
Chapter 4
Benchmarking MLC against linear control

“All stable processes we shall predict. All unstable processes we shall control."

- John von Neumann

We have now developed two powerful approaches to design control laws: the ma-
chine learning control (MLC) approach from Chapter 2, and the classical optimal
linear control theory from Chapter 3. Both approaches have benefits and tradeoffs.
Linear control theory yields concise control laws that are solutions to optimiza-
tion problems, providing the best possible control laws for linear systems that are
well characterized by accurate input–output models. In fact, we may view the MLC
approach as an alternative optimization procedure to determine these classical con-
trollers that generalizes naturally to nonlinear problems in a model-free context.

In this chapter, we demonstrate the use of genetic programming for MLC on
linear systems where optimal control laws are known. In particular, we benchmark
MLC against the linear quadratic regulator (LQR) for full-state feedback in Sec. 4.1,
the Kalman filter for noisy state estimation in Sec. 4.2, and linear quadratic Gaussian
(LQG) for optimal sensor-based feedback in Sec. 4.3. As an example system, we
consider an unstable linear oscillator, which mimics many instabilities that occur in
fluid dynamics. Next, we compare MLC with linear optimal control on systems with
increasing nonlinearity in Sec. 4.4. Exercises are provided in Sec. 4.5. We conclude
the chapter in Sec. 4.6 with an interview of Professor Shervin Bagheri who is a
pioneer and a leading scholar in model-based closed-loop flow control.
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72 4 Benchmarking MLC against linear control

4.1 Comparison of MLC with LQR on a linear oscillator

As discussed in Chapter 3, control design often begins with the implementation of
a full-state feedback regulator. The assumption of full-state measurements will later
be relaxed, necessitating dynamic estimation from limited sensor measurements.

Machine learning control using genetic programming provides a symbolic re-
gression approach to optimize controller design given a well-posed cost function.
Thus, it is possible to test the ability of MLC to discover the known optimal lin-
ear quadratic regulator (LQR) solution from Sec. 3.2. In particular, we consider an
unstable linear oscillator with two states:

d
dt

a1 = sa1 �wa2

d
dt

a2 = wa1 +sa2 +b.
(4.1)

We assume full-state measurements, s = a, although we will relax this assumption
in the following sections. In the state space form of Eq. (3.1), this system is given
by the following system matrices:

A =



s �w
w s

�

, B =



0
1

�

, (4.2a)

C =



1 0
0 1

�

, D =



0
0

�

. (4.2b)

For this example s = w = 1, corresponding to an unstable linear growth rate.
The following LQR cost function weights are used:

Q =



1 0
0 1

�

, R = 1. (4.3)

The LQR optimal controller from Eq. (3.10) is given by b = �Kra with

Kr =
⇥

�4.8783 4.4288
⇤

. (4.4)

The cost is monitored as a function of time, as in Chapter 2:

J(t) =
Z t

0

⇥

aT (t)Q a(t)+R b2(t)
⇤

dt. (4.5)

If time is omitted as an argument, the converged value lim
t!•

J(t) is used.

The Matlab® implementation is shown in Code 4.1, and the closed-loop LQR re-
sponse is shown in Fig. 4.1 (solid curves). Notice that there are two large periods of
growth in the cost function J corresponding to large magnitude of control expendi-
ture. Eventually, the cost function converges to a final value after the state has been
stabilized and the actuation input shrinks to zero.
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Fig. 4.1 Response of the unstable oscillator system in Eq. (4.2) with LQR control (solid lines).
The MLC response is also shown (dashed red lines), and it agrees with the LQR controller. (a)
The state initially grows and is eventually stabilized. (b) The actuation signal b is aggressive at the
beginning until the system is driven closer to the origin. (c) The cost J (4.5) initially rises because
of a large actuation expenditure b, and then continues to rise until the state decays.

An MLC controller is constructed using genetic programming with simple oper-
ations (+,�,⇥) and the same cost function as in Eq. (4.5). The optimal controller is
simply a proportional feedback on the state measurements a, so this presents a sim-
ple test case for the MLC architecture. The MLC controller is also shown in Fig. 4.1
(dashed curves), and the response is extremely close to that of the LQR controller.

