
Chapter 5
Taming nonlinear dynamics with MLC

“Prediction is very difficult, especially about the future.”

- Niels Bohr

Frequency crosstalk is a ubiquitous phenomenon of turbulence and is of pivotal
importance in control. In the normal turbulence cascade, the coherent structures
feed increasingly smaller scales corresponding to increasingly larger frequencies
with energy via the transfer term. In the inverse cascade, the merging of coher-
ent structures yield increasingly larger scales or lower frequencies. All frequencies
change the base flow, i.e. low frequencies, via the Reynolds stress. Thus, interacting
frequencies range from the zero frequency corresponding to the mean flow to large
frequencies corresponding to the Kolmogorov scale.

Control design may exploit this frequency crosstalk. Numerous experiments have
demonstrated how high-frequency forcing can stabilize the fluid flow. Examples in-
clude jets [235], mixing layers [206], wakes [263], car models [21], and the flow
over a backward-facing step [271]. Low frequency forcing can have a similar ef-
fect [209, 5]. In both cases, the coherent structures at a characteristic frequency are
mitigated by a different imposed frequency. In other words, frequency crosstalk is a
control enabler!

In this chapter, we present a generalized mean-field model as arguably the most
simple dynamical model for frequency crosstalk between unforced and forced fre-
quency components (Sec. 5.1). The control goal is to stabilize the unstable natural
frequency. While the control based on linearized dynamics (Chapter 3) is shown
to fail, MLC detects and exploits the frequency crosstalk mechanism in an unsu-
pervised manner (Sec. 5.2). In Sec. 5.3, the derivation of the investigated model is
sketched. This derivation contains the underlying approximations for the nonlinear
control approaches, against which MLC is benchmarked in Sec. 5.4. The last two
sections are analytical supplements for improved understanding of the model and
the MLC control. These sections require background in methods of nonlinear oscil-
lation [148] and nonlinear dynamics [125] and may be skipped during the first read-
ing. Sec. 5.5 contains exercises for MLC control. A suggested reading (Sec. 5.6)
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96 5 Taming nonlinear dynamics with MLC

and an interview (Sec. 5.7) with Professor Mark Glauser, a pioneer in nonlinear
modeling and feedback turbulence control, conclude this chapter.

5.1 Generalized mean-field system

In this section, we review a generalized mean-field model which explains how low-
or high-frequency forcing stabilizes a self-amplified natural instability. The model
has been used to explain the stabilizing effect of low-frequency forcing of a wake
[209] and a resulting control design [6]. Similarly, the model has been applied to
high-frequency forcing of a high-lift airfoil [176] and model-based control design
[178]. Another application is an actuated swirling jet [201].

We refer to Sec. 5.3 for the derivation of the generalized mean-field model. The
result is a four-dimensional model which describes the evolution of the mode am-
plitudes ai, i = 1, . . . ,4 of a Galerkin expansion for the fluctuation. Here, a1, a2,
is associated with the cosine and sine mode of natural vortex shedding and a3, a4
describe analogous quantities for the periodically forced coherent structures. The
system of ordinary differential equation reads

da1

dt
= s•a1 �w•a2 (5.1a)

da2

dt
= s•a2 +w•a1 (5.1b)

da3

dt
= s�a3 �w�a4 (5.1c)

da4

dt
= s�a4 +w�a3 +g b (5.1d)

s• = s•? �b••r2
• �b•�r2

� (5.1e)
w• = w•? + g••r2

• + g•�r2
� (5.1f)

s� = s�? �b�•r2
• �b��r2

� (5.1g)
w� = w�? + g�•r2

• + g��r2
�. (5.1h)

The symbols are explained in Tab. 5.1.
The nonlinearity of Eq. (5.1) has two important effects. First, without forcing,

b ⌘ 0, the second oscillator vanishes, a3 = a4 = 0. Thus, equations (5.1a), (5.1b),
(5.1e), and (5.1f) represent a Landau oscillator with linear oscillatory instability
(s•? > 0) and a cubic damping (b•• > 0). In other words, the first oscillator has a
globally stable limit cycle as discussed in Sec. 4.4 for b ⌘ 0. Second, with forcing at
the eigenfrequency of the stable oscillator, i.e. b = Bcos(w�?t), the amplitude of the
second oscillator r� grows in proportion to the forcing amplitude B, as the nonlinear
terms of Eqs. (5.1c) and (5.1d) are assumed to vanish (see Tab. 5.1). The stabilizing
effect of the second oscillator on the first one requires b•� > 0. Thus, fluctuation of
the second oscillator reduces the growth rate of the first oscillator. The minimum
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Table 5.1 Symbols of Sec. 5.1. The equations indicate the numerical values employed for the
control problem.

Quantities related to the amplitude of the unstable oscillator (a1,a2)
r• : amplitude of the first oscillator
s• : growth rate
s•? = 0.1 : initial growth rate near the fixed point r• = 0
b•• = 1 : parameter for growth-rate change of s• due to r•
b•� = 1 : parameter for growth-rate change of s• due to r�

Quantities related to the phase of the unstable oscillator (a1,a2)
f• : phase of the first oscillator
w• : frequency (analog to r• for the amplitude)
w•? = 1, : initial frequency (analog to s•? for the amplitude)
g•• = 0, : parameter for frequency change due to r• (analog to b••)
g•� = 0, : parameter for frequency change due to r� (analog to b•�)

Quantities related to the amplitude of the stable oscillator (a3,a4)
r� : amplitude of the second oscillator
s� : growth rate
s�? = �0.1 : initial growth rate near the fixed point r� = 0
b�• = 0 : parameter for growth-rate change of s� due to r•
b�� = 0 : parameter for growthrate change of s� due to r�
g = 1 : gain of control command

Quantities related to the phase of the stable oscillator (a3,a4)
f� : phase of the second oscillator
w� : frequency (analog to r� for the amplitude)
w�? = 10, : initial frequency (analog to s�? for the amplitude)
g�• = 0, : parameter for frequency change due to r• (analog to b�•)
g�� = 0, : parameter for frequency change due to r� (analog to b��)

amplitude r� for complete stabilization r• = 0 is r� =
p

s•?/b•�, as can be derived
from s• = 0 in Eq. (5.1e). Physically, the forcing changes the base flow such that
the production of the unstable coherent structures is reduced below the dissipative
term.

