
Chapter 3
Methods of linear control theory

“Guaranteed Margins for LQG Regulators.
Abstract – There are none."

- John Doyle, IEEE Transactions on Automatic Control, 1978 [86]

The most well-developed theory of control generally applies to a linear system or
to the linearization of a nonlinear system about a fixed point or a periodic orbit. Lin-
ear control theory has many applications in fluid dynamics, such as the stabilization
of unstable laminar boundary layers. Although the governing equations may be non-
linear, successful stabilizing controllers will regulate the system to a neighborhood
where the linearization is increasingly valid.

In this chapter we introduce linear systems (Sec. 3.1) and explore H2 optimal
control problems, including the linear quadratic regulator (LQR) in Sec. 3.2 and
Kalman filters in Sec. 3.3. These problems are chosen because of their simplic-
ity, ubiquitous application, well-defined quadratic cost-functions, and the existence
of known optimal solutions. Next, linear quadratic Gaussian (LQG) control is in-
troduced for sensor-based feedback in Sec. 3.4. Finally, methods of system linear
system identification are provided in Sec. 3.5.

This chapter is not meant to be an exhaustive primer on linear control theory,
although key concepts from optimal control are introduced as needed to build in-
tuition. Note that none of the linear system theory below is required to implement
the machine learning control strategies in the remainder of the book, but they are
instead included to provide context and demonstrate known optimal solutions to
linear control problems. In many situations, H• robust control may be more desir-
able to balance the trade-off between robustness and performance in systems with
uncertainty and unmodeled dynamics, and the MLC methods developed here may
be generalized to other cost functions. For a more complete discussion of linear
control theory, excellent books include [93, 251].
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52 3 Methods of linear control theory

3.1 Linear systems

Many systems of interest are either linear, or correspond to the linearization of a
nonlinear system, such as Eq. (1.1), about a fixed point or periodic orbit. The most
complete theory of control applies to linear systems. Consider the following state-
space system:

d
dt

a = Aa+Bb (3.1a)

s = Ca+Db. (3.1b)

The matrices A,B,C, and D arise from the linearization of Eq. (1.1) about an equi-
librium state a0; in Eq. (3.1), the state a is the deviation from the equilibrium a0. In
the absence of an actuation input b, the solution to Eq. (3.1a) is:

a(t) = eAta(t0), (3.2)

where the matrix exponential eAt is given by the infinite series:

eAt = I+At +
1
2!

A2t2 +
1
3!

A3t3 + · · · . (3.3)

The stability of this system is determined by the eigenvalues of A, and eigenval-
ues with positive real part are unstable. The corresponding eigenvectors represent
unstable state directions, where perturbations will either grow without bound, or
grow until unmodeled nonlinear dynamics become important.

In the case of an actuation input b, the solution to Eq. (3.1a) becomes:

a(t) = eAta(t0)+
Z t

t0
eA(t�t)Bb(t)dt. (3.4)

The system in Eq. (3.1a) is controllable if it is possible to navigate the system to
an arbitrary state a from the origin in finite time with a finite actuation signal b(t).
Mathematically, this relies on the controllability matrix

C =
⇥

B AB A2B · · · ANa�1B
⇤

(3.5)

having full column rank. In practice, the degree of controllability, characterized by
the singular value decomposition of the controllability matrix in Eq. (3.5), or equiv-
alently, by the eigen-decomposition of the controllability Gramian, is often more
useful. Note that if Eq. (3.1a) is the linearization of a nonlinear system about a
fixed point, then it may be controllable with a nonlinear controller b = K(a), even
if Eq. (3.1a) is linearly uncontrollable. As long as all unstable state directions are in
the span of C , then the system is stabilizable; these unstable directions correspond
to eigenvectors of A with eigenvalues having positive real part.

Similarly, the system in Eq. (3.1b) is observable if any state a may be estimated
from a time-history of sensor measurements s. Mathematically, this corresponds to
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the observability matrix

O =

2
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(3.6)

having full row rank. A system is detectable if all unstable states are observable, so
that they are in the row-space of O .

As in Eq. (1.1), the matrices in the linearization in Eq. (3.1) may depend on the
specific bifurcation parameters µ . The linear theory above may also be generalized
for linear parameter varying (LPV) systems, where the matrices in Eq. (3.1) depend
on a time-varying parameter [246, 16]. For example, when linearizing about a pe-
riodic orbit, the matrices are parameterized by the phase f of the trajectory on the
orbit. In this case, gain-scheduling allows different controllers to be applied depend-
ing on the parameter values [246, 232].

