

Passive control – A controller that modifies a system without energy expendi-
ture. Examples include vortex generators on wings that passively delays flow
separation over a wing.

Plant – In control theory, the plant refers to the model system being controlled
along with the actuator.

Process noise – Noise that is added to the state equation of a dynamical system,
thereby passing through the dynamics. Also called a disturbance.

Real-time control – A control law that modifies the system on a time scale that
is fast compared with the natural time scale. Also referred to as in-time control.

Reduced-order model – An approximate model with fewer states than the full
high-fidelity system. Reduced-order models are often desirable in the control
of high-dimensional systems, such as fluids, to reduce computational overhead,
leading to faster, lower-latency control decisions.

Regression – A statistical model that relates multiple variables from measure-
ment data. The method of least squares is a simple linear regression that de-
termines a best-fit line relating data. Least-squares regression may be general-
ized to higher dimensions in what is known as the principal components analysis
(PCA). More generally, nonlinear regression, dynamic regression, and functional
or semantic regression are used to determine complex and possibly time-varying
relationships between variables. Regression is commonly used in both system
identification, model reduction, and machine learning.

Regulator – A control law that maintains a set-point in the state variable. See
linear quadratic regulator.

Replication – A genetic operation where individuals are copied directly from
one generation to the next. These individuals are selected probabilistically based
on their fitness, so that the most fit individuals are more likely to advance.
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Reynolds number – A dimensionless quantity that measures the ratio of inertial
and viscous forces in a fluid. The Reynolds number may also be thought of as
a rough measure of the ratio of the size of the largest vortices and the smallest
vortices in a flow. Thus, a volcanic eruption will constitute an extremely high
Reynolds number flow, as there are both very large and very small eddies.

Robust control – The field of control theory where controllers are designed to be
inherently robust to model uncertainty, unmodeled dynamics, and disturbances.
Often referred to as H• optimal control.

Selection – The process of selecting individuals from one generation for the next
generation via a genetic operation. The individuals are selected randomly but
with a bias for individuals with a higher fitness, and these individuals are ad-
vanced using one of the genetic operations.

Sensor – A device that measures the system, producing an output. The sensor
effect is typically modeled by the structure of the C matrix in a control system.

Stability – A property of a system, referring to how it behaves for long times or
when it is perturbed. For example, a fixed point of a dynamical system is stable
if small perturbations around this fixed point result in trajectories that stay near
the fixed point and do not leave a neighborhood of the fixed point. A fixed point
of a linear system is unstable if some initial conditions near the fixed point result
in trajectories that grow and leave the neighborhood.

State-space system – A model consisting of a coupled system of ordinary differ-
ential equations in terms of a collection of variables known as the state variable.
The state variable represents the state of the system, and it is an element of a
vector space or manifold, known as the state space.

System identification – The process of determining a model for a physical pro-
cess based on measurement data. Typically, system identification involves mea-
suring the sensor output of a system in response to certain actuation inputs, and
a model for the underlying state dynamics (i.e., hidden variables) is constructed.
Most methods of system identification may be viewed as a form of dynamic re-
gression of data onto models.

Turbulence – A fluid phenomena characterized by multi-scale coherent vorticity
in space and time and strongly nonlinear, chaotic dynamics. Turbulence is often
a characteristic of real-world or industrial flows at high Reynolds number.





Symbols

A ; Ad ; Ã State matrix (continuous time ; discrete time ; reduced).
a ; ak ; am ; a State (vector, continuous time ; vector, discrete time kth step ; mth com-

ponent ; scalar).
â ; âk Full state estimate (continuous ; discrete time).

B ; Bd ; B̃ Input matrix (continuous ; discrete time ; reduced).
B Amplitude of periodic forcing.
b ; bk ; bm ; b Actuation command (vector, continuous time ; vector, discrete time kth

step ; mth component ; scalar).
B Matrix of control inputs.

C ; Cd ; C̃ Output matrix (continuous ; discrete time ; reduced).
cµ Momentum coefficient.
C ; Cd Controllability matrix (continuous ; discrete time).

D ; Dd ; D̃ Feedthrough matrix (continuous ; discrete time, reduced).
D Characteristic distance.
dc Duty cycle.

ex, ey, ez Unity vectors associated with directions x, y and z.
E Expectation operator.