In the following, Eq. (5.1) is simplified for the purpose of defining a con-
trol problem in which a high-frequency stable oscillator stabilizes a self-amplified
amplitude-limited one. All coefficients which are not needed to illustrate the fre-
quency crosstalk are set to zero, e.g. the Landau coefficients for the nonlinear terms
of the second stable oscillator (b�� = b�• = g�� = g�• = 0) and for the frequency
variation of the second oscillator (g•• = g•� = 0). The small growth or decay rates of
the oscillators are set to ±0.1, i.e. s•? = 0.1 and s�? = �0.1. The large frequency of
the second oscillator is set to w�? = 10. The remaining quantities, i.e. the frequency
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and Landau coefficients of the first oscillator and the gain of the forcing term, are
set to unity, w•? = b•• = b•� = g = 1. The parameter values are listed in Tab. 5.1

The resulting system reads:

da1

dt
= s a1 �a2 (5.2a)

da2

dt
= s a2 +a1 (5.2b)

da3

dt
= �0.1 a3 �10 a4 (5.2c)

da4

dt
= �0.1 a4 +10 a3 +b (5.2d)

s = 0.1�a2
1 �a2

2 �a2
3 �a2

4. (5.2e)

For the initial condition at t = 0 we choose a point close to the unstable fixed point,

a(0) = [a1,a2,a3,a4]
T (0) = [0.01,0,0,0]T . (5.3)

The superscript ‘T ’ denotes the transpose of the row vector.
The transient and actuated dynamics of Eq. (5.2) are illustrated in Fig. 5.1. The

initial period shows an unforced transient towards the limit cycle. Then, actuation
excites the stable oscillator which mitigates the first one via the growth rate.

The cost function to be minimized contains the average fluctuation level of the
unstable oscillator

Ja = a2
1 +a2

2 (5.4)

penalized by the actuation cost
Jb = b2 (5.5)

with penalization parameter g ,

J := Ja + g Jb = a2
1 +a2

2 + g b2 !
= min. (5.6)

The overbar denotes numerically an average over the time window [20p,220p], i.e.
the average of a time-dependent function f (t) reads

f (t) :=
1

200p

220p
Z

20p

dt f (t).

The range of integration starts at t0 = 20p , corresponding to 10 periods of the un-
stable oscillator, so that transients have time to die out. The upper integration bound
is t1 = 220p to include 100 periods, which is sufficient for a statistical average. It
should be noted that MLC requires only an approximately accurate ordering of the
costs associated with the considered control laws. Hence, we refrain from using,
say, 1000 periods to obtain slightly more accurate values.
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Fig. 5.1 Dynamics of the generalized mean-field model (5.2) with the initial condition (5.3). Peri-
odic forcing b = cos(10t) is applied at t � 20p .

A canonical strategy for a stabilizing control employs a linearization of the evo-
lution equation around the fixed point. The generalized mean-field model (5.2) has
the fixed point a1 = a2 = a3 = a4 = 0. Linearizing around that point yields two
uncoupled oscillators
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da1

dt
= 0.1 a1 �a2 (5.7a)

da2

dt
= 0.1 a2 +a1 (5.7b)

da3

dt
= �0.1 a3 �10 a4 (5.7c)

da4

dt
= �0.1 a4 +10 a3 +b. (5.7d)

The amplitude of the first oscillator grows without bound while the second oscil-
lator converges to its fixed point a3 = a4 = 0 without forcing. Evidently, the un-
stable oscillator cannot be stabilized by arbitrary actuation commands b, because
the linearization has removed the pivotal nonlinear frequency crosstalk encoded in
Eq. (5.1e). In terms of control theory from Chapter 3, the linearized system is not
controllable.

5.2 Machine learning control

In this section, the control problem described in Sec. 5.1 is solved with MLC.
Sec. 5.2.1 specifies the mathematical problem to be solved. In Sec. 5.2.2, the
choice of parameters of MLC is outlined and motivated. The results are provided
in Sec. 5.2.3.

5.2.1 Formulation of the control problem

The control problem for MLC consists of minimizing the cost function J (5.6) for
the simplified generalized mean-field model (5.2) under initial condition (5.3). The
penalization parameter is chosen to be g = 0.01. The system is integrated numer-
ically for a time range of [20p,220p], which allows for an unrecorded 10 period
transient and evaluates 100 periods of the unstable oscillator deemed sufficient for
representative statistics. At this point, we know that the linearized dynamics will not
reveal the enabling frequency crosstalk mechanism and that an open-loop periodic
forcing can completely stabilize the first oscillator. We search for an autonomous
full-state feedback law minimizing the cost function,

b = K(a) = K(a1,a2,a3,a4). (5.8)

Thus, we explore all potential non-linear feedback mechanisms stabilizing the first
oscillator. The optimization problem formally reads

Kopt(a) = argmin
K(a)

J [K(a)]
�

�

subject to Eq. (5.2)
and initial condition (5.3)

, (5.9)
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where Kopt(a) denotes the optimal control law which minimizes the cost. The de-
pendency of the solution on the initial condition might be considered problematic
and should normally be avoided. However, we recall that actuation will be evaluated
after a long transient time. Secondly, the results have been found to hardly change
after incorporating an ensemble of initial conditions in the regression problem (5.9).

