
 1

An Analysis of Open Source Business Models

Sandeep Krishnamurthy
Associate Professor of E-Commerce and Marketing

Business Administration Program
University of Washington, Bothell

18115 Campus Way NE, Room UW1-233
Bothell, WA 98011-8246

Tel: (425) 352-5229
Fax: (425) 352-5277

E-Mail: sandeep@u.washington.edu
Web URL: http://faculty.washington.edu/sandeep

February 2003

 2

Introduction

Open-source software products provide access to the source code [or basic
instructions] in addition to executable programs, and allow for this source code to be
modified and redistributed. This is a rarity in an industry where software makers
zealously guard the source code as intellectual property.

In making the source code freely available, a large number of developers are able to
work on the product. The result is a community of developers spread around the
world working to better a product. This approach has led to the popular operating
system, LINUX, which has emerged as a credible threat to Microsoft’s products-
especially on the server side. Other famous open-source products include Apache [a
program used to run websites], OpenOffice [an alternative to Microsoft Office] and
Sendmail [the program that facilitates the delivery of approximately 80% of the
world’s e-mail].

Open-source is typically viewed as a cooperative approach to product development
and hence, more of a technology model. It is typically not viewed as a business
approach. However, increasingly we find that entire companies are being formed
around the open source concept. In a short period of time, these companies have
amassed considerable revenues [although it is fair to say that most of these firms are
not yet profitable].

Consider two companies in particular- Red Hat and Caledera/SCO. In its last full year
of operations [12 months ending February 28, 2002], Red Hat’s revenues were almost
$79 million. In its last full year of operations [12 months ending October 31, 2002]
Caldera/SCO’s revenues were about $64 million. The growth figures are even more
impressive- Caldera/SCO grew its revenue from $1 million in 1998 to $64 million in
2002 and Red Hat grew from $42 million in 2000 to $79 million in 2002.

All software companies exist to make maximum profits. Therefore, it is common for
these corporations to seek out new ways of generating revenues and reducing costs.
Increasingly, companies are using open-source as a business strategy to achieve both
these objectives.

On the cost reduction side, software producers are now able to incorporate the source
code from an open-source product into an existing code base. This allows them to
reduce the cost of production by reusing existing code. For example, Microsoft, the
world's largest software maker, has used source code from a leading open-source
operating system [Berkeley System Distribution or BSD] in its Windows 2000 and XP
products and has acknowledged this on a public web sitei. It is becoming more
common for companies to forge strategic alliances with communities of open-source
software developers. The community develops the product and thus, reduces the cost
burden on the company. A prime example of this is the strategic alliance between
Ximian and Microsoft in building a connection between the .Net initiative and LINUX.

On the revenue side, some open-source products are now in such great demand that
there is a strong need for support services for enterprise customers. These support
services includes installation, training/certification and ongoing technical assistance.

 3

Service contracts for these products have become a strong revenue source for
companies such as Red Hat Linux.

From the consumer perspective, open source products are attractive due to their
reduced cost and comparable performance. Governments, for example, are
increasingly motivated to adopt open-source products to reduce the expenditure of
scarce taxpayer money. Some governments [e.g. Argentina] have experimented with
moving entirely to an open source model.

Even for individual consumers, open source products are becoming accessible. Wal-
Mart has started to carry PCs that run LINUX. Many free applications are now available
for PCs. For example, OpenOffice and Koffice are free, open-source products that
directly compete with Microsoft’s famous Office Suite.

In this Chapter, my focus is on explicating the different business models that we see in
the Open Source arena.

Producers of Open-Source Products - The Community

The producers of open-source products are typically a diverse group of developers
with a shared passion for a product. They do not seek a profit and no distinction is
made between corporate and individual users.

Therefore, they make (a) the product and (b) the source code available for free to any
interested user. There is usually support available through electronic mailing lists and
USENET groups. Members participate to learn more about the product and believe
that others will help them if they have a need [Lakhani and Von Hippel 2003].
Surprisingly, the customer support provided by communities surrounding products such
as Apache and Linux have won awards for excellence.

