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Chapter 1

Singular Value Decomposition (SVD) and
Principal Components Analysis (PCA)

The singular value decomposition (SVD) is among the most important matrix factoriza-
tions of the computational era, providing a foundation for nearly all of the data meth-
ods discussed in this book. In particular, the SVD provides a numerically stable matrix
decomposition that can be used for a variety of purposes. We will use the SVD to ob-
tain low-rank approximations to matrices and to perform pseudo-inverses of non-square
matrices to find the least-squares and minimum norm solutions of a matrix system of
equations Ax = b. Another important use of the SVD is in the principal components
analysis (PCA), whereby a large, high-dimensional data set is decomposed into its most
statistically descriptive factors. SVD/PCA has been applied to a tremendous variety of
problems in science and engineering, making it the most generally useful computational
tool after the fast Fourier transform (FFT).
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1.1 Overview (Big Picture)

Here we introduce the singular value decomposition (SVD) and give an overview of some
of the intuitive motivating examples. Detailed mathematical properties are discussed in
the following sections.

1.1.1 Intuition and applications

In this chapter, we will develop an intuition for how to apply the SVD by demonstrating
its use on a number of motivating examples. These methods will provide a foundation
for many other techniques developed in this book, including classification methods in
Chapter 2, the proper orthogonal decomposition (POD) in Chapter 3, and the dynamic
mode decomposition (DMD) in Chapter 4.

High-dimensionality is a common challenge in processing data from large complex
systems. These systems may involve large measured data sets including audio, image,
or video data. The data may also be generated from a complex physical system, such
as neural recordings from the mammalian cortex, or fluid velocity measurements from
a simulation or experiment. In any case, it is observed that most data from naturally
occurring systems exhibits dominant patterns of activity, which may be characterized by
a low-dimensional attractor or manifold [26, 25].

As an example, consider images, which typically contain a large number of measure-
ments (pixels), and are therefore elements of a high-dimensional vector space. However,
most images are highly compressible, meaning that the relevant information may be rep-
resented in a much lower dimensional subspace. The compressibility of images will be
discussed in depth throughout this book. Complex fluid systems, such as the turbulent
wake behind a vehicle or the Earth’s atmosphere also provide compelling examples the
low-dimensional structure underlying a high-dimensional state-space. Although high-
tidelity fluid simulations typically require at least millions or billions of degrees of free-
dom, there are often dominant coherent structures in the flow, such as periodic vortex
shedding behind vehicles or hurricanes in the weather.

The SVD provides a systematic way to determine the dominant patterns underlying a
high-dimensional system, providing a low-rank approximation to high-dimensional data.
This technique is data-driven in that patterns are discovered purely from the data, without
the addition of any expert knowledge or intuition. The SVD may be thought of as a
numerically stable computation that provides a hierarchical representation of the data in
terms of a new coordinate system defined by dominant correlations within the data.

The SVD has many powerful applications beyond dimensionality reduction of high-
dimensional data. It will be useful in computing the pseudo-inverse of non-square matri-
ces, providing solutions to underdetermined or overdetermined matrix equations that are
either minimum norm solutions, or solutions that minimize the sum-squared error. We
will also use the SVD in a principled approach to de-noising data sets. The SVD is also
important to characterize the input and output geometry of a linear map between vector
spaces. These applications will all be explored in this chapter, providing an intuition for
matrices and high-dimensional data.

Copyright © 2015 Brunton, Kutz, & Proctor. All Rights Reserved.



1.1. OVERVIEW (BIG PICTURE) 7

1.1.2 Definition

Generally, we are interested in analyzing a large data set X:

|
X=1[x1 X3 - Xnl|. (1.1a)
|

The columns x;, € C" may be measurements from simulations or experiments. For exam-
ple, columns may represent images that have been reshaped into column vectors with as
many elements as pixels in the image. The column vectors may also represent the state
of a physical system that is evolving in time, such as the fluid velocity at each point in a
discretized simulation or at each measurement location in a wind-tunnel experiment.

The index k is a label indicating the k™ distinct set of measurements; for many of the
examples in this book X will consist of a time-series of data, and x;, = x(kAt). Often
the state-dimension n is very large, on the order of millions or billions in the case of fluid
systems. The columns are often called snapshots, and m is the number of snapshots in X.
For many systems n >> m, resulting in a tall-skinny matrix, as opposed to a short-fat matrix
when n < m.