F Dynamics.
FD Drag force.

G Measurement function.
g Gain of control command in a generalized mean-field model.

H Hankel matrix.
H Heavyside function.
Hsection Height of the test section.
hi(t) ; hi,u ; hi,max hot-wire or hot-film signal number i (raw signal ; average value of the

unactuated measurement ; average measurement under constant maxi-
mal actuation).

hstep ; hramp Height (of the step ; of the ramp).
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I Identity matrix.
i Index of individual (or other counter).

J ; J j
i Cost function value ; of individual i in generation j.

Ja Cost on states.
Jb Cost on actuation.
j Index of generation.

K Control function.
K f Kalman filter gain.
Kr Regulator gain, full-state control matrix.

L Length of the experimental test section.
Lsep Separation length.
l Width of the experimental test section.
` Ramp length.

Na Number of states.
Nb Number of actuation commands.
Ne Number of individuals concerned by elitism.
Ng Number of generations.
Ni Number of individuals.
Np Tournament size.
Ns Number of sensors.

O ; Od Observability matrix (continuous time ; discrete time).

Pc Probability of crossover.
Pm Probability of mutation.
Pr Probability of replication.
p Pressure.
p(a) Probability density of states.

Q State cost weight matrix for LQR.
Q ; Qu Flow rate to actuator jets (instantaneous ; average value under constant

blowing).

R Actuation cost weight matrix for LQR.
r•, r� Amplitude of oscillators of a generalized mean-field model (Tab. 5.1).
Re Reynolds number.

Sa(t) ; Sa,u Area of backflow (instantaneous ; unactuated average value).
Sb Actuator cross section.
S j Jet cross section.
Sref Ramp reference surface.
s ; sk ; sm ; s Sensor signal (vector, continuous time ; vector, discrete time kth step ;

mth component ; scalar).
ŝ ; âk Expected sensor value (continuous time ; discrete time).
S ; S̄ Markov parameters ; of the augmented system.

T Evaluation time.
Trms Time period used to compute RMS of hot-wire signal fluctuations.
t, t0 Time, initial time.
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U ; Ur Left singular vectors of SVD (complete ; reduced) .
U Characteristic velocity.
u ; us, uD , u•, u� Velocity (vector field ; steady solution ; deviation due to Reynolds

stresses ; contribution of frequency w• ; contribution of frequency w�).
u Slow varying mean flow.
u0 Flow fluctuations.
u Streamwise velocity component.

V ; Vr Right singular vectors of SVD (complete ; reduced).
Vd Disturbance variance.
Vn Noise variance.
VJet Characteristic velocity of jets.
v Velocity vector initial condition.
v Transverse velocity component.

Wd
C Discrete time controllability Gramian.

Wd
O Discrete time observability Gramian.

W mixing layer width.
w Disturbance array.
wr External reference signal.
wd External disturbance, process noise.
wn Measurement noise.
w Spanwise velocity component.

X Solution to the Riccati equation for LQR.
x Space vector.
x Streamwise coordinate.

Y Solution to the Riccati equation for Kalman filter.
y Transverse coordinate.

z System output.
z Spanwise coordinate.

b••, b•�, b�•, b�� Parameter for growth-rate change in oscillators of a generalized mean-
field model (Tab. 5.1).

g Penalization coefficient.
g••, g•�, g�•, g�� Parameter for frequency change in oscillators for a generalized mean-

field model (Tab. 5.1).

d (·) Dirac delta function.

e Nonlinearity strength coefficient or state stabilisation error.

k Gain of the generalized mean-field model.
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n Kinematic viscosity.

r Fluid density.

S ; S r Singular values matrix of SVD, (complete ; reduced) .
s Oscillator growth rate.
s• ; s•? ; s� ; s�? Growth rate of oscillators of a generalized mean-field model (Tab. 5.1).

t ; ta ; tu Period of time (with actuated system ; with unactuated system).

f•, f� Phase of oscillators in a generalized mean-field model (Tab. 5.1).

c Back-flow coefficient.

W Space domain.
w Oscillator pulsation.
w• ; w•? ; w� ; w�? Frequency of oscillators in a generalized mean-field model (Tab. 5.1).