3.2 Full-state feedback

If measurements of the full state a are available, then D = 0 and C = I, where I is the
Na ⇥Na identity matrix. We may then consider full-state feedback control b = K(a)
based on measurements of the state, s = a. Although full-state feedback may be
unrealistic, especially for high-dimensional systems, it is often possible to estimate
the full state from limited sensor measurements, using a Kalman filter, as discussed
in Sec. 3.3. Remarkably, it is possible to design an optimal full-state feedback con-
troller and an optimal state-estimator separately, and the combined sensor-based
feedback controller will also be optimal, as we will show in Sec. 3.4.

Linear quadratic regulator (LQR)

If the system in Eq. (3.1a) is controllable, then it is possible to design a proportional
controller

b = �Kra (3.7)

to arbitrarily place the eigenvalues of the closed-loop system

d
dt

a = Aa+Bb = (A�BKr)a. (3.8)
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A natural goal in control theory is to stabilize the system so that the state a converges
quickly to 0, but without expending too much control effort. We may construct a
quadratic cost function J that balances the aggressive regulation of a with the cost
of control:

J(t) =
Z t

0

⇥

aT (t)Q a(t)+bT (t)Rb(t)
⇤

dt. (3.9)

The goal is to develop a control strategy b = �Kra to minimize J = limt!• J(t).
The matrices Q and R weight the cost of deviations of the state from zero and the
cost of actuation, respectively. These matrices are often diagonal, and the diagonal
elements may be tuned to change the relative importance of the control objectives.
R is positive definite and Q is positive semi-definite. For example, if we increase the
entries of Q by a factor of 10 and keep R the same, then accurate state regulation
is more heavily weighted, and more aggressive control may be permitted. Typically,
the ratios of elements in Q and R are increased or decreased by powers of 10.

Because of the well-defined quadratic cost function in Eq. (3.9), the optimal con-
troller Kr may be solved for analytically. In particular, the controller K that mini-
mizes the cost in Eq. (3.9) is given by

Kr = R�1BT X, (3.10)

where X is the solution to the algebraic Riccati equation:

AT X+XA�XBR�1BT X+Q = 0. (3.11)

The resulting full-state feedback controller is called a linear quadratic regulator
(LQR), since it is a linear control law that minimizes a quadratic cost function to
regulate the system. This is shown schematically in Fig. 3.1. Solving for the LQR
controller Kr in Eq. (3.10) is computationally robust, and it is a built-in routine in
many computational packages. However, the computational cost of solving the Ric-
cati equation in Eq. (3.11) scales with the cube of the state dimension, making it
prohibitively expensive for large systems, except as an off-line calculation.

LQR
b = �Kra

System
d
dt a = Aa+Bb

s = a

b a

Fig. 3.1 LQR stabilization problem. The optimal control for a linear system with full-state feed-
back s = a is given by proportional control b = �Kra where Kr is a gain matrix obtained by
solving an algebraic Riccati equation.



3.3 Sensor-based state estimation 55

3.3 Sensor-based state estimation

The optimal LQR controller above relies on access to the full-state of the system.
However, in many applications full-state measurements of a high-dimensional sys-
tem are either technologically infeasible or prohibitively expensive to collect and
process. When full measurements are available, as with the use of particle image
velocimetry (PIV) [277, 127] to measure fluid velocity fields in experiments, these
measurements are typically only available in controlled experimental settings, and
are not practical for in-field applications such as monitoring flow over a wing in
flight. The computational burden of collecting, transferring and processing full-state
measurements may also limit the temporal resolution of the measurements and intro-
duce unacceptable computational time-delays which degrade robust performance.

In practice, it is often necessary to estimate the full state a from limited noisy
sensor measurements s. This estimation process balances information from a model
prediction of the state with the sensor measurements. Under a set of well-defined
conditions it is possible to obtain a stable estimator that converges to an estimate
of the full state a, which can then be used in conjunction with the optimal full-state
feedback LQR control law described above.

Kalman filtering

The Kalman filter [156] is perhaps the most often applied algorithm to estimate the
full-state of a system from noisy sensor measurements and an uncertain model of
the system. Kalman filters have been used in myriad applications, including guid-
ance and tracking of vehicles, airplane autopilots, modeling climate and weather,
seismology, and satellite navigation, to name only a few. An excellent and complete
derivation of the Kalman filter may be found in [254].

In the dynamic state-estimation framework, the linear dynamics from Eq. (3.1)
are generalized to include stochastic disturbances wd , also known as process noise,
and sensor noise wn:

d
dt

a = Aa+Bb+wd (3.12a)

s = Ca+Db+wn. (3.12b)

Both the disturbance and noise terms are assumed to be zero-mean Gaussian white-
noise processes, although generalizations exist to handle correlated and biased noise
terms. We assume that the disturbance and noise covariances are known:

E
�

wd(t)wd(t)T � = Vdd (t � t) (3.13a)

E
�

wn(t)wn(t)T � = Vnd (t � t) (3.13b)
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where E is the expectation operator, and d (·) is the Dirac delta function. The ma-
trices Vd and Vn are diagonal matrices whose entries contain the variances of the
corresponding disturbance or noise term.