5.2.2 MLC parameters

The function space of MLC is explored by using a set of elementary operations
(+,�,⇥,/) and transcendental (exp, sin, ln and tanh) functions. The functions are
‘protected’ to allow them to take arbitrary arguments in R (e.g. a thresholding is
achieved on denominators in divisions to avoid division by zero). Additionally,
the actuation command is limited to the range [�1 , 1] to emulate an experimen-
tal amplitude-bounded actuator. Up to Ng = 50 generations comprising Ni = 1000
individuals are processed. The tournament size is Np = 7, elitism is set to ne = 1,
the probabilities of replication, crossover and mutation are Pr = 0.1, Pc = 0.6 and
Pm = 0.3 respectively (see Tab. 5.2).

Table 5.2 MLC parameters used for the control of the generalized mean-field model (5.2).

Parameter Ni Pr Pm Pc Np Ne
Value 1000 0.1 0.3 0.6 7 1
Operations +, �, ⇥, /, sin, exp, log, tanh

5.2.3 MLC results

Figure 5.2 displays the MLC learning process associated with the optimization prob-
lem (5.9). The enforced ordering of the individuals with respect to their cost

J j
1  J j

2  . . .  J j
Ni

j = 1, . . . ,Ng

is evidenced in the jth column by increasing J-value with increasing i. The learning
of increasingly better control laws with increasing generation number j can be seen
from decreasing J values towards the right. In particular, elitism enforces that the
cost of the best individual cannot increase,

J1
1 � J2

1 � . . . � JNg
1 .
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j

i

J

Fig. 5.2 MLC learning process for the control problem (5.9) with the generalized mean-field
model. The abscissa displays the generation number j. The ordinate refers to the individual i.
The background shows the value of the cost function J j

i for each tested individual.

The ‘spectrogram’ of all computed J j
i is visualized in Fig. 5.3. Each generation

j is seen to consist of a large range of cost values.
The best individual i = 1 in the last generation j = Ng defines solution of re-

gression problem for the MLC feedback law (5.9). The corresponding actuated dy-
namics is depicted in Fig. 5.4. Intriguingly, MLC does not emulate periodic forcing
with regular ‘soft’ excitation of the second oscillator. Instead, it chooses to stabilize
the first oscillator by occasional hard ‘kicks’, i.e. by strongly exciting the second
oscillator and decreasing the growth rate to low negative values.

The instance of these kicks is best appreciated in a logarithmic plot of the fluc-
tuation levels of both oscillators (Fig. 5.5). The kicks occur at fluctuation levels of
roughly 10�5 and last until this level has been decreased to around 10�40 or lower.

The MLC law solving the regression problem (5.9) is visualized in Fig. 5.6 as
binary tree. The formula can be expressed as follows:

b = K1(a4)⇥K2(a1,a2,a3,a4) (5.10)

with
K1(a4) = 5.475⇥a4

and
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j

J

Fig. 5.3 Same MLC run as Fig. 5.2. Now, the J j
i values, i = 1, . . . ,Ni, for each generation j are

indicated on a logarithmic ordinate scale.
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C
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⇥ ( a1
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)

�7.092
.

The function K1(a4) describes a phasor control that destabilizes the stable oscillator.
The function K2(a1,a2,a3,a4) acts as a gain dominated by the energy of the unstable
oscillator. This control law cannot be derived from a linearized model of the system.
Moreover, (slightly) less energy is used as compared to the best periodic excitation.

A revealing illustration of the MLC control law in a four-dimensional space is a
challenge. In the following, we propose a generic strategy. Let p(a) be the probabil-
ity density associated with the MLC-actuated dynamics (5.2). Thus, the expectation
value of the actuation command b = K(a1,a2,a3,a4) at given values a1 and a2 can
be formally defined:
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Fig. 5.4 Dynamics of the MLC-controlled generalized mean-field model (5.2).

hbi• = hKi• =
Z Z

p(a1,a2,a3,a4)K(a1,a2,a3,a4)da3 da4. (5.11)

The analogous quantity for the second oscillator reads

hbi� = hKi� =
Z Z

p(a1,a2,a3,a4)K(a1,a2,a3,a4)da1 da2. (5.12)

Figure 5.7 depicts this expectation value in the a1-a2 plane. More precisely, we
employ polar coordinates a1 = r• cosf•, a2 = r• sinf•, and plot the radius on a log-
arithmic scale. Thus, the phase associated with the expectation value of the control
command b can be resolved even at small fluctuation values. Expectedly, no strong
phase preference f• for control action is apparent. Each period of the unstable os-
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Fig. 5.5 Energy levels of the oscillators displayed in Fig. 5.4. When the energy contained in the
first oscillator (top) is larger than 10�10, the control (bottom) excites the second oscillator, and its
energy grows to roughly 3 so that s reaches approximately �6±1. This results in a fast decay of
the energy in the first oscillator after which the control goes back to a “stand-by" mode.
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Fig. 5.6 Tree representation of the MLC law solving the regression problem (5.9) and used in
Figs. 5.4 and 5.5.

cillator is associated with 20 sign changes of hbi•, because the actuation drives the
stable high-frequency oscillator. The mostly white inner ring corresponds to regions
without available data from the simulation. Figure 5.8 is an analogous visualization
of the control law (5.12) for the a3-a4 plane. This figure reveals the destabilizing
factor K1(a4) of the MLC control law (5.10).

5.3 Derivation outline for the generalized mean-field model

In this section, we outline the derivation of the generalized mean-field model of
Sec. 5.1. The underlying approximations will be used in the alternative control de-
sign (Sec. 5.4). We consider an incompressible uniform flow around an obstacle in
a steady domain W . The location is denoted by x = (x,y,z) 2 W and the time by t.
Here, x,y,z are Cartesian coordinates. For a nominally two-dimensional shear flow,
x points in the direction of the flow, y in the direction of the main gradient and z is
the spanwise coordinate. The unit vectors in x, y and z directors are ex, ey, ez, re-
spectively. Let u = (u,v,w) be the velocity and and p be the pressure in this domain,
respectively. Here, u, v, w are the Cartesian coordinates of the velocity. Let D and U
represent the characteristic size and free-stream velocity, respectively. The incom-
pressible Newtonian fluid is characterized by its density r and kinematic viscosity
n . The properties of the flow are determined by the Reynolds number Re = UD/n .
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Fig. 5.7 Visualization of the MLC feedback law (5.9) in the a1-a2 plane. The figure displays the
expectation value (5.11).

