
Chapter 1
Introduction

“I think it’s very important to have a feedback loop, where you’re constantly think-
ing about what you’ve done and how you could be doing it better."

- Elon Musk

1.1 Feedback in engineering and living systems

Feedback processes are critical aspects of most living and engineering systems.
Feedback occurs when the output of a system influences the input of the same sys-
tem. Feedback control is a process of creating such a feedback loop to modify the
behavior of a dynamical system through actuation that is informed by measurements
of the system.

The very existence of humans and other endothermic animals is based on a ro-
bust feedback control: They maintain their body temperature within narrow limits
despite a large range of environmental conditions and disturbances. This tempera-
ture regulation is performed with temperature monitoring and control actions, such
as increasing metabolism or sweating. Similarly, air conditioning also keeps a room
temperature in a narrow interval by heating or cooling via a ventilating air stream.

The world around us is actively shaped by feedback processes, from the mean-
dering path of a river to the gene regulation that occurs inside every cell in our body.
A child’s education may be considered a feedback control task, where parental and
societal feedback guide the child’s actions towards a desired goal, such as socially
acceptable behavior and the child becoming a productive member of society. The
order achieved in a modern society is the result of a balance of interests regulated
through active policing and the rule of laws, which are in turn shaped by a collec-
tive sense of justice and civil rights. Financial markets and portfolio management
are also feedback processes based on a control logic of buying and selling stocks
to reach an optimal growth or profit at a given risk over a certain time horizon. In
fact, currency inflation is actively manipulated by changing interest rates and issuing
bonds. Our very thoughts and actions are intimately related to a massively parallel
feedback architecture in our brain and nervous system, whereby external stimuli
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are collected and assimilated, decisions are made, and control actions are executed,
resulting in our interaction with the world. Finally, the earth’s climate and temper-
ature are maintained through a delicate balance of forcing from sources including
solar irradiance, greenhouse gases, vegetation, aerosols and cloud formation, many
of which are coupled through feedback.

The feedback control of fluid systems is an immensely important challenge with
profound implications for technologies in energy, security, transportation, medicine,
and many other endeavors. Flow control is an academically exciting research field
undergoing rapid progress — comprising many disciplines, including theoretical,
numerical and experimental fluid mechanics, control theory, reduced-order model-
ing, nonlinear dynamics and machine learning techniques. Flow control has appli-
cations of epic proportion, such as drag reductions of cars, trucks, trains, ships and
submarines, lift increase of airplanes, noise reduction of ground or airborne trans-
port vehicles, combustion efficiency and NOX reduction, cardiac monitoring and
intervention, optimization of pharmaceutical and chemical processes and weather
control. The flows found in most engineering applications are turbulent, introducing
the complexities of high-dimensionality, multi-scale structures, strong nonlinearities
and frequency crosstalk as additional challenges.

Feedback turbulence control shares a significant overlap with the other feedback
systems described above, in the sense that

• the control goal can be defined in mathematical terms;
• the control actions are also in a well-defined set;
• the unforced system has its own internal chaotic nonlinear dynamics, where

neighboring states may rapidly diverge to different behaviors within the predic-
tion horizon;

• the full state is only partially accessible by limited sensors;
• there is an underlying evolution equation (i.e., the Navier-Stokes equation) which

provides a high-fidelity description of the system, but may not be useful for con-
trol decisions in a real-life experiment.

The last three properties are a generic consequence of high-dimensional nonlinear
dynamics. However, unlike many of the systems described above, turbulence control
is more benign, as the system quickly forgets its past treatment and the control
experiments tend to be more reproducible. In other words, the unforced and forced
systems have a statistical stationarity, i.e. statistical quantities like mean values and
variances are well defined. Regardless, feedback turbulence control is significantly
more complex than most academic control theory tasks, such as stabilization of an
inverted pendulum. Hence, improving feedback control architectures that work for
turbulence control may have significant impact in other complex systems.

