
Chapter 6
Taming real world flow control experiments with
MLC

“An approximate answer to the right problem is worth a good deal more than an
exact answer to an approximate problem."

- John Tukey

In Chapter 2, MLC was introduced as a generic method to identify optimal con-
trol laws for arbitrary dynamics. In Chapters 4 and 5, MLC has been applied to the
control of low-dimensional dynamical systems. In these examples, we have shown
(1) that it is comparable to optimal linear control design for linear dynamics, (2) that
it outperforms linear control methods in the case of a weak nonlinearity, and (3) that
it can even identify the enabling strongly nonlinear actuation mechanism in the case
that the linear dynamics are uncontrollable.

In this chapter, we describe and exemplify the application of MLC to real-world
turbulence control experiments. These come with the additional challenges of high-
dimensional dynamics, long time delays, high-frequency noise, low-frequency drifts
and, last but not least, with the non-trivial implementation of the algorithm in the
experimental hardware. In experiments, MLC is executed in the same way as for the
dynamical system plants in Chapters 4 and 5:

1. MLC provides a generation of control laws to be evaluated by the plant.
2. The plant is used to evaluate and grade these individuals with respect to the given

cost function.
3. MLC evolves the population.
4. The process stops when a pre-determined criterion is met.
5. After this learning phase, the best control law can be used.

The only difference between a simulation and an experiment is the need to interro-
gate an experimental plant. This is a technical challenge but not a conceptual point
of departure from MLC. Running MLC on an experiment using an existing code is
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124 6 Taming real world flow control experiments with MLC

a matter of a few days to a week of work, if the experimental hardware and software
is ready for closed-loop control.

We choose three configurations: a laminar flow over a backward-facing step
in a water tunnel (Sec. 6.1), separating turbulent boundary layers in wind tunnels
(Sec. 6.2), and a turbulent mixing layer (Sec. 6.3). These examples encompass key
phenomena encountered in most flow control problems: boundary layers, separa-
tion, mixing layers and a recirculation zone. Different kind of sensors, actuators
and time scales are used and illustrate the versatility of MLC. Section 6.4 high-
lights the limitations of model-based linear control for the turbulent mixing layer. In
Sec. 6.5, we focus on implementation issues with respect to software and hardware.
Section 6.6 suggests reading on a spectrum of flow control aspects. Our interview
(Sec. 6.7) addresses past and future developments in experimental closed-loop tur-
bulence control with Professor Williams, a pioneer and leading scholar of this field.

6.1 Separation control over a backward-facing step

The first example is the control of the recirculation zone behind a backward-facing
step in a water tunnel. This experiment has been performed by Nicolas Gautier and
Jean-Luc Aider in the PMMH laboratory at ESPCI, Paris. This first application of
MLC in separation control is described in detail in [111].

6.1.1 Flow over a backward-facing step

The flow over a backward-facing step is an important benchmark configuration in
fluid mechanics. From a practical perspective, this flow represents cold mixing in
a simplified combustor configuration. Increases in cold mixing, i.e. smaller recir-
culation zones, indicate better combustion in corresponding reacting flow. From a
more academic perspective, the flow features an incoming boundary layer, which
undergoes a geometrically forced separation at the edge of the step [9, 141, 22].
Excluding creeping flow, the fluid particles are unable to follow the 90° turn at the
step and separate. Thus, a mixing layer is formed between the recirculation zone
and the outer flow. As is typical for a mixing layer, a Kelvin-Helmholtz instability
triggers vortex shedding. This advective mixing increases the width of the vorticity
region downstream and determines the position of the reattachment point. This point
defines the length of the recirculation zone, Lrec. A literature survey indicates that
acting on the shear layer at the most amplified frequency contributes to the build-up
of eddies, enhances mixing and, at the end, reduces the length of the recirculation
zone [68, 64, 130, 112].

The described separation phenomena can be witnessed in many applications with
sharp corners: flows over mountains, cars, buildings, mixing elements in microflu-
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idics, just to name a few. This separation affects the lift and drag of the obstacle, the
resulting noise level or the mixing.

The actuation of the experiment is set up so that there is no direct access to the
shear-layer oscillation at the high-receptivity point, the corner. For a sensor signal,
MLC is given the extent of the recirculation zone defined as the area with backward
flow. This sensor is blind to the phase of the Kelvin-Helmholtz vortex shedding.
The interest in this choice of sensor is twofold. First, MLC must now discover the
shedding frequency indirectly or else MLC has to find another mechanism to control
the flow. Second, from an engineering point of view, the recirculation area is much
easier to infer than the state of the shear layer. For instance, optical monitoring of
seeding or combustion processes can be used instead of particle image or hot-wire
velocimetry. This is particularly true for hot reacting flow which rules out most
velocity and pressure measurements but which may be optically assessed.

6.1.2 Experimental setup at PMMH

The PMMH water tunnel (Fig. 6.1a) operates a gravity driven flow with velocities
up to 22 m/s. Its test section is L = 0.8 m long, l = 15 cm wide and Hsection = 20 cm
high (before the step). The step height is hstep = 1.5 cm, as depicted in Fig. 6.1b.
The operating Reynolds number for the experiment results presented here is Re =
U• ⇥hstep/n = 1350, where n is the kinematic viscosity of water. At this Reynolds
number, the flow is well separated, creating a shear layer between the high-speed
stream and the low-speed recirculation zone extending from the step to the reattach-
ment point. Furthermore, at this Reynolds number, large vortices are visible in the
mixing layer.

The control goal is to reduce the size of the recirculation zone. The actuation is
achieved by blowing or sucking in a nominally two-dimensional slot upstream of
the step, which is oriented at 45° with respect to the streamwise and wallnormal
directions. By regulating the pressure in the reservoir of the slot, the exit velocity
of the slot can be changed (positive for a jet, negative in case of suction). The exit
velocity is taken as actuation command b.

The recirculation size is monitored by a Real-Time (RT) Particle Image Ve-
locimetry (PIV) system which determines the flow fields at a 42 Hz frequency. This
sampling frequency is over one order of magnitude larger than the characteristic
Kelvin-Helmholtz frequency of around 1 Hz. However, the PIV system would be
too slow for the following wind-tunnel experiments with frequencies around 10 to
100 Hz. There are many possibilities to estimate the size of a recirculation zone. We
choose a simple quantity, namely the area in which instantaneous streamwise ve-
locity is negative. The sensor signal s(t) is defined as the normalized instantaneous
recirculation zone,

s(t) =
Sa(t)
Sa,u

, (6.1)
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Fig. 6.1 (a) Photograph of the PMMH experiment. (b) Experimental configuration. A slotted jet is
situated just upstream of the separation and performs blowing or suction in the boundary layer. A
laser sheet is placed in the symmetry plane for real-time PIV and to determine the backward-flow
region.

where

Sa(t) =
Z

H(�u(x,y, t))dx dy,

Sa,u = hSa(t)iT , without actuation.

Here, u is the streamwise velocity component, H the Heaviside function and h·iT
a time-averaged value of its argument over period T . Note that Sa,u is the time-
averaged recirculation area for the uncontrolled flow. The chosen sensor is not sen-
sitive to the shear-layer vortices for the reasons mentioned above.