In the following, all quantities are assumed to be non-dimensionalized with respect
to the length scale D, the velocity scale U and density r .

The mass conservation or equation of continuity reads

— ·u(x, t) = 0. (5.13)

Here, ‘—’ represents the Nabla operator with respect to x and ‘·’ an inner prod-
uct. The momentum balance for an incompressible Newtonian fluid is given by the
Navier-Stokes equations:

∂tu(x, t)+u(x, t) ·—u(x, t) = �—p(x, t)+
1

Re
4u(x, t). (5.14)

The left-hand side corresponds to the acceleration of the fluid, the right-hand side
contains the pressure and viscous forces. Here, —u represents the velocity Jacobian,
i.e. the outer product of — with u. 4 denotes the Laplace operator.

At the domain boundary ∂W , the velocity satisfies Dirichlet conditions: it van-
ishes at the stationary body (no-slip condition) and assumes free-stream velocity at
infinity,

u(x, t)|∂W =

(

0 at the body;
ex at infinity.

(5.15)
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Fig. 5.8 Same as Fig. 5.7 but for (5.12)the a3-a4 plane.

Let v(x) represent the initial condition at time t = 0,

u(x,0) = v(x), 8x 2 W . (5.16)

Equations (5.13), (5.14), (5.15) and (5.16) define an initial boundary value prob-
lem which is assumed to have a unique solution under sufficiently smooth initial
and boundary conditions. The uniqueness is mathematically proven for some two-
dimensional flows [169] but is still an open problem for three-dimensional flows.
It may be noted that examples of non-uniqueness are found for unsteady boundary
conditions [224].

In the following, the derivation of a least-order model for flows dominated by
two frequencies will be sketched. Details can be found in the original literature
[176]. Generally, the Navier-Stokes equations are assumed to have one (and only
one) steady solution us(x) with corresponding pressure field ps(x),

us(x) ·—us(x) = �—ps(x)+
1

Re
4us(x). (5.17)

There exist only few known exceptions of flows with no steady solution or mul-
tiple solutions which concern closed flows, like diffusor flow. Let u•(x, t) denote
the frequency contribution at angular frequency w• of the unstable unforced flow.
Similarly, let u�(x, t) represent the actuated contribution at angular frequency w�.
The later component is assumed to vanish without forcing. w• and w� are assumed



5.3 Derivation outline for the generalized mean-field model 109

be incommensurable so that no lock-in occurs. Amplitudes and frequencies of both
components may slowly vary with time. Correspondingly slow base flow changes
due to the Reynolds stress are included in uD (x, t). The resulting velocity decompo-
sition reads

u(x, t) = us(x)+uD (x, t)+u•(x, t)+u�(x, t). (5.18)

In a simple, yet not unrealistic case, the unforced oscillation may be well ap-
proximated by a linear combination of two spatial modes u1(x) and u2(x) with
time-dependent coefficients a1(t) and a2(t). These modes may be the first POD
modes, the real and imaginary part of the dominant DMD mode [228, 237] or co-
sine and sine component of a Fourier mode at w•. Similarly, the actuated oscillatory
structures can be expected to be well resolved by a linear combination of two modes
u3(x) and u4(x) with amplitudes a3(t) and a4(t). For simplicity, the modes are as-
sumed to build an orthonormal basis without loss of generality, as they can easily be
orthonormalized. Summarizing,

u•(x, t) = a1(t)u1(x)+a2(t)u2(x) (5.19a)
u�(x, t) = a3(t)u3(x)+a4(t)u4(x). (5.19b)

Following Kryloff & Bogoliubov [167], the modal amplitudes ai, i = 1, . . . ,4 are
considered to be nearly pure harmonics, i.e.

a1(t) = r• cosf• (5.20a)
a2(t) = r• sinf• (5.20b)
a3(t) = r� cosf� (5.20c)
a4(t) = r� sinf� (5.20d)
df•
dt

= w• (5.20e)

df�
dt

= w�, (5.20f)

where the amplitudes r• and r� and frequencies w• and w� are slowly varying func-
tions of time. It may be noted that (5.20) allows for arbitrary phase offsets. Thus, the
Reynolds decomposition of the flow in Eq. (5.18) into a mean u and a fluctuation u0

reads

u(x, t) = us(x)+uD (x, t) (5.21a)

u0(x, t) =
4

Â
i=1

ai(t)ui(x). (5.21b)

The mean velocity is understood as an ensemble or short-term average to allow for
slow unforced or actuated transients.

The base-flow deformation uD is inferred from the Reynolds equation, i.e. time-
averaged Navier-Stokes equations (5.14). We substitute equation (5.21a) in (5.14)
and subtract the steady Navier-Stokes equations (5.17). Averaging and neglecting
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second-order terms in the base-flow deformation uD yields

us ·—uD +uD ·—us = �—p+
1

Re
4uD �— ·u0 ⌦u0. (5.22)

In this equation, the spatio-temporal dependencies have been dropped for brevity.
The right-most term is the Reynolds-stress force driving the base-flow deformation.
The symbol ‘⌦’ emphasizes the outer product between the fluctuation vectors, lead-
ing to a matrix after the Nabla operator. Note that this system of partial differential
equations is linear in uD and has a single forcing term. The pressure gradient can
be considered as a projection on an incompressible velocity subspace, i.e. it neither
interferes with the linearity in uD nor with the forcing term.