Nature offers compelling examples of feedback flow control that may provide
inspiration for engineering efforts. For example, eagles are expert flyers, capable of
rising on thermals or landing gently on a rock or tree despite strong wind gust pertur-
bations and other challenging weather conditions. These maneuvers require active
feedback control by sensing the current position and velocity and dynamically ad-
justing the control actions involving the motion of wings and feathers. An eagle’s
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flight is robust to significant uncertainty in the environment and flight conditions,
including harsh weather and significant changes to its own body, including mass,
geometry, and wing shape. It is unlikely that eagles, or other flying animals, such
as birds, bats, or insects, are operating based on a high-fidelity model of the under-
lying Navier-Stokes equations that govern fluid flow. Instead, it is more likely that
these animals have adapted and learned how to sense and modify dominant coher-
ent structures in the fluid that are most responsible for generating forces relevant for
flight. Airplanes similarly move on prescribed trajectories at predetermined speeds
under varying wind and weather conditions by adjusting their control surfaces, such
as flaps and ailerons, and engine thrust. However, there is still a tremendous oppor-
tunity to improve engineering flight performance using bio-inspired techniques.

This book outlines the use machine learning to design control laws, partially
inspired by how animals learn control in new environments. This machine learning
control (MLC) provides a powerful new framework to control complex dynamical
systems that are currently beyond the capability of existing methods in control.

1.2 Benefits of feedback control

Figure 1.1 illustrates a general feedback control system. The physical system, also
called the plant, is depicted in the blue box. The system is monitored by sensors s
and manipulated by actuators b through a control logic depicted in the yellow box.
Moreover, the plant is subjected to sensor noise and exogenous disturbances w and
the control shall be optimized with respect to a cost function J.
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Fig. 1.1 General optimization framework for feedback control. The behavior of the physical sys-
tem is modified by actuators (inputs, b) through a control law informed by sensor measurements
of the system (outputs, s). The control logic is designed to shape the closed-loop response from the
exogenous disturbances w to a high-level objective encoded by the cost function J.
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Fig. 1.2 Open-loop control diagram. A reference signal wr is fed directly into an open-loop con-
troller which specifies a pre-determined actuation signal b. External disturbances (wd) and sensor
noise (wn), as well as un-modeled system dynamics and uncertainty, degrade the overall perfor-
mance.

One example of an optimization tasks is drag reduction. A physically meaningful
optimization problem penalizes the actuation. A well-posed drag reduction problem
requests a minimization of the power required to overcome drag Jdrag plus the in-
vested actuation power Jact, i.e. the net gain J = Jdrag +Jact. Other examples include
lift increase, mixing increase and noise reduction. To keep an airplane on a desired
trajectory, the thrust and lift need to be kept at a well-defined level. Thus, the control
task becomes a reference tracking problem, in which a reference force — or other
quantity — is commanded. In this case, the cost function penalizes the deviation
from the desired state and the invested actuation level.

In the case of reference tracking, it is natural to first consider the open-loop con-
trol architecture shown in Fig. 1.2. In this strategy, the actuation signal b is chosen
based on knowledge of the system to produce the desired output that matches the
commanded reference signal. This is how many toasters work, where the heating
element is turned on for a fixed amount of time depending on the desired setting.
However, open-loop control is fundamentally incapable of stabilizing an unstable
system, such as an inverted pendulum, as the plant model would have to be known
perfectly without any uncertainty or disturbances. Open-loop control is also inca-
pable of adjusting the actuation signal to compensate for disturbances to the system.

Instead of making control decisions purely based on the desired reference, as
in open-loop control, it is possible to close the loop by feeding back sensor mea-
surements of the system output so that the controller knows whether or not it is
achieving the desired goal. This closed-loop feedback control diagram is shown in
Fig. 1.3. Sensor-based feedback provides a solution to the issues that occur with
open-loop control. It is often possible to stabilize an unstable system with the aid
of sensor feedback, whereas it is never possible to stabilize an unstable system in
open-loop. In addition, closed-loop control is able to compensate for external dis-
turbances and model uncertainties, both of which should be measured in the sensor
output.

Summarizing, feedback control is, for instance, necessary for the following tasks:

• Optimize a state or output with respect to a given cost function;
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Fig. 1.3 Closed-loop feedback control diagram. The sensor signal s is fed back and subtracted
from the reference signal wr . The resulting error e is used by the controller to specify the actuation
signal b. Feedback is generally able to stabilize unstable plant dynamics while effectively rejecting
disturbances wd and attenuating noise wn.