The goal function J reads:

J = hsiT + gh|b|i2
T , (6.2)

where g is a penalization coefficient for the actuation b. This parameter sets the
admissible trade-off between realizing the control objective (reducing the recircu-
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lation) and the cost of the actuation. A low value of g will favor performance over
economy and a high value gives preference to economy over performance.

Table 6.1 MLC parameters used for the control of the backward-facing step flow.

Parameter Value

Ni 500
Pr 0.1
Pm 0.20
Pc 0.70
Np 7
Ne 1

Node functions +,�,⇥,/,exp, log, tanh

Ideally, the actuation power investment should be measured against the achieved
power savings. One example is aerodynamic drag reduction of a car in which the
cost function comprises the saving in propulsion power minus the invested actuation
power, i.e. the net energy savings. In the backward-facing step, mixing enhancement
has no direct energetic benefit and we resort to an order-of-magnitude argument for
choosing g . Departure point is an optimal periodic forcing which minimizes the
recirculation zone. In particular, the penalization term of this periodic forcing is
set equal to the normalized size of the recirculation zone, i.e. unity. This arguably
avoids the case where the actuation cost is under- or overemphasized and leads to a
value of g = 3/2. The parameters used to apply MLC are listed in the Tab. 6.1.

Advanced material 6.1 Activated options for experimental applications.
Contrary to previous implementations of OpenMLC in this book, there are the following
changes for experiments:

(a) All individuals of a new generation are evaluated, even if they have already been evaluated
in previous generations. The cost function of an individual is the average value over all
generations.

(b) The 5 best individuals of the final generation are evaluated 5 times. The cost function is,
now, the average value from the final generation.

(c) Control laws that are dismissed as unpromising in the first generation (e.g. valves closed
or open more than 90% of the time) are replaced until all individuals of the first generation
are considered as legitimate candidates.

The options (a) and (b) are extremely important, for two reasons: (1) The evaluation time T =

10 s is made small in order to have the fastest evaluation time for a generation. Having more
evaluation time means also better statistical values for the individuals that keep appearing. (2)
This rule prevents inefficient individuals that have obtained an accidentally good evaluation
to stay in the top of the ranking and contaminate the next generation. Option (c) ensures that
the first generation contains a large spectrum of promising control laws.
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6.1.3 Results

After 12 generations, MLC returned the best control law. Its behavior is illustrated in
Fig. 6.2a. When the control starts, the sensor value s goes from an average of 1 (by
definition) to an average of 0.28, which corresponds to more than 70% reduction.
The other curve presented in the figure illustrates the control command providing
a visual estimate of the actuation cost of the control law. Though it appears that
most of the time the control command is set at b = 0.5, this individual has a cost
of JMLC = 0.419 while the best open-loop command, a periodic command at 1 Hz
(corresponding to a Strouhal number of 0.2, displayed in Fig. 6.2b) has a cost of
JOL = 0.423 as defined by Eq. (6.2).

These comparable cost function values show that MLC has been able to find
a control law which is as good as the best periodic forcing. A spectral analysis
of the control command and the sensor signal under optimal MLC-based forcing
[113] shows that the frequency which is most amplified by the shear layer is neither
noticeable in the sensor signal nor exploited in the actuation command. The study
suggests that MLC has found a novel way to act directly on the recirculation bubble
with frequencies on the order of one tenth of the Kelvin-Helmoltz instability. This
is compatible with the so-called flapping frequency of the bubble [253].

Furthermore, the resulting control law is closed-loop by construction. Thus, it
should add intrinsic robustness to changing flow conditions since the control com-
mand is decided by flow events and not by a predetermined signal. Both MLC and
optimal periodic forcing have been tested under off-design conditions, using the
same cost function defined by Eq. (6.2). The results are displayed in Tab. 6.2. Un-
surprisingly, the periodic forcing performs poorly on off-design conditions. In com-
parison, the MLC law performs better (in terms of minimizing the cost J) at lower
and higher Reynolds numbers that were not included in the learning process.

Table 6.2 Cost function of MLC, JMLC and open loop JOL at different Reynolds numbers.

Reh JOL JMLC

900 0.75 0.33
1350 0.42 0.42
1800 0.76 0.59

This constitutes a key highlight of the experiment: MLC has found a new unex-
pected actuation mechanism which is more robust against changing operating con-
ditions than the optimal periodic forcing. Intriguingly, closed-loop control has also
outperformed periodic forcing in experiments with simple phasor control. Examples
are mixing enhancement after a backward-facing step [208] and drag reduction of a
d-shaped cylinder [209].
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Fig. 6.2 Sensor and control command for the control of the PMMH backward-facing step flow by
MLC (a) and best periodic forcing (b).
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6.2 Separation control of turbulent boundary layers

In the second example, we also reduce a recirculation zone by closed-loop actuation.
Yet, the geometry is a smooth ramp in which the separation point is not geometri-
cally prescribed but physically controlled. In fact, MLC has been applied on two
geometrically similar sister experiments in the Laboratoire de Mécanique de Lille,
France, with Cécric Raibaudo, Christophe Cuvier and Michel Stanislas and in the
Laboratoire PRISME from Orleans, France, with Antoine Debien, Nicolas Mazellier
and Azeddine Kourta. Both experiments feature a turbulent boundary layer which
separates under the influence of an identical descending ramp. Both experiments use
vortex generators (though slightly different in geometry) as actuators and hot-films
as sensors. The main difference between both experiments are (1) the Reynolds
number, with a factor of 10 difference between experiments, and (2) the use of dif-
ferent cost functions.

6.2.1 Separating boundary layers

Every obstacle in ambient high-speed flow will generate a boundary layer on its
surface. By definition, the boundary layer is a large gradient zone of the velocity
between the no-slip condition at the wall and the outer potential flow. The force
on the body is strongly dependent on the separation line which in turn depends
on the state of the boundary layer. Hence, boundary layer separation is pivotal for
the control of aerodynamic forces, like drag reduction behind a bluff body or lift
increase of an airfoil. Flow separation gives rise to a shear layer, also called a mixing
layer, between the slow recirculation zone and the fast outer stream.

This shear layer is prone to a Kelvin-Helmholtz instability, which generates
large-scale spanwise vortices [191, 261]. Near the point of separation, the corre-
sponding shedding frequency is characterized by a Strouhal number StQ = 0.012
based on the boundary-layer momentum thickness Q before separation [128, 280].
The vortices of the shear layer shed with a Strouhal number StLsep = 0.6 – 0.8 where
Lsep is the separation length [62, 75, 182].

The shear layer separates the oncoming flow from the recirculation bubble ex-
tending from the separation line to the reattachment line. The reattachment point is
determined by the efficiency of mixing between the high-speed oncoming flow and
the low-speed recirculation bubble. The recirculation bubble is typically associated
with low pressure region which increases the drag of the body. Large recirculation
regions also reduce the lift force on wings.