The SVD is a unique matrix decomposition that exists for every complex valued matrix
X e Cmm

X = U V* (1.2a)

where U € C™" and V € C™*™ are unitary matrices' and ¥ € C"*™ is a matrix with non-
negative entries on the diagonal and zeros off the diagonal. Here * denotes the complex
conjugate transpose?. As we will discover throughout this chapter, the condition that U
and V are unitary is extremely powerful.

The matrix 3 has at most m non-zero elements on the diagonal, and may therefore be

~

written as X = {E

O} . Therefore, it is possible to exactly represent X using the reduced SVD:

X =USV* = [0 U] m V' = USV*. (1.3)

The full and reduced SVD are shown in Fig. 1.1. Here U™ is complementary to U.

The columns of U are called left singular vectors of X and the columns of V are right
singular vectors. The diagonal elements of 33 € C™*" are called singular values and the are
ordered from largest to smallest.

In Matlab, the computing the SVD is straightforward:

H >>[U,S,V] = svd(X); % Singular Value Decomposition
For non-square matrices X, the reduced SVD may be computed more efficiently using;:

H>>[Uhat,Shat,V] = svd (X, ’econ’); % economy sized SVD

A square matrix U is unitary if UU* = U*U = L.
2For real-valued matrices, this is the same as the regular transpose X7

Copyright © 2015 Brunton, Kutz, & Proctor. All Rights Reserved.
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Figure 1.1: Schematic of matrices involved in the full SVD and the reduced SVD.

1.1.3 Historical Perspective

The SVD has a long and rich history, ranging from early work developing the theoret-
ical foundations to modern work on computational stability and efficiency. There is an
excellent historical review by Stewart [50], which provides context and many important
details. The review focuses on the early theoretical work of Beltrami and Jordan (1873),
Sylvester (1889), Schmidt (1907), and Weyl (1912). It also discusses more recent work, in-
cluding the seminar computational work of Golub and collaborators [20, 19]. In addition,
there are many excellent chapters on the SVD in modern books [52, 2, 33].

1.1.4 Uses in This Book and Assumptions of the Reader

The SVD is the basis for many related techniques in dimensionality reduction used to ob-
tain reduced order models (ROMs). These methods indlude principal components analy-
sis (PCA) in statistics [40, 27, 28], the Karhunen-Loeve transform (KLT) [30, 36], empirical
orthogonal functions (EOFs) in climate [37], the proper orthogonal decomposition (POD)
in fluid dynamics [25], and canonical correlation analysis (CCA) [10]. Although devel-
oped independently in a range of diverse fields, many of these methods only differ in

Copyright © 2015 Brunton, Kutz, & Proctor. All Rights Reserved.
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how the data is collected and pre-processed. There is an excellent discussion about the
relationship between the SVD, the KLT and PCA [17].

The SVD is also widely used in system identification and control theory to obtain
reduced order models that are balanced in the sense that states are hierarchically ordered
in terms of their ability to be observed by measurements and controlled by actuation [39].

For this chapter, we assume that the reader is familiar with linear algebra with some
experience in computation and numerics. For review, there are number of excellent books
on numerical linear algebra, with discussions on the SVD [52, 2, 33].

Copyright © 2015 Brunton, Kutz, & Proctor. All Rights Reserved.
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1.2 Matrix Approximation

Perhaps the most useful and defining property of the SVD is that it provides an optimal
low-rank approximation to a matrix X. In fact, the SVD provides a hierarchy of low-
rank approximations, since a rank-r approximation is obtained by keeping the leading r
singular values and vectors, and discarding the rest.

Schmidt (of Gram-Schmidt) generalized the SVD to function spaces and developed an
approximation theorem, establishing truncated SVD as the optimal low rank approxima-
tion of the underlying matrix X [47]. Schmidt’s approximation theorem was rediscovered
by Eckart and Young [13], and is sometimes referred to as the Eckart-Young theorem.

Theorem 1 (Eckart-Young [13]) The optimal rank-r approximation to X, in an Ly sense, is
given by the rank-r SVD truncation X:

argmin || X — X||, = USV*, (1.4)
X

Here, U and V denote the leading r columns of U and V, and X contains the leading r x r
sub-block of 3.