Code 4.1 LQR implementation in Matlab®.

clear all, close all, clc

% Define system matrices
sigma=1, omega=1; % Unstable oscillator parameters
A = [sigma -omega; % Dynamics

omega sigma];
B = [0; 1]; % Actuation on second state
C = [1 0; % Full-state measurements

0 1];
D = [0; 0]; % No feedthrough term



74 4 Benchmarking MLC against linear control

sys = ss(A,B,C,D); % Continuous-time state-space system

% Compute LQR controller
Q = eye(2); % State cost is 2x2 identity matrix
R = 1; % Actuation cost is 1
[K,S,e] = lqr(A,B,Q,R); % Optimal gain matrix K from LQR

% Simulate closed-loop system
dt = 0.001;
Acl = A-B*K; % Closed-loop dynamics
Bcl = [0; 0]; % No input after closing-loop
sysK = ss(Acl,Bcl,C,D); % Closed-loop system
[s,t] = initial(sysK,[1; 0],0:dt:10); % Intial condition

response

% Compute cost function
b = -K*s’; % Actuator signal
J(1) = 0; % Initialize cost J=0
% For each dt, integrate cost function
for k=2:length(t)

J(k) = J(k-1)+dt*(s(k-1,:)*Q*s(k-1,:)’ + R*b(k-1)^2);
end

The MLC implementation is given below with the following parameters: The
MLC implementation is given below with the parameters of Tab. 4.1.
.
Table 4.1 Main parameters used for MLC solution of LQR problem.

Parameter Ni Ns Nb Pr Pm Pc Np Ne Node functions
Value 1000 2 1 0.1 0.4 0.5 7 10 +,�,⇥

The following code initializes the MLC problem, runs 50 generations, and dis-
plays the results.

mlc=MLC(’MLC_ex_LQE_problem’); % Creates the MLC problem
mlc.go(50); % Runs MLC for 50 generations
mlc.show_best_individual % Displays the results

The evaluation function can be displayed by using the command:

open(’MLC_evaluator_LQR’)

As in Sec. 2.3.2, the evaluation function implements a dynamical system by rep-
resenting the time derivatives as functions of the states and the control law repre-
senting the individual. Then ode45 is used to integrate the dynamical system and
the cost function value is computed and returned. In case the numerical integration
diverges, a predefined high value is returned for J.

Although MLC achieves near-optimal performance in the LQR problem, we had
the advantage of full state measurements. To explore the case with limited mea-
surements, we must explore an extension of MLC that includes temporal filters as
function blocks to estimate the full state from a time-history of sensor measure-
ments.



4.2 Comparison of MLC with Kalman filter on a noisy linear oscillator 75

4.2 Comparison of MLC with Kalman filter on a noisy linear
oscillator

In practice, full-state measurements of the system are often unavailable or may be
prohibitively expensive to collect and process in real-time. Instead, it is typically
necessary to collect limited sensor measurements and reconstruct the relevant state
through dynamic estimation, for example using the Kalman filter from Sec. 3.3.

In a high-dimensional fluid, even reconstructing the state through estimation may
be computationally expensive, introducing unacceptable time delays in the control
loop. Instead reduced-order models are generally used to describe the few states that
are most controllable and observable. A more challenging test of MLC involves full-
state estimation from limited noisy sensor measurements. As an illustrative example,
consider a neutrally stable oscillator with no forcing:

d
dt

a1 = sa1 �wa2 +wd,1 (4.6a)

d
dt

a2 = wa1 +sa2 +wd,2 (4.6b)

s = a1 +wn. (4.6c)

Again, this corresponds to a linear system with the following system matrices

A =



s �w
w s

�

, B =



0
0

�

, (4.7a)

C =
⇥

1 0
⇤

, D =
⇥

0
⇤

. (4.7b)

In this example, we will consider s = 0 and w = 1, corresponding to a neutrally
stable oscillator. Finally, the disturbance and noise covariance are given by:

Vd =



1 0
0 1

�

, Vn = 0.1. (4.8)

The cost function quantifies the accuracy of the estimation, as in Eq. (3.16).
The Matlab® implementation is shown in Code 4.2, and the full-state Kalman

filter estimate is shown in Fig. 4.2. The noisy sensor measurement s is shown in the
middle panel for a single noise realization. An ensemble of square-summed errors
are shown in the bottom panel, and the ensemble average is the cost function J, as
in Eq. (3.16). Because there is constantly error introduced through noisy measure-
ments, the cost function continues to increase for all time.