Figure 1

Producers of Open-Source Products

Legend: Product
 Source Code
 Service

The community of producers is frequently portrayed as being inimical
profits. However, I will submit that the community is simply indiffer
profits as well as profits that any corporation can make from its produ
source developer communities are frequently interested in adoption o
the intended target audience. Importantly, they want any interested
have access to the entire code so that the person can tinker with it to
improvements.

Producers of Open Source Software
"Community"

WORLD

Free
 Free
4

 to corporate
ent to its own
cts. Open
f the product by
 developer to
 make

 5

The community does not distinguish between a corporate or individual user. There is
no sense of direct competition with companies. A company that views a community as
its competitor is welcome to look at its entire source code whereas the opposite is
never true. Communities do not distinguish between users across countries. When the
product is available for free, it is amazingly easy to make a product global. There is
no issue of taxation or piracy.

The community controls what happens with the product by making one crucial choice -
the license. The original developers control the copyright for the intellectual property
at all times. However, there is considerable variation between licenses in how derived
works may be distributed.

There are a number of licenses that communities can choose from. However, they can
be broadly classified as the GNU General Public License [GPL] and everything else. The
GPL is the most famous license and products such as LINUX are distributed using it.
The key feature of the GPL is that it restricts the terms of distribution of derived
works. If a company incorporates GPLed source code in its products, it must make the
source code for any product it sells in the marketplace available to any interested
party under the terms of the GPL. This frightens corporations interested in selling
open-source products. However, it is important to note that there are a whole host of
other licenses that do not have this stipulation.

In my view, the derived works clause is so powerful that it affects how business
models are constructed. The discussion about business models is therefore broken
down into the GPL and the non-GPL model. Generally speaking, the use of GPL
reduces the profit potential of companies.

It is very important to note that the community does not set a price on a software
product. Even in the case when the product is available for free, anybody can
incorporate the product and sell it for a price. Even with a GPL license, this is
possible. Obviously, in the case of GPL, there is the attendant duty of making the
source code for derived works freely available.

 6

Business Models

In this section, I will discuss the main business models built around the open source
philosophy. My focus in this section is mainly on the software/service side. It is
certainly true that some companies will benefit from the sale of hardware that runs
open source products. Similarly, the market for embedded products can be great.
However, for the purposes of this chapter, I will focus on the software and service-
oriented business.

The Distributor

The distributor provides access to the source code and the software. In the case of
LINUX, leading distributors include Red Hat, Caldera and SUSE. Distributors make
money in these ways-

[1] Providing the product on CD rather as an online download - most people are not

comfortable with downloading the product from a web site. One survey of
113,794 Linux users indicated that 37.06% of respondents preferred to obtain
LINUX in CD formii. Therefore, there is money to be made selling the product
in CD form. According to one source [www.distrowatch.com], as of Feb 2003,
the highest price that was being charged for a Linux CD was $129 [Lindows] and
the lowest price for a CD was zero [e.g. Debian, Gentoo].

[2] Providing support services to enterprise customers - Enterprises are willing to

pay for accountability. When they have a problem, they do not want to send a
message to a mailing list and wait for support that may or may not be of the
highest quality. They have no interest in sifting through technical FAQs to find
the answer. Therefore, there is money to be made in services such as support
for installation, answering technical questions and training employees to use
the product.

[3] Upgrade Services - Enterprises can now enter into long-term agreements with

distributors to ensure that they get the latest upgrade. By acting as
application service providers, distributors can help their clients get the latest
version of the product seamlessly.

The business model of distributors is shown in Figure 2 below.
Figure 2

The Distributor Business Model

Legend: Product
 Source Code
 Service

The Software Producer [Non-GPL Model]

Software producers can benefit from the open source software comm
ways. First, they can incorporate the source code of an existing prod
code base and create a new product. Second, they can also take an e
source product and bundle it with existing products. I am using the te
product” in a very general sense here to include both these cases. Th
for the derived product does not need to be disclosed since the licens

As mentioned earlier, Microsoft has incorporated the code from BSD i
has not released the source code to any interested party. All Microso
to acknowledge that it benefited from BSD's code.