A full-state estimator is a dynamical system that produces an estimate â for the
full-state a using only knowledge of the noisy sensor measurements s, the actuation
input b, and a model of the process dynamics. If the system is observable, it is
possible to construct an estimator with a filter gain K f as follows:

d
dt

â = Aâ+Bb+K f (s� ŝ) (3.14a)

ŝ = Câ+Db. (3.14b)

The output ŝ is a prediction of the expected sensor output based on the full-state
estimate â. Substituting the expression for ŝ from Eq. (3.14b) into Eq. (3.14a) yields
a dynamical system for â with b and s as inputs:

d
dt

â =
�

A�K f C
�

â+K f s+
�

B�K f D
�

b (3.15a)

=
�

A�K f C
�

â+
⇥

K f ,
�

B�K f D
�⇤



s
b

�

. (3.15b)

This is shown schematically in Fig. 3.2 for D = 0.
For observable systems in Eq. (3.1), it is possible to arbitrarily place the eigen-

values of the estimator dynamics A � K f C, resulting in stable convergence of the
estimate â to the true state a. To see that stable dynamics A � K f C results in a sta-
ble estimator that converges to the full-state a, consider the time dynamics of the
estimation error e = a� â:

d
dt

e =
d
dt

a� d
dt

â

= [Aa+Bb+wd ]�
⇥�

A�K f C
�

â+K f s+
�

B�K f D
�

b
⇤

= Ae +wd +K f Câ�K f s+K f Db
= Ae +wd +K f Câ�K f [Ca+Db+wn]

| {z }

s

+K f Db

=
�

A�K f C
�

e +wd �K f wn.

Therefore, the estimate â will converge to the true state a as long as A�K f C is
stable. Analogous to the case of LQR, there is a balance between over-stabilization
and the amplification of noise. An analogy is often made with an inexperienced
automobile driver who holds the wheel too tightly and reacts to every bump and
disturbance on the road.

The Kalman filter is an optimal full-state estimator that minimizes the following
cost function:

J = lim
t!•

E
�

(a(t)� â(t))T (a(t)� â(t))
�

. (3.16)
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System
d
dt a = Aa+Bb+wd

s = Ca+wn

wn

wd

b

a +

Estimator
d
dt â = (A�K f C)â

+K f s+Bb

E
J

s
â

�

B
b + + R â

s + K f

+

A

�

Cŝ

�

Fig. 3.2 Schematic of the Kalman filter for state estimation from noisy measurements s = Ca+wn
with process noise (disturbance) wd . Note that there is no feedthrough term D in this diagram.

Implicit in this cost function are the noise and disturbance covariances, which deter-
mine the optimal balance between aggressive estimation and noise attenuation. The
mathematical derivation of an optimal solution is nearly identical to that of LQR,
and this problem is often called linear quadratic estimation (LQE) because of the
dual formulation. The optimal Kalman filter gain K f is given by

K f = YCT Vn (3.17)

where Y is the solution to another algebraic Riccati equation:

YAT +AY�YCT V�1
n CY+Vd = 0. (3.18)
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3.4 Sensor-based feedback

In practice, the full-state estimate from sensor-based estimation is used in conjunc-
tion with a full-state feedback control law, resulting in sensor-based feedback. The
separation principle in control theory states that for linear systems it is possible to
design optimal full-state feedback and full-state estimator gain matrices separately,
and the resulting sensor-based feedback will remain optimal when combined. There
are numerous techniques to develop sensor-based control that optimize different
quantities. For instance, combining the LQR and Kalman filter solutions results in
what are known as H2 optimal control laws, while other controllers, known as H•
controllers, may be designed to provide robustness.

In the case of model-free machine learning control, the controller dynamical sys-
tem, which estimates relevant states from sensors and feeds this state estimate back
into an actuation signal, must be designed and optimized as a single unit. Realisti-
cally, we may not have access to full-state data to train an estimator, even during an
expensive off-line optimization. Moreover, the system under investigation may be
unstable, so that a sensor-based controller must first be applied before training an
estimator is even feasible. However, it will be possible to design sensor-based feed-
back controllers in one shot using MLC using generalized transfer function blocks,
as will be explored in the following chapter.