• Stabilize an unstable system;
• Attenuate sensor noise;
• Compensate for exogenous disturbances and model uncertainty.

Mathematical formulation of feedback control task

There is a powerful theory of feedback control based on dynamical systems. In this
framework, the plant is modeled by an input–output system:

d
dt

a = F(a,b,wd), (1.1a)

s = G(a,b,wn), (1.1b)

consisting of a coupled system of possibly nonlinear differential equations in a state
variable a 2RNa , where Na is the dimension of the state. The actuation input is given
by the vector b 2RNb and this input directly affects the state dynamics in Eq. (1.1a),
along with exogenous disturbances wd . The sensor measurements are given by the
output vector s 2 RNs , and these measurements may be nonlinear functions of the
state a, the control b and noise wn.

The control task is generally to construct a controller

b = K(s,wr), (1.2)

so that the closed-loop system has desirable properties in terms of stability, attenua-
tion of noise, rejection of disturbances, and good reference tracking characteristics.
The commanded reference signal is wr. These factors are encoded in the cost func-
tion J, which is generally a function of the sensor output, the actuation input, and
the various external signals wr, wd , and wn.
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With a well-designed sensor-based feedback control law, it is often possible to
obtain a closed-loop system that performs optimally with respect to the chosen cost
function and is robust to model uncertainty, external disturbances, and sensor noise.
In fact, most modern control problems are posed in terms of optimization via cost
minimization. The perspective taken in this book is that machine learning provides
a powerful new set of techniques to obtain high-performance control laws even for
extremely complicated systems with non-convex cost functions.

1.3 Challenges of feedback control

Most textbooks start with simple feedback control problems. An airplane, for in-
stance, may need to keep a certain ground speed. The airplane has a steady-state
map (model) indicating the required thrust (actuation) under ambient flow condi-
tion and for an average airplane. Thus, the right thrust may be commanded in an
open-loop manner based on the model, as illustrated in Fig. 1.2.

Yet, each airplane has its own steady-state map and an aging process (model un-
certainty). Moreover, the wind (exogenous disturbance) may change the ground ve-
locity. Model uncertainty and disturbances require a feedback element: The ground
speed needs to be measured (tachometer) and the thrust needs to be adjusted. If the
ground speed is too low (high), the thrust needs to be increased (decreased). The
general feedback scheme is illustrated in Fig. 1.3.

Evidently, the control design is simple. There is a single state variable a (speed)
which is sensed s (tachometer) and acted upon b (thrust) in a highly predictable
manner and with negligible time delay. We refer to the excellent textbook of Åström
& Murray [222] for the applicable control design.

The stabilization of steady solutions to the equations for laminar or transitional
flows requires more refined methods.Navier-Stokes equations A sufficiently de-
tailed discretized of the Navier-Stokes equation results in a system with a high-
dimensional state, making it computationally expensive to design and implement
controllers. In addition, time-scales may be very small in real-world fluid applica-
tions, such as flow over a wing or in a combustor, making controllers very sensitive
to time delays; these time-delays may be due to sensor and actuator hardware or the
computational overhead of enacting a control law. Sensor and actuator placement is
also a challenge in high-dimensional fluid systems, with competing goals of decreas-
ing time delays and increasing downstream prediction. Finally, many fluid systems
are characterized by strongly non-normal linearized dynamics, meaning that the lin-
earized Navier-Stokes equations have nearly parallel eigenvectors resulting in large
transient growth of these modes in response to excitation [67, 262].

Despite inherent nonlinearity, stabilizing a steady state brings the system closer
to the equilibrium solution where linearization is increasingly valid. Thus, the fluid
dynamics literature contains a rich set of success stories based on linear control
methods. Examples include the stabilization of the cylinder wake [226, 115, 218,
65], of the cavity flow [231], of the boundary layer [172, 11], and of the channel
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flow [29], just to name a few [43]. The linear quadratic regulator (LQR) and lin-
ear quadratic Gaussian (LQG) are among the most widely used methods for control
based on computational fluid mechanics. The model-based control of experimen-
tal plants requires reduced-order models for computationally tractable on-line deci-
sions. For details, we refer to excellent reviews on the applications of linear control
theory in fluids mechanics [231, 161, 13, 250]. The associated reduced-order mod-
eling efforts are summarized in these reviews and elaborated in [197, 138].