Flow control can mainly target two mechanisms to manipulate this flow: (1)
change the kinetic energy level of the boundary layer to prevent/promote separa-
tion, and (2) change the mixing properties of the separated shear layer to preven-
t/promote reattachment. The first mechanism is achieved by blowing/sucking the
boundary layer or by using vortex generators. The second mechanism is achieved
by manipulating the mixing layer. For instance, introducing perturbations at a sen-
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sitive frequency may excite vortex shedding which promotes an earlier reattach-
ment. The use of unsteady vortex generators (UVG) enables the exploitation of both
mechanisms: the streamwise vortices re-distribute the kinetic energy in the separat-
ing boundary layer, while the unsteadiness promotes vortex formations in separated
shear layer. These types of actuators have been used extensively for the control of
boundary layers. The optimal parameters for control such as the geometry, position
and frequencies are still widely discussed [173, 120, 121, 243, 123, 8].

6.2.2 Experimental setups at LML and PRISME

The experiments have been carried out in the Malavard closed-loop wind tunnel at
the PRISME laboratory [79] and the closed-loop LML wall-turbulence wind tun-
nel [74]. The AVERT profile used in both experiments is the descending ramp as
detailed in [74] for the LML wind tunnel. It features a sharp edge to force the po-
sition of the separation line (see Fig. 6.3). The initial slant angle of the ramp is
25°, and can be characterized by its height hramp and length `. The Malavard wind
tunnel has a 2 m wide and 5 m long cross section and the height and length of the
ramp are h = 100 mm and ` = 470 mm, respectively. With a free-stream velocity of
U• = 20 m/s, the Reynolds number Reh = U•hramp/n is around 1.3⇥105, where n
is the kinematic viscosity of air. In the LML wind tunnel, the Reynolds number is
ten times smaller due to lower velocities and smaller geometry.

For control purposes, unsteady vortex generators (UVG) have been implemented
one boundary layer thickness upstream of the sharp edge ramp (see Fig. 6.3). Their
design, location and orientation have been chosen based on the results from [121,
248, 73]. The UVG are set up so that the vortices are co-rotating in the LML wind
tunnel, and counter-rotating in the PRISME wind tunnel. The jet velocity ratio is
Vjet/U• = 3. The jets are made unsteady by the use of identical electro-valves which
can operate in an on/off fashion up to 300 Hz.

In both experiments, the friction downstream of the separation line is monitored
by hot-films (Fig. 6.3). Additionally, unsteady pressure taps are available in the
PRISME experiments for the computation of the cost-matching function. In both
cases, PIV is used as a post-processing tool to assess the effect of the control on
the flow. Unlike the water-tunnel experiment, PIV can neither be used in real-time
nor in the learning loop. The feedback sensors si used for the MLC control law are
based on the hot-film signals:

si =
hi �hi,u

hi,max �hi,u
with i = A,B, (6.3)

where hi is the raw voltage output of sensor i, hi,u is the average voltage for the
uncontrolled case (corresponding to a separated flow and low friction) and hi,max
is the average voltage for the most effective constant blowing leading to maximal
friction.
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Fig. 6.3 (a) Photograph of the test section of the LML wind tunnel. (b) Experimental configuration
of the separating boundary layer in the PRISME wind tunnel. The jets are placed to generate
counter-rotating stream-wise vortices. Hot-film sensors are placed after the separation line and
static pressure sensors are located in the symmetry plane.

The control law is subject to a cost function promoting a reduced recirculation
zone and penalizing blowing:

J = JHF + gpstatJpstat + gactJact, (6.4)

with JHF being an evaluation of the friction recorded from the hot-films, Jpstat an
evaluation based on the static pressure distribution and Jact an evaluation of the
actuation cost. gpstat = 1/200 and gact = 0.6 are chosen as penalization coefficients.
The evaluation based on the friction is defined as:

JHF =
1

NHF

NHF

Â
i=1

[1� tanh(hsiiT )] , (6.5)
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where NHF = 2 is the number of hot-film sensors. The value of JHF is 1 when no
effect is recorded and approaches 0 as the friction increases. The evaluation based
on the static pressure is defined as:

Jpstat =
1

0.1+Â14
i=1 h(p(xi, t)iT �hpu(xi, t))2iT

xmax�xi
xmax�xmin

, (6.6)

with xi being the position of the ith pressure tap after the edge, xmin the position
of the pressure tap closest to the edge, xmax the furthest downstream pressure tap,
p(xi, t) the static pressure recorded at position xi and pu(xi, t) the static pressure
recorded at position xi in the uncontrolled case. h·iT is the average over the evalua-
tion time T . Jpstat is equal to 10 when controlled and uncontrolled pressure distribu-
tions coincide and approache zero when they significantly deviate from each other,
with a weight which increases linearly towards the separation point. The LML ex-
periment has no pressure taps and this term is not taken into account.

The evaluation of the actuation cost is defined by:

Jact =

8

>

<

>

:

D

Q
Qu

E

T
at PRISME,

⌦

b2↵

T at LML,

(6.7)

where Q is the flow-rate and Qu the flow-rate under constant blowing. In the LML
experiment the flow rate could not be integrated in the learning loop and the control
command was used instead. In both cases, Jact is equal to 1 for constant blowing and
vanishes when no actuation is recorded. The parameters of the MLC algorithm are
summarized in Tab. 6.3.

Table 6.3 MLC parameters used for the control of the PRISME and LML separating boundary
layer.

Parameter Value (PRISME) Value (LML)

gpstat 1/200 0
gact 0.6 2
Ni 100 500
Pr 0.1 0.1
Pm 0.2 0.25
Pc 0.7 0.65
Np 7 7
Ne 1 1

Node functions +,�,⇥,/,exp, log, tanh
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6.2.3 Results

Both experiments led to successful separation mitigation of the boundary layer such
as displayed in Fig. 6.4. In the case of the LML experiment, the best open-loop con-
trol reference is a constant blowing of the UVG at Vjet/U• = 3 leading to JOL = 3.
MLC achieves a control with similar performance but at a reduced actuation cost
leading to JMLC = 2.1 (Fig. 6.5). In this case, gact directly selects the operating point
of the system as the dominating mechanism seems to be strongly linked to the ki-
netic energy injection in the boundary layer. The mechanism can be summarized
as follows: the more one blows, the more the boundary layer attaches. Vanishing
penalization leads to constant blowing while high penalization leads to the unforced
state.

(a)
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Fig. 6.4 Cartographies of back-flow coefficient c in the LML experiment. This coefficient is de-
fined in analogy of the intermittency factor as the average percentage of the occurance of a negative
streamwise velocity at the considered point [249]. (a) Uncontrolled flow. (b) MLC modified flow.
The recirculation zone has been drastically reduced. For both cases the iso-line at c = 50% has
been traced.