Linear quadratic Gaussian (LQG)
The linear quadratic Gaussian (LQG) controller is the optimal sensor-based feed-
back control law that minimizes the cost function in Eq. (3.9) using sensors s from
the linear model in Eq. (3.12) with sensor and process noise. Remarkably, the op-
timal LQG solution is obtained by combining the optimal LQR feedback gain Kr
with the estimated state â obtained by the optimal Kalman filter K f , as shown in
Fig. 3.3. Thus, it is possible to design Kr and K f separately by solving the respec-
tive Riccati equations in Eqs. (3.11) and (3.18) and then combine to form an optimal
LQG controller; this is known as the separation principle.

Combining the full-state LQR control in Eq. (3.8) with the full-state Kalman
filter estimate in Eq. (3.15), we obtain a dynamical system for the LQG controller
where s is the input to the controller, b is the output of the controller, and internal
controller state is the full-state estimate â:

d
dt

â =
�

A�K f C�BKr
�

â+K f s (3.19a)

b = �Krâ. (3.19b)

The LQG cost function is the ensemble-averaged value of Eq. (3.9),

J(t) =

⌧

Z t

0

⇥

aT (t)Q a(t)+bT (t)Rb(t)
⇤

dt
�

, (3.20)

where the angular brackets denote the average over many noise realizations.
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System
d
dt a = Aa+Bb+wd

s = Ca

wd

wn

b

LQE
K f

LQR
Kr

s

â

LQG

Fig. 3.3 Schematic diagram for linear quadratic Gaussian (LQG) controller. The optimal LQR
and LQE gain matrices Kr and K f are designed separately based on the solutions of two different
algebraic Riccati equations. When combined, the resulting sensor-based feedback is optimal.

Applying LQR to the full-state estimate â results in the following state dynamics:

d
dt

a = Aa�BKrâ+wd (3.21a)

= Aa�BKra+BKr (a� â)+wd (3.21b)
= Aa�BKra+BKre +wd , (3.21c)

where e = a� â as before. We may finally write the closed-loop system as

d
dt



a
e

�

=



A�BKr BKr
0 A�K f C

�

a
e

�

+



I 0
I �K f

�

wd
wn

�

. (3.22)

It is clear that if Kr and K f were chosen to optimally place the closed-loop eigen-
values of A�BKr and A�K f C in the respective LQR and Kalman filter problems,
then these are still the eigenvalues of the sensor-based closed-loop LQG controller.

The LQG framework assumes an accurate system model and knowledge of the
measurement and process noise magnitude; moreover, the Gaussian in the title
refers to the assumption that these noise terms are Gaussian white noise processes.
In practice, all of these assumptions are dubious for many real-world systems, and
even small amounts of model uncertainty can destroy the LQG performance and
cause instability [86]. The entire optimization process above is often referred to as
H2 optimal control. The optimization problem may be modified to promote robust
controllers for systems that have model uncertainty [89, 119, 88], and these con-
trollers are often referred to as H• robust control laws. Intuitively, robust control
penalizes the worst-case performance of a system, so that robustness is promoted.
Often, an LQG controller may be robustified through a process called loop transfer
recovery, although this is beyond the scope of this book. An excellent treatment of
robust control may be found in [93].
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3.5 System Identification and Model Reduction

In many high-dimensional fluid problems, it is still possible to use linear control
techniques, despite nonlinear equations of motion. For example, in fluid dynam-
ics there are numerous success stories of linear model-based flow control, includ-
ing transition delay in a spatially developing boundary layer on a flat plate and in
channel flow [29, 136, 135, 63, 142, 13, 11, 12, 244, 245, 101], reducing skin-
friction drag in wall turbulence [71, 72, 102, 159, 160], and stabilization of the
cavity flow [56, 227, 55, 233, 229, 231, 234, 57, 144]. However, many of the linear
control approaches do not scale well to large state spaces, and they may be pro-
hibitively expensive to enact for real-time control on short timescales. It is therefore
often necessary to first develop low-dimensional approximations of the full-state
system for use with feedback control. There are two broad approaches to this prob-
lem: First, it is possible to start with a high-dimensional dynamical system, such
as the discretized Navier-Stokes equations, and project the dynamics onto a low-
dimensional subspace identified, for example, using proper orthogonal decomposi-
tion (POD) [28, 138] and Galerkin projection. This results in a reduced-order model
(ROM) [220, 24]. There are many approaches to this problem, including discrete
empirical interpolation methods (DEIM) [60, 210], gappy POD [100], balanced
proper orthogonal decomposition (BPOD) [276, 230], and many more. The second
approach is to collect data from a simulation or an experiment and try to identify
a low-rank model using data-driven techniques. This approach is typically called
system identification, and is often preferred for control design because of the rel-
ative ease of implementation. Examples include the dynamic mode decomposition
(DMD) [237, 269] and related Koopman analysis [187, 228, 188], the eigensystem
realization algorithm (ERA) [151, 181], and the observer–Kalman filter identifica-
tion (OKID) [152, 213, 150].