Here, we es:cablish the notation theit a tryr}cgted SVD basis (and the resulting approxi-
mated matrix X)) will be denoted by X = UXV*. Because X is diagonal, the rank-r SVD
approximation is given by the sum of r distinct rank-1 matrices:

T
X = E ORULVy, = 01U V] + 09UaV5 + -+ - + 0, U, V. (1.5)
k=1

This is the so-called dyadic summation. For a given rank r, there is no better approxima-
tion for X, in the L, sense, than the truncated SVD approximation X.

This is an extremely important property of the SVD, and we will return to it many
times. There are numerous examples of data sets that contain high-dimensional mea-
surements, resulting in a large data matrix X. However, there are often dominant low-
dimensional patterns in the data, and the truncated SVD basis X provides a coordinate
transformation from the high-dimensional measurement space into a low-dimensional
pattern space. This has the benefit of reducing the size and dimension of large data sets,
yielding a tractable basis for visualization and analysis. Finally, many systems considered
in this text are dynamic, and the SVD basis provides a hierarchy of modes that characterize
the observed attractor, on which we may project a low-dimensional dynamical system.

1.2.1 Truncation

The truncated SVD is illustrated in Fig. 1.2, with U, and V denoting the truncated

matrices. If X does not have full row rank, then some of the singular values in 3 may be
zero, and the truncated SVD may still be exact. However, in general, for truncation values
r that are smaller than the row rank of X, the truncated SVD only approximates X:

X ~ UTV*. (1.6)

Copyright © 2015 Brunton, Kutz, & Proctor. All Rights Reserved.
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There are numerous choices for the truncation rank r, and they are discussed in Sec. 1.7.

If we choose the truncation value to be the rankpf X, so that f)rem is zero and ¥ contains
non-zero singular values, then we may refer to U, X,V as Uy, 3, V;.

Full SVD
s > *
N N
~ N ' N :Erem rem
X = U iUrem; U™ | |t
0
L . L ' : M L .
U
] Truncated SVD
\ ~ ~
¥ V*
AN
~| U

Figure 1.2: Schematic of truncated SVD. The subscript ‘e’ denotes the remainder of U, 3
or V after truncation.

1.2.2 Example: Image Compression

We demonstrate the idea of matrix approximation with a simple example: image com-
pression. A recurring theme throughout this book is that large data sets often contain
underlying patterns that facilitate low-rank representations. Natural images present a
simple and intuitive example of this inherent compressibility. A grayscale image may be
thought of as a real-valued matrix X € R"*™, where n and m are the number of pixels in
the vertical and horizontal direction, respectively®. Depending on the basis of represen-
tation (pixel-space, Fourier frequency domain, SVD transform coordinates), images may
have very compact approximations.

Consider the image of Mordecai the snow dog in Fig. 1.3. This image has 2000 x 1500
pixels. It is possible to take the SVD of this image and plot the diagonal singular values,
as in Fig. 1.4. Figure 1.3 shows the approximate matrix X for various truncation values
r. By r = 100, the reconstructed image is quite accurate, and the singular values account

31t is not uncommon for image size to be specified as horizontal by vertical, i.e. X7 € R™*", although
we stick with vertical by horizontal to be consistent with generic matrix notation.

Copyright © 2015 Brunton, Kutz, & Proctor. All Rights Reserved.
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for almost 80% of the image variance. The SVD truncation results in a compression of
the original image, since only the first 100 columns of U and V, along with the first 100
diagonal elements of 33, must be stored.

First, we load the image of the dog and compute the SVD, as in Code 1.1. Next, we
compute the approximate matrix using the truncated SVD for various ranks (r = 5,20,
and 100) in Code 1.2. Finally, we plot the singular values and cumulative energy in Fig. 1.4
using Code 1.3.

r =5, 0.57% storage

~ Original

L

r =100, 11.67% storage

QL

Figure 1.3: Image compression of Mordecai the snow dog, truncating the SVD at various
ranks 7. Original image resolution is 2000 x 1500. Generated by Codes 1.1 & 1.2.

Copyright © 2015 Brunton, Kutz, & Proctor. All Rights Reserved.
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Figure 1.4: Singular values o, (a) and cumulative energy contained in the first » modes
(b). Generated by Code 1.3.

Code 1.1: Load image and take the SVD.