Abbreviations

ANN. . . Artificial Neural Network
ARMA(X). . . Auto-Regressive Moving Average (with eXogenous input)

AVERT. . . Aerodynamic Validation of Emission Reducing Technologies
BPOD. . . Balanced Proper Orthogonal Decomposition
CROM. . . Cluster-based Reduced Order Modeling
DEIM. . . Discrete Empirical Interpolation Method
DMD. . . Dynamic Mode Decomposition

EC. . . Evolutionary Computing
EP. . . Evolutionary Programming

ERA. . . Eigensystem Realization Algorithm
GA. . . Genetic Algorithm

GMFM. . . Generalized Mean-Field Model
GP. . . Genetic Programming

LQE. . . Linear Quadratic Estimation
LQG. . . Linear Quadratic Gaussian
LQR. . . Linear Quadratic Regulator
LML. . . Laboratoire de Mécanique de Lille, Université de Lille 1 Cité Scien-

tifique, Bâtiment M3 - 59655 Villeneuve d’Ascq Cedex, France
LPV. . . Linear Parameter Varying

MIMO. . . Multiple Input Multiple Output
MISO. . . Multiple Input Single Output

ML. . . Machine Learning
MLC. . . Machine Learning Control

NLSA. . . Nonlinear Laplacian Spectral Analysis
OKID. . . Observer Kalman filter IDentification

PCA. . . Principal Component Analysis
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PID. . . Proportional Integral Derivative
PIV. . . Particle Image Velocimetry

PMMH. . . Physique et Mecanique des Millieux Hétérogènes Laboratory, 10 rue
Vauquelin - 75231 Paris Cedex, France

POD. . . Proper Orthogonal Decomposition
PPRIME. . . Institute Pôle Poitevin de Recherche pour l’Ingénieur en Mécanique,

Matériaux et Énergétique, 11 Boulevard Marie et Pierre Curie BP 30179
- 86962 Futuroscope Chasseneuil Cedex, France

PRISME. . . Laboratoire Pluridisciplinaire de Recherche, Ingénierie des Systèmes,
Mecanique, Energétique. Université d’Orléans 8 Rue Léonard de Vinci
- 45072 Orléans, France.

ROM. . . Reduced Order Model
RT. . . Real-Time

SIMO. . . Single Input Multiple Output
SISO. . . Single Input Single Output
SSA. . . Singular Spectrum Analysis

SVM. . . Support Vector Machine
TUCOROM. . . TUrbulence COntrol using Reduced Order Models,

ANR Chair of Excellence (ANR-10-CEXC-0015), Poitiers, France.
UVG. . . Unsteady Vortex Generator



Matlab® Code: OpenMLC

This appendix describes OpenMLC, the employed implementation of MLC in
Matlab®. All examples in the book have been performed with this software.

Installation

OpenMLC is a Matlab® toolbox. It can be added to Matlab® by downloading the
toolbox from [94] or duplicate the master branch. The root directory of the toolbox,
OpenMLC, needs to be added to the path with subdirectories. Detailed or alterna-
tive instructions will be available from the Github repository [94] as the software is
updated.

Content

OpenMLC contains a class defined by the file MLC.m in the folder @MLC.
This class implements all methods discussed in the book. Additionally, a folder
MLCtools is provided. It provides the MLCparameters class description files which
implements all parameters. Also functions such as expression-tree interpreter, deriva-
tion function, common function overloading for protection are provided in this
folder. Finally this folder also contains the Examples subfolder that contains all
configuration files, evaluation function, and typical results discussed in this book.