After a linear model has been identified, either by model reduction or system
identification, it may then be used for model-based control design, as described in
Chapter 4. However, there are a number of issues that may arise in practice, as linear
model-based control might not work for a large class of problems. First, the system
being modeled may be strongly nonlinear, in which case the linear approximation
might only capture a small portion of the dynamic effects. Next, the system may be
stochastically driven, so that the linear model will average out the relevant fluctua-
tions. Finally, when control is applied to the full system, the attractor dynamics may
change, rendering the linearized model invalid. Exceptions include the stabilization
of laminar solutions in fluid mechanics, where feedback control rejects nonlinear
disturbances and keeps the system close to the fixed point where linearization is
useful.

There are certainly alternative methods for system identification and model re-
duction that are nonlinear, involve stochasticity, and change with the attractor. How-
ever, these methods are typically advanced and they also may limit the available
machinery from control theory.
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3.5.1 System identification

System identification may be thought of as a form of machine learning, where an
input–output map of a system is learned from training data in a representation that
generalizes to data that was not in the training set. There is a vast literature on meth-
ods for system identification [150, 174], which is beyond the scope of this treatment,
although many of the leading methods are based on a form of dynamic regression
that fits models based on data. For this section, we consider the eigensystem real-
ization algorithm (ERA) and observer-Kalman filter identification (OKID) methods
because of their connection to balanced model reduction [192, 230, 181, 269] and
their recent successful application in closed-loop flow control [13, 11, 143]. The
ERA/OKID procedure is also applicable to multiple-input, multiple-output (MIMO)
systems.

3.5.2 Eigensystem realization algorithm (ERA)

The eigensystem realization algorithm produces low-dimensional linear input–
output models from sensor measurements of an impulse response experiment, and
it is based on the “minimal realization" theory of Ho and Kalman [133]. The mod-
ern theory was developed to identify structural models for various spacecraft [151],
and it has been shown by Ma et al. [181] that ERA models are equivalent to BPOD
models1. ERA is based entirely on impulse response measurements and does not
require prior knowledge of a model.

Given a linear system, as in Eq. (3.1), it is possible to obtain a discrete-time
version:

ak+1 = Adak +Bdbk (3.23a)
sk = Cdak +Ddbk, (3.23b)

where subscript k denotes the time and D t the corresponding timestep, so that
ak = a(tk) = a(kD t). The matrices in the discrete-time system are denoted with a
subscript d and are related to the original continuous-time system matrices as:

Ad = exp(AD t) (3.24a)

Bd =
Z D t

0
exp(At)Bdt (3.24b)

Cd = C (3.24c)
Dd = D. (3.24d)

Now, a discrete-time delta function input in the actuation b:

1 BPOD and ERA models both balance the empirical Gramians and approximate balanced trunca-
tion [192] for high-dimensional systems.
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bd
k , bd (kD t) =

⇢

I, k = 0
0, k = 1,2,3, · · · (3.25)

gives rise to a discrete-time impulse response in the sensors s:

sd
k , sd (kD t) =

⇢

Dd , k = 0
CdAk�1

d Bd , k = 1,2,3, · · · . (3.26)

In an experiment or simulation, typically Nb impulse responses are performed,
one for each of the Nb separate input channels. The output responses are collected
for each impulsive input, and at a given time-step k, the output vector in response to
the j-th impulsive input will form the j-th column of sd

k . Thus, each of the sd
k is a

Ns ⇥Nb matrix.
A Hankel matrix H is formed by stacking shifted time-series of impulse-response

measurements into a matrix:

H =

2

6

6

6

4

sd
1 sd

2 · · · sd
mc

sd
2 sd

3 · · · sd
mc+1

...
...

. . .
...

sd
mo sd

mo+1 · · · sd
mc+mo�1

3

7

7

7

5

. (3.27)

This matrix is closely related to the empirical discrete-time observability and
controllability Gramians, Wd

O = Od
⇤Od and Wd

C = CdCd
⇤. Substituting the expres-

sion from Eq. (3.26) into Eq. (3.27) yields:

H =

2

6

6

6

4

CdBd CdAdBd · · · CdAmc�1
d Bd

CdAdBd CdA2
dBd · · · CdAmc

d Bd
...

...
. . .