The Reynolds stress is given by

u0 ⌦u0 =
1
2

r2
• (u1 ⌦u1 +u2 ⌦u2)+

1
2

r2
� (u3 ⌦u3 +u4 ⌦u4) (5.23)

exploiting (5.20). Evidently, the Reynolds-stress term has one contribution at the
natural frequency w• and another one at the actuated one w�. By the linear nature
of (5.22), the base-flow deformation of both frequency components of the Reynolds
stress are additive and can be associated with two shift-modes [196, 199]. Let a5 u5
be the base-flow change corresponding to the natural frequency w• and a6 u6 the
analog of the actuated frequency w�. From (5.22) and (5.23), we observe

a5 = a•r2
• = a•

�

a2
1 +a2

2
�

(5.24a)

a6 = a�r2
� = a�

�

a2
3 +a2

4
�

. (5.24b)

These equations define the mean-field manifolds hosting slow transients in the 6-
dimensional state space a = [a1,a2, . . . ,a6]T .

The dynamic equations for ai, i = 1,2,3,4 can be obtained from the Navier-
Stokes equations (5.14) exploiting the Kryloff-Bogoliubov approximation. Filtering
(5.14) for w• terms ignores all constant and quadratic terms since none of them can
give rise to the frequency w•. The projection onto ui for i = 1,2 yields an oscillator
which is base-flow dependent. A similar reasoning holds for the w� frequency. A
volume force gives rise to an additive forcing term gb where b is the actuation com-
mand and g the gain. Without loss of generality, this forcing acts on the dynamic
equation for a4, as the modes ui, i = 3,4 can be rotated. Summarizing, we obtain
(5.1).

5.4 Alternative control approaches

In the following, we will assess the efficiency of machine learning control and
benchmark it against periodic forcing (Sec. 5.4.1), and against an energy-based
closed-loop control design (Sec. 5.4.2). In Sec. 5.4.3, the efficiency of MLC on-off
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control is assessed in an analytical framework. We rewrite the generalized mean-
field model (5.2), giving all growth-rates symbols:

da1

dt
= s• a1 �a2 (5.25a)

da2

dt
= s• a2 +a1 (5.25b)

da3

dt
= s� a3 �10 a4 (5.25c)

da4

dt
= s� a4 +10 a3 +b (5.25d)

s• = s? �a2
1 �a2

2 �a2
3 �a2

4 (5.25e)
s? = 0.1 (5.25f)
s� = �0.1. (5.25g)

In the analytical computations, we will keep the growth-rate symbols of (5.25e),
(5.25f) and (5.25g) to track the physical meaning of each formula.

5.4.1 Open-loop forcing

In this section, we minimize the cost functional (5.6) with (open-loop) periodic
forcing. The stable oscillator is efficiently excited at its eigenfrequency

b = Bcos(10t) . (5.26)

The resulting fluctuation amplitude is proportional to the forcing amplitude, or,
equivalently,

r2
� = k B2. (5.27)

Here, k is proportional to the reciprocal of the damping rate s�.
In the sequel, we apply the Kryloff-Bogoliubov approximation (5.20) for slowly

varying amplitudes. Then, the first oscillator assumes a non-vanishing amplitude
r• > 0 if and only if

dr•
dt

= s• r• = 0.

Equation (5.25e) implies the fluctuation level

Ja = r2
• = s? � r2

� = s? �k B2. (5.28)

The oscillation completely vanishes if s•  0 or, equivalently B2 � s?/k . The as-
sociated actuation cost reads

Jb = b2 = B2/2. (5.29)
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Finally, the cost functional (5.6) reads

J = Ja + gJb = s? �k B2 +
g
2

B2 = s? +
hg

2
�k
i

B2. (5.30)

At vanishing actuation B = 0, we have the unactuated limit cycle and

J• = s?. (5.31)

For later reference, we give this cost value the subscript ‘•’. Complete stabilization
r• = 0 can be achieved with the minimum actuation level B2 = s?/k , corresponding
to the cost

J� =
g s?

2 k
. (5.32)

For later reference, this cost value has the subscript ‘�’. Intermediate actuation am-
plitudes 0 < B2 < s?/k yield intermediate costs. The trade-off between achieved
stabilization and actuation cost is easily appreciated in the Pareto diagram in
Fig. 5.9.
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Fig. 5.9 Pareto diagram for the stabilization of the generalized mean-field model (5.2). The black
line denotes equilibrium points for open-loop forcing from the unforced limit cycle (B = 0) to
complete stabilization r• = 0 according to Eq. (5.30). For more details see text.

Intriguingly, the solution of the optimization problem depends discontinuously
on g . If g < gcrit := 2k , J� < J• and minimization of the cost functional leads to com-
plete stabilization of the unstable oscillator. If g > gcrit, minimization leads to the un-
actuated limit cycle with vanishing forcing. If g = gcrit, any forcing 0  B2  s?/k
leads to the same J and the minimization problem has no unique solution. The g
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chosen in Sec. 5.2.1 was subcritical. Hence, MLC has targeted complete stabiliza-
tion.

The periodic forcing constitutes a benchmark against which closed-loop control
can be measured. Periodic forcing is easily realizable in any system and any experi-
ment. The optimal forcing parameters can be determined, e.g. by gradient search or
extremum/slope seeking. The corresponding Pareto diagram illustrates which level
of stabilization can be achieved at which actuation cost. In principle, the best closed-
loop control may be inside or outside the triangle Ja + Jb  J•. There is no a priori
guarantee that closing the loop will beat periodic forcing. We shall explore this as-
pect in later sections.

We shall not pause to inquire if Eq. (5.26) defines the best open-loop actuation
command b = K(t) with respect to the cost-functional.

5.4.2 Closed-loop forcing

In this section, we design a closed-loop forcing (5.8) which stabilizes the first oscil-
lator. As seen in Sec. 5.1, linear control theory is not applicable. Instead, we employ
an energy-based control design under the Kryloff-Bogoliubov approximation (5.20).