Optimization of turbulent flows tends to be much more complex. In addition to
the challenges outlined above, the system is strongly nonlinear and is sufficiently
far from a fixed point or limit cycle that linearization is not typically useful. The
nonlinearity manifests in frequency crosstalk, where actuation at a given frequency
may excite or suppress entirely different frequencies. Fully turbulent dynamics are
typically chaotic and evolve on a high-dimensional attractor, with the dimension
of the attractor generally increasing with the turbulence intensity. These are math-
ematical issues in turbulence control, but there are also more practical engineering
issues. These include the cost of implementing a controller (i.e., actuator and sensor
hardware, modifying existing designs, etc.), computational requirements to meet ex-
ceedingly short time scales imposed by fast dynamics and small length scales, and
achieving the required control authority to meaningfully modify the flow.

As a motivating example, let us assume we want to minimize the aerodynamic
drag of a car with, say, 32 blowing actuators, distributed over all four trailing edges
and the same number of pressure sensors distributed over the car. A control logic
for driving the actuators based on the sensor readings shall help to minimize the ef-
fective propolsion power required to overcome drag. This highlights the significant
challenges associated with in-time control:

• High-dimensional state;
• Strong nonlinearity;
• Time delays.

A direct numerical simulation of a suitably discretized Navier-Stokes equation has
not been performed for wind-tunnel conditions. Even a simplifying large eddy sim-
ulation requires at minimum tens of millions of grid points and still has a narrow
low-frequency bandwidth for actuation. Secondly, the turbulent flow does not re-
spond linearly to the actuation, so that there is no superposition principle for actua-
tion effects. The changes to the flow caused by two actuators acting simultaneously
is not given by the sum of the responses of the two actuators acting alone. Moreover,
actuating at twice the actuation amplitude does not necessarily lead to twice the out-
put. The trend may even be reversed. Thirdly, the effect of actuation is generally not
measured immediately. It may take hundreds or thousands of characteristic time
scales to arrive at the converged actuated state [21, 205]. We refer to our review
article on closed-loop turbulence control [43] for in-depth coverage of employed
methods.
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1.4 Feedback turbulence control is a grand challenge problem

A high-dimensionsional state space and nonlinear dynamics do not necessarily im-
ply unpredictable features. One liter of an ideal gas, for instance, contains O(1024)
molecules that move and collide according to Newton’s laws. Elastic collisions sig-
nify strongly nonlinear dynamics, and indeed, the numerical simulation of New-
ton’s laws at macro-scale based on molecular dynamics will remain intractable for
decades to come. Yet, statistical averages are well described as an analytically com-
putable maximum entropy state. This is the statistical foundation of classical ther-
modynamics. In contrast, the search for similar closures of turbulence has eluded
any comparable success [198]. One reason is the ubiqituous Kolmogorov turbulence
cascade. This cascade connects large-scale energy carrying anisotropic coherent
structures with nearly isotropic small-scale dissipative structures over many orders
of magnitudes in scale [106]. The multi-scale physics of turbulence has eluded all
mathematical simplifications. Feynman has concluded that ‘Turbulence is the most
important unsolved problem of classical physics.’ In other words: a grand challenge
problem.

Turbulence control can be considered an even harder problem compared to find-
ing statistical estimates of the unforced state. The control problem seeks to design a
small O(e) actuation that brings about a large change in the flow. Many approaches
would require a particularly accurate control-oriented closure. The necessary control
mechanism might be pictured as a Maxwellian demon who changes the statistical
properties of the system by clever actions. Control theory methods often focus on
stabilization of equilibria or trajectories. Turbulence, however, is too far from any
fixed point or meaningful trajectory for the applicability of linearized methods. In
the words of Andrzej Banaszuk (1999):

‘The control theory of turbulence still needs to be invented.’

1.5 Nature teaches us the control design

In the previous section, a generic control strategy for turbulence has been described
as a grand challenge problem. Yet, an eagle can land on a rock performing impres-
sive flight maneuvers without a PhD in fluid mechanics or control theory. Nature
has found another way of control design: learning by trial and error.