...
CdAmo�1

d Bd CdAmo
d Bd · · · CdAmc+mo�2

d Bd

3

7

7

7

5

(3.28a)

=

2

6

6

6

4

Cd
CdAd

...
CdAmo�1

d

3

7

7

7

5

⇥

Bd AdBd · · · Amc�1
d Bd

⇤

= OdCd . (3.28b)

Taking the singular value decomposition (SVD) of this Hankel matrix yields the
dominant temporal patterns in this time-series:

H = USV⇤ =
⇥

Ur Us
⇤



S r 0
0 S s

�

V⇤
r

V⇤
s

�

⇡ UrS rV⇤
r . (3.29)

Notice that we may truncate all small singular values in S s and only keep the first r
singular values in S r. The columns of Ur and Vr may be thought of as eigen-time-
delay coordinates.

With sensor measurements from an impulse-response experiment, it is also pos-
sible to create a second, shifted Hankel matrix H0:
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H0 =

2

6

6

6

4

s2 sd
3 · · · sd

mc+1
sd

3 sd
4 · · · sd

mc+2
...

...
. . .

...
sd

mo+1 sd
mo+2 · · · sd

mc+mo

3

7

7

7

5

(3.30a)

=

2

6

6

6

4

CdAdBd CdA2
dBd · · · CdAmc

d Bd
CdA2

dBd CdA3
dBd · · · CdAmc+1

d Bd
...

...
. . .

...
CdAmo

d Bd CdAmo+1
d Bd · · · CdAmc+mo�1

d Bd

3

7

7

7

5

= OdACd . (3.30b)

Based on the matrices H and H0, we are able to construct a reduced-order model
as follows:

Ar = S�1/2
r U⇤

r H0VrS�1/2
r ; (3.31a)

Br = first Nb columns of S 1/2
r V⇤; (3.31b)

Cr = first Ns columns of US 1/2
r . (3.31c)

Thus, we express the input–output dynamics in terms of a reduced system with a
low-dimensional state:

ãk+1 = Arãk +Brb (3.32a)
s = Crãk. (3.32b)

H and H0 are constructed from impulse response simulations/experiments, with-
out the need for storing direct or adjoint snapshots, as in other balanced model re-
duction techniques. However, if full-state snapshots are available (for example, by
collecting velocity fields in simulations or PIV experiments), it is then possible to
construct direct modes. These full-state snapshots form C d , and modes can be con-
structed by:

F r = C dVrS�1/2
r . (3.33)

These modes may then be used to approximate the full-state of the high-dimensional
system from the low-dimensional model in Eq. (3.32) by:

a ⇡ F rã. (3.34)

ERA balances the empirical controllability and observability Gramians, OdO⇤
d

and C ⇤
d Cd . Unless we collect a very large amount of data, the true Gramians are

only approximately balanced. Instead of collecting long tails of data, it is possible
to collect data until the Hankel matrix is full rank, balance the full-rank identified
model, and then truncate. This is more efficient than collecting snapshots until all
transients have decayed; this idea is developed in [268] and [177].
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3.5.3 Observer Kalman filter identification (OKID)

OKID was developed to compliment the ERA for lightly damped experimental sys-
tems with noise [152]. In practice, performing isolated impulse response experi-
ments is challenging, and the effect of measurement noise can contaminate results.
Moreover, if there is a large separation of timescales, then a tremendous amount of
data must be collected to use ERA. This section poses the general problem of ap-
proximating the impulse response from arbitrary input/output data. Typically, one
would identify reduced-order models according to the following general procedure,
shown in Fig. 3.4:

1. Collect the output response to a pseudo-random input.
2. This information is passed through the OKID algorithm to obtain the de-noised

linear impulse response.
3. The impulse response is passed through the ERA to obtain a reduced-order state-

space system.

The output sk in response to a general input signal bk, for zero initial condition
x0 = 0, is given by:

s0 = Ddb0 (3.35a)
s1 = CdBdb0 +Ddb1 (3.35b)
s2 = CdAdBdb0 +CdBdb1 +Ddb2 (3.35c)

· · ·
sk = CdAk�1

d Bdb0 +CdAk�2
d Bdb1 + · · ·+CdBdbk�1 +Ddbk. (3.35d)

Note that there is no C term in the expression for s0 since there is zero initial con-
dition x0 = 0. This progression of measurements sk may be further simplified and
expressed in terms of impulse-response measurements sd

k :

⇥

s0 s1 · · · sN
⇤

| {z }

S

=
⇥

sd
0 sd

1 · · · sd
N
⇤

| {z }

S d

2

6

6

6

4

b0 b1 · · · bN
0 b0 · · · bN�1
...

...
. . .

...
0 0 · · · b0

3

7

7

7

5

| {z }

B

. (3.36)

It is often possible to invert the matrix of control inputs, B, to solve for the Markov
parameters S d . However, B may be sparsely populated, so that either it is un-
invertible, or inversion is ill-conditioned. In addition, B is large for lightly damped
systems, making inversion computationally expensive. Finally, noise is not opti-
mally filtered by simply inverting B to solve for the Markov parameters.