To compare the MLC solution, it is necessary to first generalize the function
tree representation beyond a static input–output map. In particular, we envision two
methods of generalizing a function tree to achieve dynamic estimation: First, it is
possible to have nodes that accumulate information by integration (see Fig. 4.3), and
second, it is possible to have function expressions for the numerator and denomina-
tor of a transfer function (see Fig. 4.4).



76 4 Benchmarking MLC against linear control

Code 4.2 LQE implementation in Matlab®.

% Define system matrices
sigma = 0, omega = 1; % Neutrally stable oscillator
A = [sigma -omega; % Dynamics

omega sigma];
B = [eye(2) [0; 0] ]; % Disturbance plus actuation
C = [1 0]; % Measure first state
D = 0; % No feedthrough term
sys = ss(A,B,C,D); % Continuous state-space system

% Disturbance and noise covariance matrices
Vd = eye(2); % Disturbance covariance
Vn = .1; % Noise covariance
Vdn = [0; 0]; % No cross-terms

% Compute Kalman filter using LQE
[L,P,E] = lqe(A,eye(2),C,Vd,Vn,Vdn); % L is gain matrix
Aest = A-L*C; % Estimator dynamics
Best = L; % Input to estimator
Cest = eye(2); % Estimator outputs both states
Dest = [0; 0]; % No feedthrough
sysK = ss(Aest,Best,Cest,Dest); % Estimator system

% Loop through 50 noise realizations for average
for count = 1:50

t = 0:0.01:20; % Duration of simulation
d1 = 1*randn(size(t)); % Disturbance to state a1
d2 = 1*randn(size(t)); % Disturbance to state a2
n = .1*randn(size(t)); % Noise
b = zeros(size(d1)); % No actuation

% Simulate noisy system with disturbance
[s,tout,a] = lsim(sys,[d1; d2; b],t,[1;0]);

% Simulate clean system for "truth" baseline
[sclean,tout,aclean] = lsim(sys,[0*d1; 0*d2; b],t,[1;0]);

% Simulate Kalman filter to estimate ahat
sn = s+n’;
[ahat,tout] = lsim(sysK,sn,t,[1; 0]);

% Compute cost function
for k=1:size(a,1)

err = a(k,:)-ahat(k,:); % Choice: use ’a’ or ’aclean’
Jlong(k) = err*err’;

end
Jindiv = cumtrapz(t,Jlong); % Trapezoidal integration
Jall(count,:) = Jindiv; % Store current realization

end
J = mean(Jall,1); % Average cost across realizations
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1 â1
â2
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Fig. 4.2 Dynamic full-state estimation of the neutrally stable oscillator system in Eq. (4.6) with
a Kalman filter (i.e., LQE). The cost J (3.16) rises because disturbances and noise constantly
introduce discrepancies between the estimate â and the true state a. An ensemble average cost
function is shown in black, and the individual cost functions for fifty instances are shown in gray.

The performance of MLC for state estimation is shown in Fig. 4.5 for the same
conditions as used in Fig. 4.2. The state is estimated despite large disturbances and
sensor noise. MLC results in a sum-square error that is about twice as large as the
optimal Kalman filter solution.

The MLC implementation is given below with the parameters of Tab. 4.2.

Table 4.2 Main parameters used for MLC solution of LQE problem. Nb = 4 indicates that 4 sub-
trees are generated for each individual.

Parameter Ni Ns Nb Pr Pm Pc Np Ne Node functions
Value 1000 1 4 0.1 0.4 0.5 7 10 +,�,⇥

The following code initializes MLC, runs 50 generations, and displays the results.

mlc=MLC(’MLC_ex_LQE_problem’); %creates the MLC problem
mlc.go(50); %runs MLC for 50 generations
mlc.show_best_individual %displays the results
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Fig. 4.3 Illustration of a generalized genetic programming transfer function operator in the fre-
quency domain with Laplace variable z and filter frequency k. The discrete-time and continuous-
time implementations are also shown.
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Fig. 4.4 General filter block used in genetic programming for MLC. The inputs s are Laplace
transformed, and a transfer function is constructed in the frequency domain. This transfer function
is achieved by allowing GP to select numerator and denominator polynomials, which are then
divided. The output signal is inverse Laplace transformed to bring it back to the time domain.

