Exercise 1-1 Express the following in the form a + bi (for real a and b) and also in the form $Re^{i\theta}$ (for real R and θ):

- (a) $\frac{1}{2-4i}$
- (b) $\left(\frac{\sqrt{3}}{2} \frac{\sqrt{1}}{2}i\right)^4$
- (c) $(-i)^2, (-i)^3, (-i)^4, (-i)^5, \dots$

Exercise 1-2 Find all solutions of

(a) $e^z = -1$ (b) $e^z = -i$

(c) $e^z = 1 + i$

Exercise 1-3 Find all solutions of

(a)
$$z^2 = -i$$

(b) $z^3 = -i$
(c) $z^6 = 1$

(d) $z^3 = -1 - i$

Exercise 1-4 Find all analytic functions f = u + iv with u(x, y) = 2xy. Simplify the expression f(z) as much as possible.

Exercise 1-5 Evaluate the following integral

$$\int_C f(z) dz$$

where f(z) = 1/z and C is parameterized by $z(\theta) = \sin(\theta) + i\cos(\theta)$ for $0 \le \theta \le 2\pi$.

ME565 - Winter 2018 Homework 1

Exercise 1-6 Verify the following functions f(z) are analytic for all z = x + iy. Use the Cauchy-Riemann conditions (Hint: find a way to express these functions as f(z) = u(x, y) + iv(x, y)).

- (a) $f(z) = e^{z}$
- (b) $f(z) = \cos^2(z)$

Exercise 1-7 In Matlab, write a script to evaluate the following integral:

$$\int_C \frac{f(z)}{z} dz$$

for the curve C parameterized by $z = Re^{i\theta}$ for R = 1 and $0 \le \theta \le 2\pi$. (Note that $dz = iRe^{i\theta}d\theta$).

Verify the Cauchy integral formula $\left(i.e. \int_C \frac{f(z)dz}{z-a} = 2\pi i f(z)\right)$ for a = 0 with

- (a) $f(z) = e^{z}$
- (b) $f(z) = \cos^2(z)$
- (c) Now, shift the curve C so that it is still a circle with radius R = 1, but now centered at -2 + 2i. Does the integral in part (a) change?
- (d) Are your answers consistent with Exercise 1-6?