The reader is referred to the documentation of the software:

help MLC % class description and first steps. Also
% list all properties of the MLC class and
% its methods.

help MLC/parameters % will list all configuration parameters
% and available options
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for a quick starting guide. Contextual help is available for each method by typing:

help MLC/METHOD % will provide help for METHOD

A full package documentation is available on the Github repository [94]. Any
bug report, feature request or participation can be brought to our attention through
the Github repository.
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actuation
command, 5, 52
penalization, see penalization coefficient

actuator, 6
design, 158
jet, 125, 139
UVG, 131

closed-loop, see feedback
compressed sensing, 172, 176
control

closed-loop, 128
command, see actuation command
design, 6, 8, 11, 60, 99
feedback, 1, 1–5
linear, 6, 51–69
open-loop, 111
optimal, see LQG, see LQR
robust, 1, 58, 128, 173
turbulence, 7, 8, 131, 138
with machine learning, see MLC

controllability, 52
convergence, 15
cost function, 3, 5, 19

design, 157
experiment, 126, 132, 139
LQE, 57
LQR, 54, 72
mean-field model, 98

creation
of expression trees, 20
of first generation, 23–24

crossover, 15, 28, 32

dynamical system, 5
control command, 5
noise, 5

nonlinear, see nonlinearity, 96
state, 5

elitism, 15, 27, 164
estimation, 55
estimator, 56
evaluation

of individuals, 26, 127
time, 163

evolutionary algorithm, 8, 14
experiment

cost function, 126, 132, 139
drift, 169
ideal, 155
MLC, 123
noise, 169

exploitation, 8, 15, 29, 164
exploration, 8, 15, 29, 164
expression tree, 16, 20

creation, 20
leaf, 16, 20
LISP implementation, 20
root, 16, 20
visualization, 102

feedback, 1
control, 1, 1–5
full-state, 53, 72, 86
sensor-based, 58, 82
system, 3

flow
backward-facing step, 124
boundary layer, 130
mixing layer, 136

frequency crosstalk, 7, 95

generation, 14
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creation of first, 23–24
evaluation, see individual evaluation

genetic operation
probabilities, 32
see also crossover, 27
see also elitism, 27
see also mutation, 27
see also reproduction, 27

Hopf normal form, 86

individual, 14, 20
experimental evaluation, 127
genetic algorithm, 14
interpretation, 146, 147, 161
pre-evaluation, 168
protection of operations, 21
re-evaluation, 26
seeexpression tree, 20
translation, 162

inverted pendulum, 4

Kalman filter, 55

linear model, 60
limitations, 60

LPV, 13, 53
LQE, 55, 55–57, 75

cost function, 57
MLC, 75

LQG, 7, 58, 58–59, 82
MLC, 82

LQR, 7, 54, 53–55, 72
cost function, 54, 72
example, 72
MLC, 72

machine learning, 11, 12, 18
artificial neural network, 18, 174
clustering, 13, 175
decision tree, 18
future, 171
genetic algorithm, 14, 14–15, 175
genetic programming, 16–17
multi-dimensional scaling, 166, 172
support vector machine, 18

mean-field model, 96, 96–100
cost function, 98
derivation, 106–110
linear control, 111
MLC, 100
MLC parameters, 101
model reduction, 108

MLC

evaluation of, 101
evaluation of run, 164, 172
experiment, 123
experimental implementation, 144, 146, 147
LQE, 75
LQG, 82
LQR, 72
mean-field model, 100
nonlinearity, 86
parameters, 32, 127, 133, 140
principle, 11, 12, 22
stop criteria, 31

MLC parameters
mean-field model, 101

model
generalized mean-field, see mean-field

model
projection, 60
reduction, see reduced-order modeling, 108,

176
mutation, 15, 27, 32

cut and grow, 27
Hoist, 27
reparametrization, 27
shrink, 27

Navier-Stokes equations, 107
stabilization, 6

nonlinearity, 6, 7, 86
MLC, 86

observability, 52
open loop, 4

penalization coefficient, 4, 19, 112, 127, 132
determination, 157

population, 14
size, 32, 163

real-time loop, 145, 160
reduced-order modeling, 7, 60

ARMA, 13
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DMD, 13, 60
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Koopman, 13, 60
OKID, 13, 60, 64

reference tracking, 4, 4
regression, 9
replication, 15, 27

search space, 14, 29
selection, 14, 26



Index 221
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harshness, 33
tournament, 26–27

sensor, 6
design, 158
experimental, 125, 131, 139
hot film, 131
hot wire, 139
RT PIV, 125

system
feedback, 3
identification, 13, 61

state-space, 52

time
delay, 6
delays, 82, 162
evaluation, 163
learning, 163
learning loop, 145
real-time, see real-time
transient, 163

turbulence, 8
control, 7, 8, 131, 138