Each filter is the quotient of two polynomials in frequency domain, requiring one
tree for the numerator and one tree for the denominator, as in Fig. 4.4. In this exam-
ple, two filters are identified for each of a1 and a2, resulting in 4 polynomials. All
individuals are initialized to contain 4 subtrees, and can be written as the following
LISP string:

(root (poly1) (poly2) (poly3) (poly4))

Where each ‘polyi’ is a LISP polynomial such as ‘(⇥ S0 (+S0 2.23)))’, where S0
represents the argument. In order to only obtain polynomials, +, �, and ⇥ are the
only operations allowed. The two first subtrees define the denominator and numera-
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Fig. 4.5 Dynamic full-state estimation of the neutrally stable oscillator system in Eq. (4.6) using
genetic programming for MLC. The cost J (3.16) continually rises because disturbances and noise
constantly introduce discrepancies between the estimate â and the true state a. An ensemble aver-
age cost function is shown in black, and the individual cost functions for fifty random instances are
shown in gray.

tor of the first filter. The two later subtrees describe the same quantities of the second
filter.

The evaluation function can be displayed by using the command:

open(’MLC_evaluator_LQE’)

The evaluation function consists in setting up the Simulink® model with the pa-
rameters (initial conditions, noise level etc...) and the polynomials for the transfer
functions. The frequency-domain filters need the denominator to be of higher order
than the numerator. This is why a pre-evaluation function is called at individual ini-
tialization, so that proper transfer functions are enforced. The Simulink® implemen-
tation of MLC is shown in Figs. 4.6 and 4.7.
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Fig. 4.7 Simulink® blocks for model in Fig. 4.6. This implements MLC for state estimation based
on limited noisy measurements.
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Time-delay coordinates through spatial measurements of
convective flow

Interestingly, it has been shown in convective flow experiments that a finite but large
set of spatial sensors have resulted in effective closed-loop control performance,
even without dynamic estimation. It is likely that a rake of hot wires is effectively
establishing time-delay coordinates, which may be acting as a proxy for a dynamic
estimation state. This is a vibrant area of research, with many promising connections
to dynamical systems via the Koopman operator [162, 163, 187, 47, 170, 188, 41],
although this is beyond the scope of this book.

4.3 Comparison of MLC with LQG for sensor-based feedback

In model-based control design, it is possible to separately design an optimal regu-
lator using LQR and an optimal Kalman filter, and then combine the two to obtain
an optimal sensor-based LQG regulator. In practice, we may not have a model of
the dynamics, and if the dynamics are unstable it is difficult to run experiments to
collect data for system identification of a model. In this section, we demonstrate
the ability of MLC to generate a sensor-based stabilizing feedback controller for an
unstable system.

Again we consider the unstable system

d
dt

a1 = sa1 �wa2 +wd,1 (4.9a)

d
dt

a2 = wa1 +sa2 +b+wd,2, (4.9b)

and we assume that the sensor only measures the first component:

s = a1 +wn. (4.10)

This corresponds to a linear system with the following system matrices

A =



s �w
w s

�

, B =



0
1

�

, (4.11a)

C =
⇥

1 0
⇤

, D =
⇥

0
⇤

. (4.11b)

In this example we choose s = w = 1, corresponding to an unstable oscillator. The
ensemble-averaged cost function from Eq. (3.20) is used.

The result of classic linear-quadratic-Gaussian (LQG) control is shown in Fig. 4.8.
Note that the state a is rapidly stabilized despite a single noisy measurement s. How-
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ever, because of continual noise and disturbances, the state has small fluctuations
about zero for all time. These fluctuations contribute to a slowly increasing cost.
The most significant increase in cost J is experienced from t = 0 to t = 5, where
the state is large and there is significant control expenditure required to stabilize the
system. The LQG controller represents the optimal sensor-based feedback regulator
given a model of the system and of the noise and disturbance covariances.
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Fig. 4.8 Sensor-based feedback for the unstable oscillator system in Eq. (4.9) using LQG control.
The cost J (3.20) continually rises because disturbances and noise constantly push the system away
from equilibrium. An ensemble average cost function is shown in black, and the individual cost
functions for fifty random instances are shown in gray.

Figure 4.9 shows the performance of the machine learning control approach on
the same unstable system. In this example, there is no model of the system dynamics
or of the noise and disturbance covariances. Instead, candidate sensor-based control
schemes are formulated, tested, evaluated, and evolved to converge on a stabilizing
controller. This represents a more challenging and general approach to control de-
sign. It is seen that this control also stabilizes the system, although the performance
is not optimal as in the LQG case. However, this is reasonable, since MLC is not
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based on a model, but instead relied on trial-and-error to stabilize the system. More-
over, since the system is unstable originally, it is quite challenging to find stabilizing
control expressions. With more optimization and generations, it is likely that MLC
will converge to a solution where less noise propagates through the control and into
the state, resulting in a lower cost function.
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Fig. 4.9 Sensor-based feedback for the unstable oscillator system in Eq. (4.9) using MLC. Param-
eters and plotted quantities are the same as in Fig. 4.8.