The starting point is the fluctuation level

Ja = r2
• = r2

• = a2
1 +a2

2.

We assume an average over an infinite time window, i.e. we neglect transient be-
havior. Thus, the averaging sign over r2

• is redundant under the Kryloff-Bogoliubov
approximation.

Differentiating with respect to time and employing the evolution equations
(5.25a), (5.25b) and dividing by 2 yields

r•
r•
dt

= a1
a1

dt
+a2

a2

dt
= s• r2

•.

Stabilization of the first oscillator implies r• = 0 by definition and s• < 0 for stabil-
ity under noise. From Eq. (5.25e), this requires an excitation of the second oscillator
to the level r2

� � s?. It should be noted that the Kryloff-Bogoliubov assumption
implies slowly varying amplitudes and accounting for time-averaging effects is not
necessary. Hence, stabilization of the first oscillator implies a destabilizing control
for the second one. We proceed as with the first oscillator, and differentiate

r2
� = a2

3 +a2
4

with respect to time, employ Eqs. (5.25c), (5.25d), and divide by 2 to obtain

r�
r�
dt

= a3
a3

dt
+a4

a4

dt
= s� r2

� +a4b. (5.33)
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For limit-cycle behavior, the average energy a4b needs to overcome the dissipation
s�r2

�.
0 = s�r2

� +a4b. (5.34)

We see that b contributes to the fluctuation energy only if it has the same sign as a4.
This is satisfied by the linear feedback ansatz

b = Ka4, (5.35)

with K > 0. The sinusoidal behavior (5.20d) allows one to estimate the actuation
power with a4b = Ka2

4 = Kr2
�/2. Thus, the steady-state gain can be derived from

Eq. (5.34) to be K = �2s�, leading to

b = �2s� a4. (5.36)

This control law implies a vanishing growth rate, or r� = const, where the constant
is determined by the initial conditions. In other words, Eq. (5.36) does not drive the
actuated dynamics towards specific limit-cycle radii.

In contrast, the nonlinear gain

b = K a4, where K = �2s� +s? � r2
� (5.37)

ensures that the minimal fluctuation level r2
� = s? is stabilized. Substituting Eq. (5.37)

in Eq. (5.33) and averaging over one period yields the following amplitude equation
for the actuated dynamics:

dr�
dt

=
1
2

r�
�

s? � r2
�
�

.

A fluctuation level that is too small (large) is compensated for by a larger (smaller)
gain K as compared to the equilibrium value �2s�.

The above nonlinear feedback law (5.37) stabilizes the desired fluctuation level
of the second oscillator but does not compensate for any error of the dynamics. The
alternative law

b = K a4 where K = �2s� +10 r2
• (5.38)

increases the gain sharply if the first oscillator is not stabilized.
In summary, the discussed nonlinear feedback laws lead to the optimal periodic

forcing of Sec. 5.4.1 with the same cost functional. There is no steady-state perfor-
mance benefit from using the discussed closed-loop control. This equivalence is not
overly surprising as the very Kryloff-Bogoliubov assumption implies nearly peri-
odic behavior of both oscillators. Yet, feedback can buy an improved stabilization
in case of model uncertainty, e.g. accounting for unknown errors of the growth rates.
Accounting for model errors is one of the very purposes of feedback.
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5.4.3 Short-term forcing

In this section, we analytically assess the benefits from strong short-term periodic
forcing (5.26) to reduce r• from rmax ⌧ ps? to rmin. This forcing is an idealization
of the MLC law in Sec. 5.2. Here, rmax is at least 4 orders of magnitude below its
unforced limit-cycle value.

Let sa < 0 be the commanded decay rate during periodic forcing. According to
Eq. (5.25e),

sa = s? � r2
• � r2

� ⇡ 0.1� r2
�.

In this approximation, we ignore r2
•  r2

max ⌧ s? by the smallness assumption of
rmax. In addition, we neglect transient effects, as the second oscillator is forced over
many cycles. Then, we can use the quasi-equilibrium assumption of Sec. 5.4.1 and
arrive at

sa = s? �kB2. (5.39)

By similar reasoning, the unactuated growth rate reads

su = s?, (5.40)

since r� vanishes without actuation and r• is assumed to be negligible as compared
to

ps?. Summarizing,

dr•
dt

= s• r• where s• =

(

sa during actuation
s? otherwise

. (5.41)

The time interval ta for the actuation is given by

�sa ta = ln


rmax

rmin

�

. (5.42)

Similarly, the time for the unforced period tu reads

s? tu = ln


rmax

rmin

�

. (5.43)

The period for one on-off cycle is the sum:

t = ta + tu =



� 1
sa

+
1

s?

�

ln


rmax

rmin

�

. (5.44)

The ratio of the actuation time with respect to this period is

ta

t
=

�1
sa

h

1
s?

� 1
sa

i =
1

h

1� sa
s?

i =
1

h

1� s?�kB2

s?

i =
s?

kB2 . (5.45)
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The stronger the actuation, the smaller the relative actuation time. Note that the ratio
does not depend on the limits imposed on r•.

Following earlier reasoning, the stabilization can be considered complete, since
Ja = r2

• ⌧ J•. The only contribution to the cost functional comes from the actuation.
The average actuation level is the product between the relative actuation time ta/t
and the maximum actuation level B2/2:

J = gb2 = g t�
t

B2

2
= g s?

kB2
B2

2
= g s?

2k
= J•. (5.46)

Intriguingly, the cost of on-off actuation is identical to the best periodic forcing J•
of Eq. (5.32). Numerically the MLC control law is found to be slightly better due
to a finite-window effect. The difference decreases with increasing integration time.
MLC exploits even this finite-window effect for closed-loop control design.