A=imread(’../DATA/dog.jpg’);
X=double (rgb2gray(A)); % convert RBG to gray, 256 bit to double.
nx = size(X,1l); ny = size(X,2);

[U,S,V] = svd(X);

figure, subplot(2,2,1)
imagesc (X), axis off, colormap gray
title('Original’)

Code 1.2: Approximate image using truncated SVD for r = 5, 20 and 100. (Fig. 1.3)

plotind = 2;
for r=[5 20 1001]; % truncation value
Xapprox = U(:,1l:xr)*xS(l:r,l:x)*xV(:,1:x)"; % approximate image
subplot (2, 2,plotind), plotind = plotind + 1;
imagesc (Xapprox), axis off
title ([’ r=',num2str(r,’%d’),’, ’,num2str(100+r* (nx+ny)/ (nx*ny),’
%$2.2f"),"% storage’]);
end
set (gecf, 'Position’, [100 100 550 400])

Code 1.3: Plot the singular values and cumulative energy. (Fig. 1.4)

figure, subplot(l,2,1)

semilogy (diag(S),’k’, " LineWidth’,1.2), grid on
xlabel('r’)

ylabel (' Singular value, \sigma_r’)

x1im ([-50 15501])

Copyright © 2015 Brunton, Kutz, & Proctor. All Rights Reserved.
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subplot (1, 2,2)

plot (cumsum (diag (S)) /sum(diag(S)),’k’,’LineWidth’,1.2), grid on
xlabel(’'r’)

ylabel (' Cumulative Energy’)

x1im([-50 15501])

ylim ([0 1.17)

set (gecf, 'Position’, [100 100 550 240])

1.2.3 Aside on Compressibility and the Vastness of Image Space

It is important to note that the compressibility of images is related to the overwhelming
vastness of image space. For even a simple 20 x 20 pixel black and white image, there are
2100 distinct possible images, which is larger than the number of nucleons in the known
universe. The number of images is considerably more staggering for higher resolution
images with greater color depth.

In the space of one megapixel images (i.e., 1000 x 1000 pixels), there is an image of us
each being born, of me typing this sentence, and of you reading it. However vast the space
of these natural images, they occupy a tiny, minuscule fraction of the total image space.
The majority of the images in image space represent random noise, resembling television
static. For simplicity, consider grayscale images, and imagine drawing a random number
for the gray value of each of the pixels. With exceedingly high probability, the resulting
image will look like noise, with no apparent significance. You could draw these random
images for an entire lifetime and never find an image of a mountain, or a person, or
anything physically recognizable.

In other words, natural images are extremely rare in the vastness of image space. Be-
cause SO many images are unstructured or random, most of the dimensions used to en-
code images are only necessary for these random images. These dimensions would be
redundant if all we cared about was encoding natural images. An important implication
is that the images we care about (i.e., natural images) are highly compressible, as long as
we find a suitable transformed based where the redundant dimensions are easily identi-
tied. These ideas of compressibility will be explore in much greater detail in the context
of Fourier Transforms in Chapter ?? and Compressive Sensing in Chapter ??2.

Copyright © 2015 Brunton, Kutz, & Proctor. All Rights Reserved.
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1.3 Mathematical Properties and Manipulations

Here we describe important mathematical properties of the SVD including geometric in-
terpretations of the unitary matrices U and V as well as a discussion of the SVD in terms
of dominant correlations in the data X. The relationship between the SVD and correla-
tions in the data will be explored more in Sec. 1.5 on Principal Components Analysis.

1.3.1 Interpretation as Dominant Correlations

The SVD is closely related to an eigenvalue problem involving the correlation matrices
XX*and X*X, shown in Fig. 1.5. If we plug in Eq. 1.3 to the row-wise correlation matrix
XX* and the column-wise correlation matrix X*X, we find:

B 2

XX* = U[ﬂ V'VI[S 0]U =T 5(3) g U (1.7a)
. s .2

XX = V[ o]UU MV*:VZ v (1.7b)

Therefore, the matrices U, 3, and V are solutions to the following eigenvalue problems:

32 o
0 0

XX'U = U , (1.8a)

~ 2

X*XV = V3 (1.8b)

This provides an intuitive interpretation of the SVD, where the columns of U are eigen-
vectors of the correlation matrix XX* and columns of V are eigenvectors of X*X. There-
fore, columns of U are ordered in terms of the vectors that most describe correlation
among columns of X, and likewise with V and rows of X.

XX* X*X

Figure 1.5: Correlation matrices XX* and X*X for a matrix X obtained from an image of
Mordecai the snow dog. Note that both correlation matrices are symmetric.

Copyright © 2015 Brunton, Kutz, & Proctor. All Rights Reserved.