Table 4.3 Main parameters used for MLC solution of LQG problem.

Parameter Ni Ns Nb Pr Pm Pc Np Ne Node functions
Value 1000 2 5 0.1 0.4 0.5 7 10 +,�,⇥

The following code initializes the MLC problem, runs 50 generations, and dis-
plays the results.
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Fig. 4.10 Schematic illustrating the use of filter blocks in genetic programming for MLC on LQG
problem. Each filter block is constructed as in Fig. 4.4.

mlc=MLC(’MLC_ex_LQG_problem’); % Creates the MLC problem
mlc.go(25); % Runs MLC for 25 generations
mlc.show_best_individual % Displays the results

In the LQG case, two filters are constructed to estimate the two states a1 and
a2 from a single noisy sensor. Each filter is composed in the frequency domain as
the ratio of a numerator and denominator polynomial, as in Fig. 4.4. Thus, each
filter is represented by two expression trees. The controller gain matrix Kr is also
represented as an expression tree, resulting in five trees overall. This can be written
as the following LISP string:

(root (poly1) (poly2) (poly3) (poly4) (poly5)),

where each ‘polyi’ is a LISP polynomial such as ‘(⇥ S0 (+S1 2.23)))’. In order to
only obtain polynomials, +, �, and ⇥ are the only operations allowed. For the four
first subtrees, all sensors (S0 or S1) are interpreted as the same variable so that they
can be used in polynomials as in the LQE implementation. The fifth subtree uses
the two estimated states as its sensor input.

The evaluation function can be displayed by using the command:

open(’MLC_evaluator_LQG’)

The evaluation function consists in setting up the Simulink® model with the pa-
rameters (initial conditions, noise level etc...), the polynomials for the Laplace space
filters and finally the control law in the controller box. As the Laplace space filters
needs the denominator to be of higher order than the numerator, for both filters, 75%
of the individuals randomly generated this way cannot describe correctly such a fil-
ter. This is why a pre-evaluation function is called at the individual creation, so that
only the individuals that meet the requirement that both denominator polynomials
are of higher order than their respective numerator are kept.



86 4 Benchmarking MLC against linear control

4.4 Modifications for small nonlinearity

Often, linear control can be applied to nonlinear systems. Here, we compare the
performance of MLC and LQR when nonlinear terms are added to a linear system:

d
dt

a = Aa+ e F(a)+Bb. (4.12)

In this case, the variable e modulates the strength of the nonlinearity, with e = 0
corresponding to the linear system in Eq. (3.1). As an example, consider the Hopf
system, which adds a cubic nonlinearity to the linear oscillator in Eq. (4.2):

d
dt

a1 = sa1 �wa2 � ea1(a2
1 +a2

2) (4.13a)

d
dt

a2 = wa1 +sa2 � ea2(a2
1 +a2

2)+b. (4.13b)

For unstable linear dynamics with s > 0, this system has a stable limit cycle with
radius r =

q

a2
1 +a2

2 =
p

s/e . The smaller e is, the larger the limit cycle radius,
and the larger the domain where the linear model is valid. As e approaches zero,
then the limit cycle radius increases to infinity, and the linear system is recovered.

Again, we assume full-state feedback, so that s = a, and we use the same linear
dynamics s = w = 1, the same LQR controller b = �Kra, and the same LQR cost
function weights Q and R from Sec. 4.1.

Figure 4.12 shows the LQR controller response for increasing nonlinearity e .
The system is stabilized for all values, and as e increases, the nonlinear dynamics
actually help the controller, so that the overall cost J decreases. Figure 4.13 shows
the LQR performance when e is negative. In this case, the increasing nonlinearity
makes the system more difficult to control, and after a point the LQR controller fails
to stabilize the system; these parameter values are marked as diverging solutions.