This dominance of the kinetic energy injection has also been demonstrated in the
LML experiment [80]. In that case, the pressure distribution obtained in controlled
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Fig. 6.5 Time series of sensor A (a,b,c) and low-pass filtered control signal (e,f,g) for uncontrolled
(a,d), open-loop constant blowing control (b,e) and MLC control (c,f) in the LML experiment.The
level of friction obtained appears to be proportional to the amount of kinetic energy injection.

cases is compared to one of the baseline flow in Fig. 6.6 (a). Both constant blowing
and MLC schemes lead to a reduction of the mean recirculation region since the
recovery region associated with the pressure plateau is shifted upstream. Noticeable
is the acceleration of the flow induced by the UVGs upstream of the sharp edge
location (x/hramp = 0) as emphasized by the strong decrease in pressure. However,
pressure distributions computed for the best open-loop actuation and MLC almost
coincide. This implies that the efficiency of both control approaches are approxi-
mately equivalent. This is confirmed by the measurement of the separation length
Lsep from the PIV dataset which is reduced by about 40% when control is applied
(see Tab. 6.4). Nevertheless, the actuation cost to achieve the same recirculation
zone reduction is significantly lower (⇡ 20%) for MLC as evidenced by the mo-
mentum coefficient

cµ =
S jdcV 2

j

1/2SrefU2
•

,

where S j represents the cross section of the jets, dc the duty cycle and Sref the surface
of the ramp (defined by the flow exposed surface of the descending part of the ramp)
reported in Tab. 6.4.

Intriguingly, the reference open-loop control and MLC are distinctly different
in terms of the frequency distribution of the actuation command. The frequency
distribution is computed from a zero-crossing algorithm applied to the mass-flow
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Table 6.4 Cost function values, separation and actuation properties for the natural, best open-loop
and MLC cases in the PRISME separating boundary layer experiment.

Case natural open-loop MLC

J 50.4 0.291 0.32
Lsep/hramp 5.4 3.14 3.16
cµ (⇥10�4) - 16.51 13.66

controller signal (see Fig. 6.6 (b)). Unlike open-loop periodic forcing for which
the blowing frequency is fixed at 30 Hz, the frequency distribution of the MLC
is broadband. More surprisingly, the frequencies of MLC are significantly larger
than for the best periodic forcing. Thus, MLC and periodic forcing yield similar
separation mitigation by significantly different underlying actuation mechanisms. A
more detailed study of the flow physics is reported in [80].

6.3 Control of mixing layer growth

We finally present a feedback control of a turbulent mixing layer built and oper-
ated in the ANR Chair of Excellence ‘TUrbulence COntrol using Reduced-Order
Models (TUCOROM)’ (ANR-10-CHEX-0015) at Institute PPRIME, France. This
experiment comprises all feedback control challenges described in Chapter 1: The
complex vortex dynamics between actuation and sensing leads to high-dimensional
dynamics, strong nonlinearity and large time delays. The goal of this experiment is
to optimize the mixing between both sides of the shear layer. To date, this is arguably
the most challenging implementation of MLC in an experiment.

6.3.1 Mixing layer flows

Mixing layers or, equivalently, shear layers, arise when two streams of flow at dif-
ferent velocities interact. Such mixing layers can be observed in almost every flow.
The recirculation zone of bluff-body wakes is bounded by shear layers. The near-
field dynamics of a jet is determined by surrounding mixing layers. Any separation
phenomenon, e.g. in a diffusor or an airfoil, leads to mixing layers. The convectively
unstable dynamics of these flows is particularly rich, as the streamwise evolution is
a noise amplifier of upstream perturbations with large frequency bandwidth. The
Kelvin-Helmhotz instability leads to large-scale vortex formation in laminar and
turbulent mixing layers [134]. These vortices merge in the streamwise direction to
form larger and larger structures which decay in a turbulence cascade to increas-
ingly small vortices. Thus, the mixing layer leads inevitably to high-dimensional,
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Fig. 6.6 PRISME experiment: (a) Pressure distribution along the ramp. (b) Frequency distribution
of the blowing.

multi-scale vortex dynamics. Already by phenomenology it is clear that the possi-
bility of low-dimensional or linear models are very limited as will be corroborated
in Sec. 6.4

Nonetheless, simple feedback flow control strategies have been successfully ap-
plied to mixing layers [209]. From early periodic forcing studies [134], it is observed
that actuating at the frequency of the main structures reinforces said structures and
invigorates the mixing, while actuation at much higher frequencies interferes with
the production of large structures and mitigates the width of the shear layer.
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6.3.2 Experimental setup of the TUCOROM wind tunnel

The TUCOROM experiment has a double turbine wind tunnel aimed at creating
a turbulent mixing layer. The wind tunnel generates two flows that can be set at
different velocities and which are separated by a plate. The optically accessible test

(a)

Splitter plate
with actuators

Hot wires

Intake

Diffuser

(b)

Jets

Hot-wire rake

Fig. 6.7 TUCOROM mixing layer demonstrator: (a) Photo of the test section. (b) Experimental
setup of the mixing layer. The hot-wire rake is placed at 500mm downstream of separating plate to
capture the structures in the shear layer. The spacing of the hot-wire probe is Dy = 8 mm.
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section has a cross section of 1⇥1 m2 and a length of 3 m. The separation plate ends
with a triangular profile with a tip 3 mm thick which includes 96 holes for actuation
jets blowing in the streamwise direction. The jets can be operated independently. A
vertical rake of 24 hot wires, operated at 20 kHz, serves as a sensor array and can
be placed at any position downstream in the test-section. The hot wires, vertically
separated by a 4 mm offset, map the mixing layer profile. The closed-loop control
is implemented on a Concurrent® RT system which combines the use of Simulink®

loop design and Fortran home-made adaptor functions to encode sensor acquisition,
compute control decisions and command actuation signals up to a maximum rate of
10 kHz.

The unforced and forced mixing layers are described in detail in [206]. For the
results presented here, the wind tunnel is operated with a velocity ratio of U1/U2 =
3.6, and the Reynolds numbers based on the initial mixing layer thickness is 500
(laminar) for the learning process and can be set to 2000 (turbulent) to test off-
design conditions. The hot-wire rake is placed at x = 500 mm downstream from
the separation plate. The sensors are based on the fluctuations of the raw hot-wires
sensors:

si(t) = hi(t)�hhi(t)iTrms
, (6.8)

where hi(t) is the raw velocity measured at hot-wire number i and Trms = 1 s is the
time interval used in order to compute the moving average of the velocity signal.

The goal of the control is to increase mixing. In this Chapter, we chose the width
of the shear layer profile as a quantity to maximize. This width is approximated by
the ratio of the integral of the average fluctuation energy profile over the maximum
of this profile. Thus, the cost function reads:

J = 1/W with W =
Â24

i=1
⌦

s2(t)
↵

T
maxi2[1,24]

�⌦

s2
i (t)

↵

T

� , (6.9)

where T = 10 s is the evaluation time for a control law. This time corresponds to
approximately 950 Kelvin-Helmoltz periods of the initial shear layer.

The 96 actuators are operated simultaneously as a single input, although they
could have been actuated independently. Studies with periodic forcing of different
actuator configurations have indicated that this synchronous operation is best for
enhancing the mixing layer width. The control law should only return a binary value
(0 or 1) as the valves commanding the jets can only be operated in an on/off mode.
The maximum jet velocity is kept constant by the pressure tank. Details on the
implementation of the control law by MLC are given in the next section.