The decision to turn actuation on or off in the framework of full-state feed-
back (5.8) is far from obvious. One ‘relay switch’ using the Heaviside function
H reads

c = H (r• � rmax)�H (rmin � r•)+H
�

�s? + r2
�
�

.

If r• > rmax, c > 0 and actuation is turned on. If r• < rmin, c  0 and actuation is
turned off. At intermediate values rmin < r• < rmax, c is kept on if actuation has
a damping effect (actuated transient) and c is kept off if the second oscillator is
not excited enough. MLC has constructed such a switch for an incremental finite-
window performance benefit. This is an impressive performance of an automated
control design.
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5.5 Exercises

Exercise 5–1: Consider the following three coupled oscillators

da1

dt
= s1 a1 �a2 (5.47a)

da2

dt
= s1 a2 +a1 (5.47b)

da3

dt
= s2 a3 �pa4 (5.47c)

da4

dt
= s2 a4 +pa3 +b (5.47d)

da5

dt
= s3 a5 �p2 a6 (5.47e)

da6

dt
= s3 a6 +p2a5 +b (5.47f)

s1 = �r2
1 + r2

2 � r2
3 (5.47g)

s2 = 0.1� r2
2 (5.47h)

s3 = �0.1, (5.47i)

where r2
1 := a2

1 + a2
2, r2

2 := a2
3 + a2

4, and r2
3 := a2

5 + a2
6. Explore the unforced be-

havior (b ⌘ 0) by numerical simulations. Explain the coupling between the os-
cillators in words. Derive an analytical solution of the unforced system (5.47).

Exercise 5–2: Stabilize the first oscillator of Eq. (5.47) with a full-state feedback
law b = b(a) by minimizing

J = r2
1 +b2. (5.48)

Linearize (5.47) and design a corresponding LQR controller (see Chapter 4). Ex-
plain the results.

Exercise 5–3: Stabilize the first oscillator of (5.47) with a full-state nonlin-
ear feedback law b = b(a) by minimizing J of Eq. (5.48). Use the Kryloff-
Bogoliubov approximation of Sec. 5.4. Explain the results.

Exercise 5–4: Find the best periodic actuation

b = B cos(wt) . (5.49)

(a) Set B = 1 and perform a frequency scan of w , which effects all oscillator
amplitudes r1,r2,r3. Can you explain the extrema of the amplitudes?

(b) Determine analytically the best control law with smallest J of Eq. (5.48), i.e.
determine the best B and W . Justify physically why these parameters are op-
timal (no proof needed). Is this open-loop control better or worse than the
closed-loop of the previous exercise? Why?
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Exercise 5–5: Apply MLC with the same parameters as in Sec. 5.2. Take

a(0) = [0.1,0,0.1,0,0.1,0]T

as initial condition, integrate 20 periods of the first oscillator (t 2 [0,20p]) and
evaluate the cost functional in the next 100 periods (t 2 [20p,220p]). Bound the
actuation by the interval [�1,1]. Can you explain the control law and solution?
How does it compare with the closed-loop and open-loop solution of Exercises 3
and 4?

5.6 Suggested reading

Texts

(1) Turbulence, Coherent Structures, Dynamical Systems and Symmetry, by
P. Holmes, J. L. Lumley, G. Berkooz and C. W. Rowley, 2012 [138].

The book represents a classic of POD Galerkin models of turbulent flows
from the pioneers of the field.

(2) Nonlinear Ordinary Differential Equations, by D. W. Jordan and P. Smith,
1988 [148].

This textbook provides an easily comprehensible and thorough introduc-
tion into nonlinear dynamics and the Kryloff-Bogoliubov approximation used in
this chapter.

Seminal papers

(1) Rods and plates: series occurring in various questions regarding the elas-
tic equilibrium of rods and plates (translated), by B. G. Galerkin 1915 [109].

This seminal paper proposed an elegant method for deriving ordinary dif-
ferential equations (ODE) from partial differential equations (PDE) using modal
expansions. This Galerkin method has become a very foundation for over 100
years of research in computational methods for PDEs and in reduced-order mod-
eling.

(2) Nonlinear stability theory, by J. T. Stuart, 1971 [256].
This review article summarizes the development of mean-field models

which were pioneered by the author and which are the foundation of this chap-
ter. J. T. Stuart was the first to derive a low-order Galerkin model explaining the
coupling between fluctuation and base flow.
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5.7 Interview with Professor Mark N. Glauser

Mark Glauser is Professor of Mechanical and
Aerospace Engineering and Associate Dean for
Research and Doctoral Programs at the College
of Engineering and Computer Science of Syra-
cuse University, NY, USA. He is also Professor of
Physics at the College of Arts and Sciences of the
same university.