It is next to impossible to predict the effect of a control policy in a system such
as turbulence where we scarcely understand the unforced dynamics. However, it
may be comparatively easy to test the effectiveness of a control policy in an exper-
iment. It is then possible to evolve the control policy by systematic testing, exploit-
ing good control policies and exploring alternative ones. Following these principles,
Rechenberg [223] and Schwefel [242] have pioneered evolutionary strategies in de-
sign problems of fluid mechanics more than 50 years ago at TU Berlin, Germany.
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In the last 5 decades, biologically inspired optimization methods have become
increasingly powerful. Fleming & Purshouse [103] summarize:

‘The evolutionary computing (EC) field has its origins in four landmark evolutionary ap-
proaches: evolutionary programming (EP) (Fogel, Owens, & Walsh, 1966), evolution strate-
gies (ES) (Schwefel, 1965; Rechenberg, 1973), genetic algorithms (GA) (Holland, 1975),
and genetic programming (GP) (Koza, 1992).’

EP, GA and GP can be considered regression techniques to find input–output
maps that minimize a cost function. Control design can also be considered a regres-
sion task: find the mapping from sensor signals to actuation commands which op-
timizes the goal function. Not surprisingly, evolutionary computing is increasingly
used for complex control tasks. For example, EP is used for programming robot mis-
sions [272]. GA are used to find optimal parameters of linear control laws [90, 23].
And since almost two decades, GP has been employed to optimize nonlinear con-
trol laws [91]. Arguably GP is one of the most powerful regression techniques as
it leads to analytical control laws of almost arbitrary form. All evolutionary meth-
ods are part of the rapidly evolving field of machine learning. There are many other
machine learning techniques to discover input–output maps, such as decision trees,
support vector machines (SVM), and neural networks, to name only a few [279]. In
fact, the first example of feedback turbulence control with machine learning meth-
ods has employed a neural network [171]. In the remainder of this book, we refer to
machine learning control as a strategy using any of the aforementioned data-driven
regression techniques to discover effective control laws.

1.6 Outline of the book

The outline of the book is as follows. Chapter 2 describes the method of machine
learning control (MLC) in detail. In Chapter 3, linear control theory is presented to
build intuition and describe the most common control framework. This theoretical
foundation is not required to understand or implement MLC, but it does motivate
the role of feedback and highlight the importance of dynamic estimation. In Chap-
ter 4, MLC is benchmarked against known optimal control design of linear systems
without and with noise. We show that MLC is capable of reproducing the optimal
linear control but outperforms these methods even for weak nonlinearities. In Chap-
ter 5 we illustrate MLC for a low-dimensional system with frequency crosstalk. A
large class of fluid flows are described by such a system. We show that the lin-
earized system is uncontrollable while MLC discovers the enabling nonlinearity for
stabilization. In Chapter 6, we highlight promising results from MLC applied in
real-world feedback turbulence control experiments. Chapter 7 provides a summary
of best practices, tactics and strategies for implementing MLC in practice. Chapter 8
presents concluding remarks with an outlook of future developments of MLC.
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1.7 Exercises

Exercise 1–1: Name two examples of feedback control systems in everyday life.
Define the inputs and outputs of the system, the underlying system state and
dynamics, and describe the objective function. Describe the uncertainties in the
system and the types of noise and disturbances that are likely experienced.

Exercise 1–2: Consider the following plant model:

s = b.

(a) Design an open-loop controller b = K(wr) to track a reference value wr.
(b) Now, imagine that the plant model is actually s = 2b. How much error is there

in the open-loop controller from above if we command a value wr = 10?
(c) Instead of open-loop control, implement the following closed-loop controller:

b = 10(wr � s). What is the error in the closed-loop system for the same com-
mand wr = 10?

Exercise 1–3: Choose a major industry, such as transportation, energy, health-
care, etc., and describe an opportunity that could be enabled by closed-loop con-
trol of a turbulent fluid. Estimate the rough order of magnitude impact this would
have in terms of efficiency, cost, pollution, lives saved, etc. Now, hypothesize
why these innovations are not commonplace in these industries?