The parameters used for the operation of MLC in this experiment are detailed in
Tab. 6.5.

The output of the expression trees can be an arbitrary function of the sensors si(t),
which could take any value in R. In our case, the valves commanding the actuation
jets can only be opened or closed. Hence, the output of the trees is compared to zero,
and thus b(t) = 0 if the output of the tree is negative, and b(t) = 1 otherwise. This
operation is achieved inside the Fortran part of the RT loop, after interpretation of the
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Table 6.5 MLC parameters used for the control of the TUCOROM mixing layer.

Parameter Value

Ni
1000 (first generation)
100 (other generations)

Pr 0.1
Pm 0.25
Pc 0.65
Np 7
Ne 1

Node functions +,�,⇥,/,sin,cos,exp, log, tanh

expression trees, and before sending back the actuation command to the Labview®

framework (see Sec. 6.5.4).
Evaluating an individual costs 3s transient time and T = 10 s evaluation time.

Thus the first generation with 1000 individuals requires around 3.5 h and subsequent
generations require around 20 min each. This represents around 8 � 10 hours for a
typical run with 10-15 generations. The reader is strongly advised to implement
health monitoring of the experiment and simple automatic reset procedures.

6.3.3 Results

Though the experiment was run until the 15th generation, the best control law was
already obtained after the 8th generation. The effect of the MLC-controlled flow is
shown in Fig. 6.8 — together with the unactuated flow and the best periodically
forced flow. The periodic-forcing benchmark has been obtained through an exten-
sive parametric study of harmonic forcing with many frequencies ranging from 1 to
500 Hz and various duty cycles. A periodic forcing at frequency of 9 Hz and 50%
duty cycle was found to yield the largest increase in mixing-layer width W of a 54%.
In terms of performance, the MLC controlled flows exhibits a 70% increase of the
shear-layer width, which outperforms the periodic-forcing benchmark by 16% with
respect to this width or 30% with respect to increase of the width by periodic forc-
ing. Looking back at Fig. 6.8, the similarity between the periodic forcing and the

Advanced material 6.2 Varying the population size to minimize the time of the runs.

The MLC of this experiment follows the experimental changes of advanced material 6.1. In
addition, the first generation contains 1000 individuals while the following ones are restricted
to 100 individuals. The large first generation (with removal of uninteresting individuals) en-
sures that the search space contains effective control laws. The significantly reduced size of
further generations reduces the time investment in an inefficient exploration.



6.3 Control of mixing layer growth 141

y
[m

m
]

t [s]

40

�104
44

�104
44

�104
0 1

Fig. 6.8 Pseudo-visualizations of the TUCOROM experimental mixing layer demonstrator [206]
for three cases: natural baseline (top, width W = 100%), the best periodic-forcing benchmark (mid-
dle, width W = 154%), and MLC closed-loop control (bottom, width W = 170%). The velocity
fluctuations recorded by 24 hot-wires probes (see Fig. 6.7) are shown as contour-plot over the time
t (abscissa) and the sensor position y (ordinate). The black stripes above the controlled cases indi-
cate when the actuator is active (taking into account the convective time). The average actuation
frequency achieved by the MLC control is comparable to the periodic-forcing benchmark.

effect of the MLC law is evident. A spectral analysis of the MLC control command
shows that MLC also operates around 9 Hz. Both actuations amplify the large-scale
eddies at the downstream measurement position. The difference between both opti-
mal periodic forcing and MLC is fourfold:

1. MLC is a sensor-based closed-loop control and does not explicitly depend on
time. In other words, MLC schedules actuation based on flow events and not on
a predefined ‘clockwork’.

2. The shear-layer width associated with MLC actuation is significantly larger.
3. The effective duty cycle exhibited by MLC is much smaller, leading to a 48%

decrease in the actuation cost. Intriguingly, this benefit arises although actuation
was not penalized in the cost function (6.9).

4. The actuation effect of MLC dramatically outperforms periodic forcing for
changing operating conditions, such as changing the maximum stream veloc-
ity. The situation is comparable to the PMMH experiment in Sec. 6.1 or drag
reduction of the D-shaped body with phasor control [209]

Feeding back sensor signals is particular important to optimize the control law.
The periodic forcing acts like a clockwork on the noise amplifier and performs well
as long as no perturbations are modifying the underlying base flow. On the other
hand, MLC triggers the actuation based on what is sensed. MLC adapts with a time
delay of the order of 2 ⇥ x/(U1 +U2) which is comparable to the period of maxi-
mum excitation. Thus, MLC realizes a phasor-type control as in [209] which is more
‘in phase’ with the flow physics and more robust to changing operating conditions.
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6.4 Alternative model-based control approaches

To motivate the use of machine learning control using genetic programming, we
consider the inability of linear system identification to capture the strongly nonlin-
ear dynamics in the TUCOROM mixing layer experiment from Sec. 6.3. In partic-
ular, we attempt to identify a linear input–output model from actuation to hot-wire
sensors using the ERA/OKID algorithms described in Sec. 3.5.1.

As mentioned earlier, it is often difficult to obtain clean impulse response exper-
iments, especially in turbulent fluid systems with stochastic fluctuations. Instead,
a pseudo-random actuation sequence is constructed by repeatedly turning the jets
on or off for a random interval of time. The hold time is sampled from a discrete
Poisson distribution with parameter l = 4. This distribution is then scaled so that
the mean hold time is 0.05 seconds. Using pseudo-random excitation sequences for
system identification of fluid systems is inspired by [158]. The actuation sequence
is shown in Fig. 6.9 (top).
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Fig. 6.9 (a) Pseudo-random actuation sequence for system identification and (b) velocity measure-
ments from hot-wire rake. The actuation sequence consists of Poisson blowing at the leading edge
of the splitter plate with average hold duration of 0.05 s. Nineteen hot-wire probes are used at a
downstream location of x = 500 mm.
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A particular pseudo-random blowing sequence is used for 300 identical exper-
imental runs, and the sensor measurements from a rake of nineteen hot wires at a
downstream location of x = 500 mm are collected and phase averaged. The resulting
phase-averaged velocity measurements are shown in Fig. 6.9 (bottom). Immediately,
coherent structures may be observed as correlations in the hot-wire signals; however,
phase-averaging removes important stochastic fluctuations that account for a signif-
icant amount of the kinetic energy. Therefore, even perfect model reconstruction of
the phase-averaged velocity measurements would only account for a limited aspect
of the full nonlinear flow.
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Fig. 6.10 The ERA/OKID models for the input–output response of each hot wire may be combined
to produce a frequency response plot. The color code indicates the corresponding hot wire and
is adopted from Fig. 6.9. The phase information (b) strongly suggests a time delay, while the
magnitude plot (a) indicates weak flow resonances.