The OKID method addresses each of these issues. Instead of the original discrete-
time system, we now introduce an optimal observer system:
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Low-dimensional model
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Eigensystem Realization Algorithm (ERA)
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d
dt ã = Ãã+ B̃b

s = C̃ã+ D̃b

b(kD t) =

⇢

1, k = 0
0, k = 1,2,3, · · ·

s(kD t) =

⇢

D, k = 0
CAk�1B, k = 1,2,3, · · ·

{b(kD t),s(kD t) |k = 0, · · · ,m}

Model
system

b s

k

k

s

b b = d (t)

s

b

Fig. 3.4 Schematic illustrating the use of OKID followed by ERA to identify a low-dimensional
state-space model, based on measurement data. The schematic illustrates the single-input single-
output (SISO) case, although both methods are general and handle multiple-input multiple-output
(MIMO) systems.

âk+1 = Ad âk +K f (ŝk � sk)+Bdbk (3.37a)
ŝk = Cd âk +Ddbk, (3.37b)

which may be re-written as:

âk+1 = (Ad +K f Cd)
| {z }

Ād

âk +
⇥

Bd +K f Dd , �K f
⇤

| {z }

B̄d



bk
sk

�

. (3.38)
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Recall from above that if the system is observable, it is possible to place the
poles of Ad +K f Cd anywhere we like. However, depending on the amount of noise
in the measurements and structural disturbance in our model, there are optimal pole
locations that are given by the Kalman filter (recall Sec. 3.3). We may now solve
for the observer Markov parameters S̄

d of this system in terms of measured inputs
and outputs according to the following algorithm from [152]:

1. Choose the the number of observer Markov parameters to identify, p.
2. Construct the data matrices below:

S =
⇥

s0 s1 · · · sp · · · sM
⇤

(3.39)

C =

2

6

6

6

4

b0 b1 · · · bp · · · bM
0 v0 · · · vp�1 · · · vM�1
...

...
. . .

...
. . .

...
0 0 · · · v0 · · · vM�p

3

7

7

7

5

(3.40)

where vi =
⇥

bT
i sT

i
⇤T .

The matrix C resembles B, except that is has been augmented with the outputs
si. In this way, we are working with a system that is augmented to include a
Kalman filter. We are now identifying the observer Markov parameters of the
augmented system, S̄

d , using the equation S = S̄
d
C .

3. Identify the matrix S̄
d of observer Markov parameters by solving S = S̄

d
C

for S̄
d using the right pseudo-inverse of C (i.e., SVD).

4. Recover system Markov parameters, S d , from the observer Markov parameters,
S̄

d .

(a) Order the observer Markov parameters S̄
d as:

S̄
d
0 = D, (3.41)

S̄
d
k =

h

(S̄
d
)(1)

k (S̄
d
)(2)

k

i

for k � 1, (3.42)

where (S̄
d
)(1)

k 2 Rq⇥p, (S̄
d
)(2)

k 2 Rq⇥q, and sd
0 = S̄

d
0 = D.

(b) Reconstruct system Markov parameters:

sd
k = (S̄

d
)(1)

k +
k

Â
i=1

(S̄
d
)(2)

i sd
k�i for k � 1. (3.43)

Thus, the OKID method identifies the Markov parameters of a system augmented
with an asymptotically stable Kalman filter. The system Markov parameters are ex-
tracted from the observer Markov parameters by Eq. (3.43). These system Markov
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parameters approximate the impulse response of the system, and may be used di-
rectly as inputs to the ERA algorithm.

There are numerous extensions of the ERA/OKID methods. For example, there
are generalizations for linear parameter varying (LPV) systems and systems lin-
earized about a limit cycle. We will implement the ERA/OKID method in Sec. 6.4
on a turbulent mixing layer experiment. This example will demonstrate the limited
usefulness of linear system identification for strongly nonlinear systems.
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3.6 Exercises

Exercise 3–1: Show that the following system is controllable but not observable:

d
dt



a1
a2

�

=



�1 1
0 �2

�

a1
a2

�

+



0
1

�

b (3.44a)

s =
⇥

0 1
⇤



a1
a2

�

. (3.44b)

How might we change the matrix C =
⇥

0 1
⇤

to make the system observable?

Exercise 3–2: Develop an optimal LQR controller for the following system:

d
dt



a1
a2

�

=



�1 1
0 1

�

a1
a2

�

+



0
1

�

b. (3.45)

(a) In particular, solve for the gain matrix Kr so that b = �Kra minimizes the
cost function:

J =
Z •

0

⇥

aT (t)Q a(t)+R b2(t)
⇤

dt, Q =



1 0
0 1

�

, R = 1. (3.46)

(b) Now show that nearby controllers with controller gain 1.1Kr and .9Kr are
suboptimal.

