Exercise 1–1: Solve the following linear system of ODEs:

$$\frac{d}{dt}\mathbf{x} = \mathbf{A}\mathbf{x}, \quad \text{for} \quad \mathbf{A} = \begin{bmatrix} -1 & 2\\ 2 & -1 \end{bmatrix}$$

Please compute this by hand for a generic initial condition $\mathbf{x}(0) = \mathbf{x}_0$. Hint: you will want to compute the matrix exponential $e^{\mathbf{A}t}$. You may use MATLAB to check your work.

Exercise 1-2 Express the following in the form a + bi (for real a and b) and also in the form $Re^{i\theta}$ (for real R and θ):

- (a) $\frac{1}{3+2i}$
- (b) $\left(\frac{1}{2} \frac{\sqrt{3}}{2}i\right)^3$
- (c) $(-i)^2$, $(-i)^3$, $(-i)^4$, $(-i)^5$, ...

Exercise 1-3 Find all solutions of

(a) $e^z = 1$ (b) $e^z = -i$ (c) $e^z = -1 + i$

Exercise 1-4 Find all solutions of

- (a) $z^3 = i$
- (b) $z^3 = -i$
- (c) $z^5 = 1$
- (d) $z^2 = -1 i$

Exercise 1-6 Find all analytic functions f = u + iv with $u(x, y) = x^2 - y^2$. Simplify the expression f(z) as much as possible.