As Associate Dean for Research and Doctoral
Programs within the College of Engineering and
Computer Science, Prof. Glauser is responsible
for overseeing current research activities and co-
ordinating the development of the college’s fu-
ture research portfolio. In his own research port-
folio, Prof. Glauser, along with his co-workers,
post-docs, graduate and undergraduate students,
conducts major experimental, computational and
theoretical efforts to apply low-dimensional models to turbulent and transitional
flows for understanding and control. Flows studied range from high speed aerospace
type applications to those around thermal breathing manikins within the micro-
environment. Recent work involves developing closed-loop flow control methods
based on the use of Proper Orthogonal Decomposition (POD) and Stochastic Mea-
surement (SM) for various turbulent flows including that over a NACA 4412 airfoil,
high speed (high subsonic and supersonic) turbulent jets for noise reduction/en-
hanced mixing, 3D separated flow control over turrets for improving aero-optics and
for improving efficiency and reducing unsteady loading on large wind turbines. Prof.
Glauser has or is currently serving as: a member of the US Army Science Board
where he just finished co-chairing a 2014-15 study on The Future of Army Avia-
tion; as a member of the NASA Langley Fundamental Aerodynamics Peer Review
Panel (2014, 2009); Associate Editor, AIAA Journal (2007-2016); Program Man-
ager for the Turbulence and Internal Flows Program at the US Air Force Office of
Scientific Research (AFOSR) from 1996-1999; meeting Chair for the 56th APS An-
nual Meeting of the Division of Fluid Dynamics, November 2003; Technical Chair
for the AIAA Summer Fluid Dynamics Meeting, June 2006; an ABET evaluator for
Aerospace Engineering programs since 2004; and an ABET EAC member (2013-
2015). Prof. Glauser has obtained more than 12 Million dollars in research funding
as PI or Co-PI from AFOSR, NSF, NASA, EPA, DoE, Dantec, GE, United Technolo-
gies, Spectral Energies, Clear Science Corporation and others. Prof. Glauser has
published more than 110 peer-reviewed publications and conference proceedings
and has presented more than 100 invited presentations and keynote talks world-
wide. Over the past 25+ years he has mentored several postdocs and more than
30 Ph.D. and MS students. Prof. Glauser is a Fellow of the American Institute of
Aeronautics and Astronautics, the American Society of Mechanical Engineers, the
American Physical Society, and the Institute of Physics (UK). In 1995, he was a
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Fulbright Scholar in Poitiers, France. Prof. Glauser received his BS (1982) and his
Ph.D. (1987) from the Department of Mechanical and Aerospace Engineering of the
University at Buffalo SUNY, NY, USA.

Authors: Dear Mark, you have been one of few pioneers in reduced-order model-
ing of turbulence, particularly for application-related experiments. What did you
learn about flow control? Where do you still see rewarding research opportunities
for young talented researchers?

Prof. Glauser: Beginning with the ActiveWing dynamic separation flow work
(joint with Lumley, Leibovich and Berkooz, see Taylor and Glauser 2004 [260])
in the mid 1990s to the NACA 4412 closed-loop separation control work (see
Pinier et al. 2007 [214]), to the aero-optics related turret separtion control work
(Wallace et al 2012 [273] and [264]) and to our more recent high speed jet control
work [175, 26], I have learned that this is a hard problem and that the most
progress is made when there is strong interaction between controls and fluids
experts with a nice mix of experimentalists, theorists and omputationalists from
both fields.
It is my view that there are many rich and interesting closed loop flow control
problems in the Energy and Aerospace sector and beyond. Reducing unsteady
loading on wind turbines with large wind farms for example is an important po-
tential application for closed loop flow control. With the world-wide explosion of
Unmanned Ariel Systems this would seem to be an especially important area due
to the need for advanced intelligent platforms that can operate safely in complex
and uncertain environments (gusts and other extreme weather events, degraded
visual environments and etc.)

Authors: You have also pioneered closed-loop turbulence control in real-world
experiments. You have decided to perform a model-free control and did not use
your reduced-order models for control design. Why?

Prof. Glauser: This has not been entirely the case. The closed-loop flow con-
trol work on turrets for Aero-optics applications incorporated models (joint work
with Hal Carlson, see for example Wallace et al. 2012 [273]) and conceptually
the early ActiveWing work with Lumley and Leibovich had modeling at its core.
Frankly, it is just not always possible to have a full team to handle the challenges
associated with bringing in the models due to funding constraints. In addition,
the complex experiments we run in our lab are very challenging and it is gener-
ally not feasible to have a Ph.D. student do both the modeling and experiments
and have them graduate in a reasonable time frame. With the Aero-optics work
where modeling was incorporated we were fortunate enough to have a strong
team across the board. In addition, the experiments we have been doing in jets
are very high Reynolds number and hence the flows themselves are very high di-
mensional so model development is more difficult than for the lower dimensional
separation flow control problems we have performed. The bottom line, the flows
examined and availability (or lack of) of a complete team have played the key



5.7 Interview with Professor Mark N. Glauser 121

roles in the level of modeling that we have been able to successfully incorporate.

Authors: Yet, the literature contains myriad of studies on model-based flow sta-
bilization in numerical simulations. What is the difference between experimental
and numerical control?

Prof. Glauser: This is partially answered in my response to the question above.
Typically many of the numerical simulation-based flow control studies have been
at lower Reynolds number with relatively simple boundary conditions. Thank-
fully the simulation tools are improving and we are starting to reach more realis-
tic Re numbers with LES. The experimental tools are improving as well, includ-
ing powerful Time Resolved PIV tools. The best approach, if possible is to work
the problem from both sides, using the high spatial resolution of simulations to
provide key guidance to experiments. This can include, for example, simulation-
guided placement of sensors and actuators along with key time and spatial scales
at which to drive the flow to achieve the desired control objectives. Simulation
derived low-dimensional models, even if somewhat limited, can be used, at least
as a starting point, or perhaps fused with experimentally derived models, to pro-
vide the model-based control.

Authors: Where do you see the range of applicability of model-based control
which has motivated this chapter?

Prof. Glauser: In principle, model-based control can and should, if possible, be
used across the range of applications experienced in the energy and aerospace
sector and beyond.

Authors: You have been enthusiastically supporting computer science methods
for years. Can you give us an idea about evolving machine learning applications
in turbulence control in the coming decade?

Prof. Glauser: It is my view that machine learning methods must be brought to
bear on the difficult nonlinear stochastic problem we are trying to control if we
are going to make real progress. However, I view machine learning as a com-
plement to our Navier-Stokes based tools and not an either-or scenario. All of it
should be thought of and used as “information" to help solve the nonlinear con-
trol problems we are faced with.

Authors: Which fluid dynamics expertise is not likely to be replaced by machine
learning in the coming decade?

Prof. Glauser: We will continue to need theorists, experimentalists and computa-
tionalists, all who, however, in my view, will need to have a working knowledge
of the latest math and computer science tools for both understanding and con-
trolling high dimensional non-linear time dependent stochastic systems such as
turbulence.

Authors: We look forward to your next breakthroughs in experimental turbulence
control and thank you for this interview!