The phase-averaged measurements are then used in the ERA/OKID algorithm to
obtain input–output models for the various hot-wire signals. A frequency response
of the various models for the nineteen hot-wire signals is shown in Fig. 6.10. The
magnitude plot shows moderate flow resonance at certain frequencies, and the phase
plot captures the time delay between actuation and measurements. However, when
analyzing the model reconstruction of a particular hot wire in Fig. 6.11, it is clear
that the model error is on the same order of the signal strength. This indicates that
the phase-averaged measurements still contain strong, reproducible nonlinear flow
effects that cannot be captured by the linear models.
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To summarize, linear model identification fails to capture two features of the
mixing layer flow field: stochastic fluctuations and coherent nonlinear phenomena.
Taken together, these effects account for a significant portion of the kinetic energy,
and are likely important for flow control efforts. However, it may still be interest-
ing to test the performance of robust model-based control, considering that many
nonlinearities may be considered as model uncertainty or disturbances.

0

1

b

−0.5

0

0.5

1

1.5

u
 [

m
/s

]

−0.5

0

0.5

1

1.5

u
r [

m
/s

]

2 2.5 3 3.5 4 4.5 5
−1

0

1

t [s]

∆
 u

 [
m

/s
]

(a)

(b)

(c)

(d)

Fig. 6.11 The true hot-wire signal u is compared with the model-reconstructed signal ur for the 9th

hot wire near the middle of the rake. Note that the error Du is nearly as large as the original signal.

6.5 Implementation of MLC in experiments

This section details the software and hardware implementation of the experiments
described in the previous sections. Following Chapter 2, two closed loops need to be
set up: a fast inner real-time (RT) control loop (Sec. 6.5.1) and a ‘slow’ outer MLC
learning loop. Section 6.5.1 describes the real-time control loop which extracts in-
formation from the experiment through sensors, computes the actuation command
and passes it to the actuator. Details about the hardware and software implementa-
tion of MLC for the PMMH, PRISME and TUCOROM experiments are provided
in Secs. 6.5.2, 6.5.3 and 6.5.4, respectively.
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6.5.1 Real-time control loop - from sensors to actuators

Any experimental RT control loop consists of four elements: the plant, sensors, ac-
tuators and a computational unit. The sensors get information about the plant. The
computational unit processes these signals and sends a control command to the ac-
tuators which, in turn, will act on the plant. All of these elements must be able to
operate in a frequency range of the actuation mechanism at work. Stabilizing an
unstable oscillator, for instance, typically requires a sampling rate which is signif-
icantly larger than the eigenfrequency. In fact, the Nyquist theorem would impose
the need for a sampling frequency which is at least twice that frequency and a rule
of thumb is to use a sampling frequency of at least ten times the eigenfrequency.

The RT loop constitutes a classical feedback experiment for a given controller.
The slow outer MLC loop provides new controllers for this experiment after each
cost function evaluation. This implies that the computational unit needs to be pro-
grammable, either by allowing it to read and interpret the individuals provided by
the learning loop (at every time step), or by allowing the learning loop to change its
content. Two approaches have been used to achieve this goal:

• The outer loop is able to change (and compile) the controller code on the RT-loop
computation unit at least once per generation (see Sec. 6.5.3 as an example).

• The use of an on-board control law parser: the controller implemented in the
computational unit is re-loaded every sampling cycle and could thus change even
during one evaluation period (see Sec. 6.5.4).

As the control law provided by the MLC learning loop is arbitrary, the RT loop
has to be protected against control commands that provide values outside the safe
operation range of the experiment. This means that the controller — implemented as
a parser or as an externally modified part — should be encapsulated in a framework
that can protect the actuators from operating out of safety margins.

The last aspect to be taken into account is that the experiment may evaluate hun-
dreds or thousands of control laws and may hence take more time than a standard
control experiment where only a single control law is tested or optimized. The time
scales for MLC experiments may range from hours in wind tunnels to days in water
tunnels. Hence, all components of the experiment should be able to operate in an
unsupervised manner at least to evaluate a few generations. This might imply the
addition of other regulation loops for temperature, calibration updates, tank refill,
to name only few examples. It is also advisable to design some telltales in order to
detect any unusual behavior of the experiment. Feedback loops have a reputation of
pointing at weak spots of experiments and this is amplified by the exploratory nature
of the MLC algorithm.
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6.5.2 MLC implementation in the PMMH flow over a
backward-facing step

In the water tunnel, the characteristic frequency is about 1 Hz. With such a low
characteristic frequency, the controller can be implemented on any modern com-
puter (Fig. 6.12). The real-time loop, including the RT PIV part, is implemented in
Labview®. Thus, the Labview® project contains the real-time PIV acquisition, the
command signal to the actuator and the controller. The outer MLC loop employs
OpenMLC introduced in Sec. 2.3.
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Fig. 6.12 MLC implementation architecture in PMMH backward-facing step flow.

The control law is first translated from LISP to a classical symbolic expression
by OpenMLC then transmitted through file exchange on the computer hard-drive to
the Labview® project. Each time OpenMLC evaluates an individual, it writes a file
(e.g. ind.dat) containing the symbolic expression describing the control law. The
appearance of the file is detected in one of the RT-loop iterations. The file is read,
the string variable containing the expression is then updated and the file is deleted.
A parser function is then used to transform the sensor value to a control command
inside the controller block.

That control law is used during the evaluation period and at the same time the cost
function is integrated. The Labview® program then writes the cost function value
of the individual in a file (e.g. J.dat) in the exchange directory of the computer.
OpenMLC detects the presence of the file, reads and deletes it, which tells Labview®



6.5 Implementation of MLC in experiments 147

that the transmission is complete. The next individual can then be evaluated in the
same way.

The exchange by files may sound like an unnecessary and time-consuming way
to proceed. Yet it is relatively simple, as only the read/write protocol needs to be
implemented. The file exchange requires that a parser can be implemented on the
RT loop.

6.5.3 MLC implementation in the LML and PRISME experiments

In the LML and PRISME experiments, no dedicated, high-performance and highly
expensive computer with real-time capacities was available. The RT loop has instead
been implemented in an Arduino micro-controller (Fig. 6.13). In contrast to the
water-tunnel experiment in Sec. 6.5.2, a parser on the Arduino would have led to a
significant performance loss. The water-tunnel experiment at PMMH had a large
characteristic time scale of 1 seconds and the communication between RT and MLC
loop happened over file exchange. The time scales of wind-tunnel experiments are
one to two orders of magnitude faster and we chose a more efficient communication
strategy. OpenMLC has been set up so that (1) the evaluation function generates
code for the Arduino with all control laws for one generation, (2) compiles it, and
(3) burns it on the micro-controller. By abandoning the possibility of changing the
individual on the fly, the computational load achieved on the board has been reduced
to a bare minimum. This speed-up enables a control update frequency of 1 kHz
without even having to implement low-level programming on the Arduino.

The burned code contains all individuals of one generation and sends back the
cost function values. The outer loop is controlled by by Matlab® code which gener-
ates the codes for the individuals and retrieves the cost function values in addition to
reading any other information which may be fed back by the Arduino. This code can
interrupt the experiment, realize a calibration, and re-burn and re-start the evaluation
if needed.

