Exercise 1–1: Compute the derivative of the following functions

- (a) $f(x) = \cos(x^3)$
- (b) $f(x) = 2^x$
- (c) $f(x) = e^{x^2} \sin(x)$
- (d) $f(x) = \tan(x^2)$
- (e) Compute the derivative of $f(x, y) = \cos(x^2) \sin(y^2)$ with respect to t, assuming that x(t) and y(t) vary with time. You can write the solution in terms of dx/dt and dy/dt.

Exercise 1–2: Consider a vat that is mixing salt water. The vat initially contains a 100 liter mixture with 5 kg of salt. At time t = 0 a mixture containing 0.1 kg/liter is added to the vat at a rate of 0.1 liters per second. The solution is well-mixed in the tank, and liquid is drained at a rate of 0.1 liters per second.

- (a) Let x(t) denote the mass of salt in the vat as a function of time. Write down a differential equation for x(t) and its solution.
- (b) Plot the concentration of salt in the vat as a function of time.
- (c) How long until there are 7 kg of salt in the vat?
- (d) How much salt is in the vat after 30 seconds?
- (e) How much salt is in the vat after a very long time?

Exercise 1–3: Compute the Taylor series expansion by hand for f(x). For each function, plot f(x) and the three-term expansion (i.e., the first three nonzero terms) from x = -5 to x = 5.

- (a) $f(x) = x \cos(x)$.
- (b) $f(x) = \cos(x)/x^2$.
- (c) $f(x) = e^{x^2}$.
- (d) $f(x) = \frac{1}{1-x}$; when is this series valid?
- (e) $f(x) = \sin(1/x)$; when is this series valid?

Exercise 1–4: Write down the solution to the following differential equation (by hand):

 $\ddot{x} - \lambda x = 0,$

for an arbitrary initial position x(0) and zero velocity $\dot{x}(0)$. What does the solution look like for $\lambda > 0$? How about for $\lambda < 0$? Please sketch solutions.

ME564 - Autumn 2018 Homework 1

Exercise 1–5: Please solve the following differential equation (by hand) and describe the long-time behavior of the system:

- (a) $\ddot{x} + 4\dot{x} + 3x = 0$, with initial conditions x(0) = 0 and $\dot{x}(0) = 4$.
- (b) $\ddot{x} 4x = 0$, with initial conditions x(0) = 4 and $\dot{x}(0) = -4$.

Exercise 1–6: Write down the second-order differential equation $\ddot{x} + K_1\dot{x} + K_2x = 0$ that has eigenvalues $\lambda = C$ and $\lambda = D$. If the solution is $x(t) = Ae^{Ct} + Be^{Dt}$, what are the initial conditions?

Exercise 1–7: Please compute an analytic expression, by hand, for the real and imaginary parts of the following complex functions. Please also plot these in Matlab for t=0:.01:10.

- (a) $f(t) = e^{-t}$,
- (b) $f(t) = e^t$,
- (c) $f(t) = e^{2\pi i t}$,
- (d) $f(t) = e^{i(2\pi t + \pi/2)}$,
- (e) $f(t) = e^{t(-1+i)}$,
- (f) $f(t) = e^{t(1+i)}$.