Figures 4.14 and 4.15 show the machine learning control performance on the
same system. In the case of positive e , the performance is quite similar to the LQR
solution, whereas in the case of negative e , MLC performs with lower cost and over
a larger range of e corresponding to stronger nonlinearities.
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Fig. 4.11 Vector field and trajectories attracting onto limit cycle for the Hopf normal form in
Eq. (4.13) with various values of e .
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Fig. 4.12 Cost of LQR for Hopf normal form with varying nonlinearity strength e . The initial
condition for each case is a1 = a2 =

p
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Fig. 4.13 Cost of LQR for unstable Hopf normal form with various magnitude of nonlinearity, �e .
The initial conditions are given by a1 = a2 =
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Fig. 4.14 Cost of MLC using (+,�,⇤) for Hopf normal form with varying nonlinearity strength
e . The initial condition for each case is a1 = a2 =

p
2/2. The blue crosses indicate MLC results

and the solid black line shows the corresponding LQR cost.
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4.5 Exercises

Exercise 4-1: Consider the same linear system from Exercise 3-1:

d
dt



a1
a2

�

=



�1 1
0 1

�

a1
a2

�

+



0
1

�

b. (4.14)

(a) Now, use genetic programming to solve for the optimal controller b = K(s)
assuming full state measurements s = a. This controller should minimize the
LQR cost function:

J =
Z •

0

⇥

aT (t)Q a(t)+R b2(t)
⇤

dt, Q =



1 0
0 1

�

, R = 1. (4.15)

(b) Check your MLC expression and compare with the optimal LQR solution.
Implement a refinement to select genetic programming expressions with good
performance but also with the added constraint of a simple expression. This
may be added as a penalty on the cost function, or you may alternatively plot
a Pareto front of complexity vs performance for numerous candidate high-
performance controllers from the generations.

Exercise 4–2: Consider the neutrally stable system:

d
dt



a1
a2

�

=



0 1
�1 0

�

a1
a2

�

+Bb+



1 0
0 1

�

wd1
wd2

�

. (4.16a)

s = C


a1
a2

�

+wn. (4.16b)

(a) For the case with no actuation, B = 0, and a measurement of the first state C =
⇥

1 0
⇤

, develop a genetic programming expression to estimate the state from
noisy measurements using full-state training data. Construct an expression to
estimate the state with and without the use of filter blocks as discussed in this
chapter. How does the static function perform in the presence of noise?

(b) Now consider the case with actuation B =
⇥

0 1
⇤T , and develop a GP expres-

sion to estimate the state with forcing. Use the same cost function as in the
formulation of a Kalman filter.

(c) Finally, develop an optimal sensor based feedback control law using genetic
programming for MLC that optimizes the LQR cost function.
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sr Ma Kr
a⇤ + d

dt a = Aa+Bb+wd
s = Ca+wn

wd

+ s

Estimator
â

�

Mb
b⇤

+

Fig. 4.16 LQG reference tracking schematic for Exercise 4–3.

Exercise 4–3: In many cases, it is desirable to track a reference trajectory with
feedback control, as opposed to stabilizing a fixed point. For instance, we may
implement a control law to design and track a limit cycle.
With a working LQG controller, it is possible to command reference trajectories,
as depicted schematically in Fig. 4.16. In the general case, it is necessary to
translate the reference sensor signal sr into a reference actuation b⇤ and reference
state a⇤ according to the following formula:



0
sr

�

=



A B
C D

�

a⇤

b⇤

�

=)


a⇤

b⇤

�

=



A B
C D

�† 0
sr

�

, (4.17)

where the superscript ’†’ denotes the Moore-Penrose pseudo inverse. In the case
of full-state measurements, so that s = a, then ar = a⇤, so that Ma = I and

b⇤ = B†Aar. (4.18)

Thus, Mb = B†A.
Use MLC to design a controller to force a stable linear system into a limit cycle

behavior shown in Fig. 4.17. Implement the controller with actuation B =



1 0
0 1

�

.

Compare with the full-state LQR controller response in Fig. 4.17.
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4.6 Interview with Professor Shervin Bagheri

Shervin Bagheri is Associate Professor in fluid
mechanics at the Royal Institute of Technology
(KTH) and the Linné Flow Centre. He has pi-
oneered model-based closed-loop control with
numerical and experimental demonstrations.
He is co-inventor of DMD modes, also known
as Koopman modes, one of most used ingredi-
ents of reduced-order models. In his research,
he focusses on the mathematical foundations
and physical principles that enable manipula-
tion of fluid flows. These efforts include both
passive and active means to decrease drag, to
increase mixing and to enhance lift on bod-
ies. His work was published in the leading fori
of our field including Nature Communications,
the Philosophical Transactions of the Royal
Society London A and Physical Review Letters.