(c) Finally, solve for the optimal Kr using a genetic algorithm. You will likely
need to approximate the cost function J by integrating to a finite but long time
until transients decay.

Exercise 3–3: Develop a Kalman filter for the following system:

d
dt



a1
a2

�

=



�.01 1
�1 �.01

�

a1
a2

�

+



0
1

�

b+



1 0
0 1

�

wd1
wd2

�

(3.47a)

s =
⇥

1 0
⇤



a1
a2

�

+wn. (3.47b)

(a) Simulate the system with measurement and process noise with forcing b =
sin(t) and plot the Kalman filter prediction of the state. You can compare this
to the full-state of the true system by using the same A and B matrices above
but using C = I to output the full state a.

(b) Now, using the same Kalman filter above, increase the process noise (distur-
bance) by a factor of 5. How does this change the full-state prediction?

(c) For a range of process and measurement noise magnitudes, compute the
Kalman filter. How do the eigenvalues of the full-state estimator change with
the various noise magnitudes? Is there a relationship?
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Exercise 3–4: Consider the following system

d
dt



a1
a2

�

=



�2 1
0 1

�

a1
a2

�

+



0
1

�

b (3.48a)

s =
⇥

1 0
⇤



a1
a2

�

. (3.48b)

(a) Compute an LQR controller for the matrix pair A and B.
(b) Compute a Kalman filter for the matrix pair A and C.
(c) Now, compute the closed-loop system in Matlab® by implementing LQG con-

trol. Show that the closed-loop eigenvalues are the same as the LQR and
Kalman filter eigenvalues from above.

Exercise 3–5: Consider the following linear system:

d
dt



a1
a2

�

=



�1.0 .001
0 �.99

�

a1
a2

�

+



0
1

�

b (3.49a)

s =
⇥

1 0
⇤



a1
a2

�

. (3.49b)

(a) Construct a time-series of impulse-response data from this system using a
sufficiently small D t to resolve the dynamics.

(b) How many terms of the time series are required before the rank of the Hankel
matrix in Eq. (3.27) saturates? Why is this true?

(c) Use the eigensystem realization algorithm to determine a model from the
time-series.

(d) Now, add a small amount of measurement noise to the time-series. How many
terms are required to capture the system dynamics now? How does this num-
ber change as the noise magnitude is increased?

3.7 Suggested reading

Texts

(1) Feedback Systems: An Introduction for Scientists and Engineers, by K. J.
Aström and R. M. Murray, 2010 [222].

This is an excellent introductory text that provides a number of motivating
examples. The control problem is formulated in state-space, which is beneficial
for students with a strong mathematical background.

(2) Feedback Control Theory, by J. C. Doyle, B. A. Francis, and A. R. Tannen-
baum, 2013 [87].
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This text strikes a delicate balance between simple introductory concepts
and advanced topics in robust control. The authors largely defined this field, and
this book is essential reading.

(3) Multivariable Feedback Control: Analysis and Design, by S. Skogestad
and I. Postlethwaite, 2005 [251].

This is perhaps the most complete and practically useful guide for real-
world engineering control. It strikes a delicate balance between historical, theo-
retical, and practical advice for the advanced control practitioner.

(4) A Course in Robust Control Theory: A Convex Approach, by G. E.
Dullerud and F. Paganini, 2000 [93].

This text provides an excellent treatment of the mathematical foundations
of linear control theory. There is a considerable focus on computational aspects,
including the use of methods from convex optimization.

(5) Optimal Control and Estimation, by R. F. Stengel, 2012 [254].
This book provides a comprehensive overview and derivation of optimal

control, including advanced methods such as neighboring optimal control. This
text covers estimation and forecasting with a subtle balance between dynamical
systems and probability.

Seminal papers

(1) Guaranteed margins for LQG regulators, by J. C. Doyle, IEEE Transac-
tions on Automatic Control, 1978 [86].

This paper turned the world of control upside down. With a simple coun-
terexample, Doyle showed the possible lack of robustness of LQG regulators.

(2) Principal component analysis in linear systems: Controllability, observ-
ability, and model reduction, by B. C. Moore, IEEE Transactions on Automatic
Control, 1981 [192].

This paper connects dimensionality reduction with controllability and ob-
servability, paving the way towards modern techniques in model reduction.

(3) Identification of linear parameter varying models, by B. Bamieh and L.
Giarré, International Journal of Robust and Nonlinear Control, 2002 [16].

This paper describes how to identify a parameterized family of locally lin-
ear models that may be used for gain-scheduled control.