6.5.4 MLC implementation in the TUCOROM experiment

The controller is implemented on a high performance PC with 1 TeraFlop comput-
ing power (Fig. 6.14). The real-time loop is designed in Labview® and compiled
to run at the desired frequency enabled by a real-time scheduler. The reading of
the sensors, the signal processing, and the calculation of the control command is
achieved by a Fortran function whose output is then transferred inside the Labview®

designed project. The Labview® project encompasses all other commands needed
to operate the wind tunnel, from the turbine operation, pressure regulation for the
jets, calibration, temperature monitoring, and so on.
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Fig. 6.13 MLC implementation architecture in LML and PRISME boundary-layer experiments.

The interaction between OpenMLC and the RT loop is achieved through file ex-
change as in the PMMH water-tunnel experiment (Sec. 6.5.2). This has the advan-
tage of changing the control law on the fly. Here, the loop described by the Labview®

project is in charge of monitoring the experiment and act accordingly in case of an
unexpected event, such as failing actuators or sensors.

Advanced material 6.3 LISP interpreter pseudo-code.
All LISP parsers operate in the same way and are rather easy to build, through a recursive
function: function def:
translated_string=read_my_LISP(LISP_string):
(1) Detect outer parenthesis
if no parenthesis: translated_string = LISP_string
(2) Detect spaces
operator=LISP_string(par1:space1)
argument#n=LISP_string(space#n:space#n+1)
(3) Translate arguments
tr_args#n=read_my_LISP(argument#n)
(4) Replace strings
if op is a function
translated_string=operator(argument#1,...)
if op is an operation
translated_string=argument#1 operator argument#2
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Fig. 6.14 MLC implementation architecture in TUCOROM mixing layer.

6.6 Suggested reading

(1) Modern developments in flow control, by M. Gad-el-Hak, Applied Mechan-
ics Reviews, 1996 [108].

This review provides an early perspective on flow control with a number
of future directions that have since been developed.

(2) Control of turbulence, by J. L. Lumley and P. N. Blossey, Annual Review of
Fluid Mechanics, 1998 [179].

This review is among the earliest overviews summarizing efforts on mod-
eling for turbulence control.

(3) Feedback control of combustion oscillations, by A. P. Dowling and A. S.
Morgans, Annual Review of Fluid Mechanics, 2005 [85].

This review considers combustion control using linear control theory.
(4) Dynamics and control of high-Reynolds number flows over open cavi-

ties, by C. W. Rowley and D. R. Williams, Annual Review of Fluid Mechanics,
2006 [231].

This review describes the control of flow over open cavities, which pro-
vides an illuminating success story of flow control design.

(5) A linear systems approach to flow control, by J. Kim and T. R. Bewley,
Annual Review of Fluid Mechanics, 2007 [161].

This review provides a clear summary of modern techniques applying lin-
ear control theory to fluid flow control.
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(6) Control of flow over a bluff body, by H. Choi, W.-P. Jeon, and J. Kim, An-
nual Review of Fluid Mechanics, 2008 [65].

This review considers the problem of controlling bluff body flows from
physical and mathematical perspectives.

(7) Optimal and robust control of fluid flows: Some theoretical and compu-
tational aspects, by T. T. Medjo, R. Temam, and M. Ziane, Applied Mechanics
Reviews, 2008 [186].

This review provides an overview of mathematical and numerical consid-
erations in modern flow control.

(8) Input-output analysis and control design applied to a linear model of spa-
tially developing flows, by S. Bagheri, J. Hoepffner, P. J. Schmid, and D. S.
Henningson, Applied Mechanics Reviews, 2009 [13].

This review explores linear model-based control of fluid systems with the
Ginzburg-Landau equation as an illuminating example.

(9) Actuators for active flow control, by L. Cattafesta, Annual Review of Fluid
Mechanics, 2011 [54].

This review considers one of the most important factors in experimental
flow control: the actuators.

(10) Adaptive and model-based control theory applied to convectively un-
stable flows, by N. Fabbiane, O. Semeraro, S. Bagheri, and D. S. Henningson,
Applied Mechanics Reviews, 2014 [101].

This review provides an overview of research on active control for transi-
tion delay with example code for the linearized Kuramoto–Sivashinsky equation.

(11) Analysis of fluid systems: stability, receptivity, sensitivity, by P. J. Schmid
and L. Brandt, Applied Mechanics Reviews, 2014 [238].

This review investigates flow analysis in terms of cost optimization.
(12) Closed-loop turbulence control: Progress and challenges, by S. L. Brun-

ton and B. R. Noack, Applied Mechanics Reviews, 2015 [43].
This review explores the state-of-the-art of closed-loop turbulence control

and provides and emphasis on modern methods from machine learning.
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6.7 Interview with Professor David Williams

David Williams is Professor of Mechanical &
Aerospace Engineering at the Illinois Institute of
Technology, IL, USA. Since 1999 he has been the
Director of the Fluid Dynamics Research Cen-
ter at IIT. In addition, Professor Williams is an
active member of the American Institute of Aero-
nautics and Astronautics, and is currently serv-
ing his third term on the fluid dynamics technical
committee.

Professor Williams is a leading expert on ex-
perimental closed-loop flow control, with numer-
ous experimental success stories on challeng-
ing flow configurations, such as the reduction of
acoustic tones in aircraft cavities or separation
control over an airfoil in flight maneuvers. He is a highly collaborative researcher
and draws researchers from around the globe to work with him in his advanced wind
tunnel facility.

Professor Williams has received numerous national and international honors for
his research accomplishments and excellence in teaching. He is Fellow of the Amer-
ican Physical Society and was awarded with the prestigious Alexander von Hum-
boldt Fellowship and the Honeywell Advanced Technology Achievement Award. He
is also a licensed commercial pilot with more than 1000 hours of flying time.

Authors: You are a leader in experimental flow control, with many successful
demonstrations of closed-loop control for aerodynamic applications. It would be
an understatement to say that there are issues that arise in experimental flow
control that are not usually present in simulations and theory. Can you discuss
key enablers in experimental flow control that have been developed in the last
two decades? Which challenges do you see as guiding foci of relevant future
research?