Authors: You are a leader in the field of model-based flow control with landmark
contributions to linear control design. What are some of the major trends that you
have observed in flow control over the past decade?

Prof. Bagheri: It was only 15 years ago that a systems theoretical approach (such
as input-output analysis, state-space systems, controllability, observability etc) to
analyze and control shear flows became an active field on its own. Since then, we
have had a decade of proof-of-concept work, focusing on accommodating and
testing many of the powerful systems theoretical tools on fluid flows, and using
model reduction as enabler to do this. Last years however, things have changed.
We know that many control theorerical tools, albeit expensive, can be applied to
control fluid flow instabilities both in convective and globally unstable flows at
low Reynolds numbers. The use of these tools to nonlinear and turbulent flows
is the next step, and in the last years several groups have made progress. For
example, by treating the nonlinear terms of the Navier-Stokes equations as an
appropriate stochastic forcing. Another emerging branch in flow control is the
use of transfer operators (such as the Koopman operator). These methods can via
an appropriate nonlinear transformation of the system provide a linear system,
where analysis and control tools can be applied, followed by a transformation
back. A third example is the use of online adaptive self-learning techniques, such
as machine learning. In summary, the major current trends are to deal with non-
linearity and high-dimensionality at the same time in order to move from simple
linear 2D systems at low Reynolds numbers towards more complex systems.

Authors: In recent years, you are moving to nonlinear modeling, statistical clo-
sures and machine learning methods. Can you sketch the need for the inclusion
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of nonlinear dynamics and noise in model-based flow control? How much can be
gained?

Prof. Bagheri: Moving in this direction is necessary, since in nearly all classical
engineering applications the Reynolds number is high and the flow physics is
sensitive to the external disturbance environment. It is clear that a flow-control
technology based on a systematic approach (in contrast to a trial-and-error ap-
proach) that can be used in applications, has to deal with turbulence and robust-
ness. However, we should also be realistic (and humble) for this task, since for
the coming decades our computational capability is limited to academic complex
problems, such as low-Reynolds number turbulent flows.

Authors: It is common for practitioners to collect data to characterize a system,
develop a model, and then use this model for control. What are some of the
challenges and benefits associated with the online learning and adaptation of
controllers from data?

Prof. Bagheri: Indeed, data-driven methods are becoming increasingly impor-
tant, as large-scale high-performance computations have now taken its rightful
place in the community. When it comes to control of high-dimensional nonlin-
ear chaotic systems, in my opinion, an attractive approach is adaptive algorithms
that are able to adjust online to new dynamics in uncertain conditions. One of
the challenges we have encountered when using adaptive algorithms is that al-
though they may be fast enough to account for slow changes in conditions (e.g.
variation in the Reynolds number), they are often not sufficient quick learners to
account for changes in the internal changes in the dynamics (e.g. emergence of
new length scales during the transition process).

Authors: In the coming decades, what do you envision as the academically most
rewarding grand-challenge problems of feedback control in fluid dynamics? You
work not only on a model-based control logic but also on model-free bio-inspired
actuators. Which evolutions do you foresee in experimental flow control on a
hardware and a theoretical level?

Prof. Bagheri: The grand challenge is to efficiently and robustly control turbu-
lence for Reynolds numbers that are relevant for everyday applications. Within
the next decade, we will be able to reduce turbulent skin friction drag with 30%
using actuation/sensing at the wall at moderate Reynolds numbers. It will proba-
bly take another decade or two, to devise both efficient and robust controllers for
high-Reynolds number turbulent flows, where the contribution to skin-friction is
also significant from large scale structures. In order to achieve these goals we
need a multi-disciplinary approach, where advances in fluid mechanics, mate-
rial science and surface chemistry are combined with applied mathematics, algo-
rithms and computer science.
For example, we are now looking into how soft, porous, lubricated, multi-scale
hierarchal materials possibly treated chemically can be used to manipulate an
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overlying fluid. Although, mimicking biological surface coatings such shark skin
and lotus leaf has proven useful, I believe that active control techniques can pro-
vide the right guidance for using innovative surface materials for flow control.

Authors: We look forward to your next breakthroughs in flow control and thank
you for this interview!

Prof. Bagheri: Thank you. It was a pleasure.