Prof. Williams: The “key enablers" for experimental active flow control (AFC)
have come primarily from the adaptation of modern methods of closed-loop feed-
back control algorithms into experiments, and the rapid development of sensors
and digital signal processing (DSP) hardware, e.g., dSPACE and Arduino DSP’s.
This combination enables AFC to become much more than an exercise in actuator
development and open-loop control. It is now possible to adapt AFC to chang-
ing flight/flow conditions, and to interact directly with internal flow instabilities,
which leads to far more robust and effective controllers than can be achieved with
open loop control or by changing a base flow state. With closed-loop active con-
trollers the actuator power requirements can be minimized, which is not possible
with open-loop methods.
The focus in experimental fluid dynamics is shifting from open-loop demonstra-
tions of actuator performance at steady flow conditions to closed-loop control
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during unsteady flow conditions. Open-loop actuator demonstrations compete
with passive flow control devices. For example, separation control on wings will
likely continue to be done with passive vortex generators, because the active de-
vices are more expensive and less reliable.
Future research in experimental AFC will continue to emphasize the develop-
ment of low-dimensional models that accurately represent the flow’s response to
external disturbances and the flow’s response to actuator input, i.e., disturbance
models and plant models. These can be used to design practical and effective
feed-forward and feedback controllers that run in real-time on the digital-signal
processing hardware. Examples of active flow control systems that have suc-
cessfully employed these techniques include the reduction of unsteady loads in
gusting flows on wings and road vehicles, thermo-acoustic combustion instability
suppression, control over the reattachment length in separated flows over steps,
reduced drag on bluff bodies, reduce acoustic tone amplitudes in cavity tones,
control the rotational motion of slender bodies at high angles of attack, and re-
duce lift hysteresis on pitching wings.
Another important enabler in experimental flow control has been in sensor de-
velopment. MEMs-based sensor technology is reducing the cost and size, and in-
creasing the performance of pressure sensors, motion sensors with IMU’s, gyro’s,
and accelerometers. This enables distributed sensing capability, such as multiple
pressure sensors in a diffuser or over the surface of a wing, for better flow state
estimation in practical applications. Shear stress sensors continue to be devel-
oped and applied with varying degrees of success in the laboratory, but have not
developed to practical application levels. Full-field sensing techniques, such as
real-time PIV, enable us to explore new methods of integrating experiments with
numerical simulations. Data assimilation methods combine experiments and sim-
ulations as a way of correcting simulations.
Actuator technology is sufficiently mature for solving a large number of flow
control problems, but one finds that our understanding of how the flow will re-
spond to an arbitrary actuator input is somewhat limited. System Identification
methods have proven to be useful for developing black-box models that are ef-
fective in modeling flows, but they are not as reliable as models developed from
first principles.
Another challenge for all flow control investigators is to recognize that fluid dy-
namic time scales introduce time delays into the system that we are trying to
control. These delays limit the achievable bandwidth of the overall system con-
trol, so actuator bandwidth is not a major issue for most flow control applications.

Authors: In your experience, what are some of the biggest gains in experimental
flow control that came about from simulations or models? In contrast, what do
you see as the key limitations of models in capturing real-world fluid phenom-
ena?

Prof. Williams: Most of the significant advances in flow control were the result
of collaborations between experiments, theory and simulations, so it is difficult
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to attribute advances in experimental flow control as being the direct result of
simulations or models. For example, in what I consider to be the first modern
flow control experiment, Prandtl used suction to suppress separation from one
side of a cylinder, which provided evidence for the role of the boundary layer
in flow separation and became the principal motivator for the development of
boundary layer flow control. In this case theory preceded the experiment, but
experimental observations led to the theory.
In my experience the key limitations of simulations in capturing real-world are
matching Reynolds number, computing an accurate actuator input to the flow,
and matching the dimensionality of the experiment. Two-dimensional simula-
tions of the flow’s response to actuation often produce inaccurate results, because
the real-world actuators typically introduce three-dimensional disturbances into a
flow. It is difficult for actuators used in experiments to produce two-dimensional
disturbances.
In the case of closed-loop active flow control, models of the flow field response
to external disturbances and models for the flow field response to actuator input
are very useful for achieving effective control.

Authors: Can you comment on the role and benefits of experimental flow control
in the future as computer simulations become more powerful?

Prof. Williams: The collaboration between experiments and simulations will be-
come even stronger as simulations become more powerful. Fortunately the en-
gineering community has outgrown the notion from the 1990’s that simulations
will make experiments obsolete. The emerging area of research known as “data
assimilation" seeks to capitalize on integration of large-scale, real-time, experi-
mental data sets with numerical simulations. Although the techniques being de-
veloped are not specifically focused on flow control applications, it seems likely
that the approach will be useful for the entire flow control community. For exam-
ple, imagine real-time experimental data being used to “correct" a full-scale DNS
simulation of a particular flow. The DNS can provide the full-state feedback in-
formation to a controller that would not be available from the experimental data.
Simulations done correctly provide more detailed information about a flow than
can be obtained by experiment. Experiments, on the other hand, can explore
a wider parameter space than simulations. Simulations and models often iden-
tify instabilities that are susceptible to control. In principle, simulations (adjoint
methods) can identify spatial locations where actuator placement can be most
effective.

Authors: In the coming decades, where do you see the big future gains in our
everyday lives and in industry due to flow control?

Prof. Williams: The Holy Grail of flow control would be the ability to control
all scales of turbulence in shear flows, such as, in turbulent boundary layers, jets,
wakes and mixing layers. Imagine being able to ‘flip a switch’ and laminarize a
turbulent boundary layer. Fuel savings for the aerospace industry would be enor-
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mous. However, I don’t envision that capability in the near-term future, primar-
ily because we don’t have sufficient understanding of the turbulence production
mechanisms, or ways in which actuators can be used to interact with those mech-
anisms. However, pursuing the goal of turbulence control drives the development
of new technology in numerous areas. New approaches to flow modeling (e.g.,
resolvent modes), advances in sensor and actuator technology, and novel control
algorithms will lead to improved understanding of the fundamental phenomena
governing turbulence.
Linear thinking about the current trends in flow control suggests that AFC will
result in more efficient energy recovery via improved aerodynamics on aircraft
and wind turbines. Reduced drag and improved gust tolerance on commercial
aircraft can be expected. I believe that it is possible for conventional flight con-
trol surfaces to be replaced by AFC actuators, and these aircraft will fly without
vertical stabilizers and will fly with substantially larger aerodynamic efficiency,
i.e., L/D ratio. AFC will enable tailored combustion processes that will reduce
pollutants from combustion processes.
The rapid development of low cost and ever more powerful DSP’s will enable
more intelligent control of flows and systems. The application of distributed sens-
ing will improve state estimation.
Will there be a break through in our understanding of turbulent flow mechanisms
that enables laminarization of turbulent shear flows? Linear extrapolation says
‘no’, but fortunately, nature does not follow linear extrapolations.

Authors: Do you envision these being facilitated by better hardware, increasing
model fidelity, access to more complete data, or some combination thereof?

Prof. Williams: Improvements in a combination of all of the above may lead to
the better understanding that is required to control turbulent shear flows.
There is a difference between what we can do with flow control and what is of
interest to industry. For example, we know how to delay airfoil stall with various
types of leading edge actuation, such as, pulsed-pulsed blowing jets, but industry
continues to use mechanical vortex generators for stall control, even though there
is a continuous drag penalty. From industry’s perspective the complexity and re-
liability issues of an AFC stall control system outweigh the benefits of reduced
drag. It is obvious that AFC techniques must buy their way onto a system by
providing greater benefits than the cost of added complexity. Sometimes those
benefits are unexpected, such as, the use of pneumatic AFC for flight control of
an aircraft. The primary function of the pneumatic actuator is to provide roll and
yaw control, which takes bleed air from the engine. At the same time a secondary
effect occurs, where the AFC increases the efficiency of the flight vehicle, so that
the range and endurance are better with AFC than without. In this case, the over-
all system benefits from the application of AFC.

Authors: We thank you for sharing your insights in this interview!