The software producer benefits from lowered cost of production and
margin in this case. There is a service revenue stream in place here a
business model itself is shown in Figure 3.

Producers of Open Source Software
"Community"

Distributor

Users [Corporations] Users [Individuals]

$$

ee

e e
Free
 Free
Free or
Free or
 $
Fre
Fre
Fre
 Fre
7

unity in two
uct in a larger
ntire open
rm “derived
e source code
e is not GPL.

n its products and
ft had to do was

hence, increased
s well. The

Figure 3

Software Producer-Non-GPL Model

Legend: Original Product, Derived Product,
 Source Code, Service

Interestingly, the source code for the original product is still available
from the community. In the cases where the derived product is a sma
the original product, this may be very useful to the end users. This is
profit software producer pays to get the source code for free.

Producers of Open Source Software
"Community"

Software Producer

Users [Corporations] Users [Individuals]

ee
Free
 Free
$
 $
 $
Fre
Fre
8

 to the end users
ll adaptation of
 the cost the for-

Software Producer- GPL Model

The business model for this case is shown in Figure 4.

Figure 4
Software Producer - GPL Model

Legend: Original Product, Derived Product,
 Source Code, Service

The key difference between Figures 3 and 4 is that in the latter, the s
producer is forced to make the source code for the derived product a
end user.

Let us compare the GPL and non-GPL models. The release of the sour
GPL model accelerates innovation due to more rapid feedback and inp
inclusion of users builds relationships and hence, loyalty. Also, if the
new version of the product for commercial use, the company gets to s
the source code. However, it does expose the inner workings of the c
product to the users.

Ultimately, the difference between the GPL and non-GPL models is in
the seller expects from the user. The GPL software producer expects
user who is eager to engage in a two-way conversation. The non-GPL
producer wants the recipient of the software to simply use it and do n

Producers of Open Source Software
"Community"

Software Producer

Users [Corporations] Users [Individuals]

ee

e e
Free
 Free
$
 $
 $
Fre
Fre
Fre
 Fre
9

oftware
vailable to the

ce code in the
ut. Greater

 user builds a
ee it along with
ompany's

 terms of what
 an empowered
 software
othing else.

Third Party Service Provider

The mission of third party service providers is simple. They don’t care where you got
the code or where you got the product. If the product you are using meets a broad set
of criteria, they will fully support it. They have one single revenue stream- service.
Their business model is shown in Figure 5.

Figure 5

Third Party Service Provider

Legend: Original Product
 Source Code
 Service

Why should users - especially corporations - use these providers? The
that paid service generally equates to higher quality service. Moreov
cases, third party service providers are local and hence, may be able
site assistance that is typically not possible in the case of free service
and user groups. It is important to keep in mind that these service pr
competing with the community to provide customer service.

I have presented two types of models here- one where the company s
service and one in which a company simply offers a service. It is inte
speculate if a company can survive on the sale of software alone.

Surviving on the sale of software alone is not easy to achieve. Remem
community is already making a free version of the product available.
must be able to add considerable value to the product to generate su

Producers of Open Source Software
"Community"

Third-Party Service Provider

Users [Corporations] Users [Individuals]

ee
Free
 Free
$
 $
Fre
Fre
10

 bottom line is
er, in many
to provide on-
 on mailing lists
oviders are

ells software and
resting to

ber that the
 The company
fficient margins.

 11

How can a company add value? First, it can choose a version of the product that is
stable and that is most suited to its users' needs. Second, it can create a suite of
products that are well integrated. These products may come from different sources-
some open-source, some commercial. The value addition is in creating one package
that works well together.

In general, we find that sale of software alone is insufficient to sustain. What is
needed is software and service. For many software sellers, they already have a
relationship with enterprise customers. They can benefit most by up-selling- i.e.,
selling more to existing corporate customers. Selling service then becomes a logical
conclusion.

Advantages and disadvantages of Open-Source

Let us now take a close look at the potential advantages and disadvantages of using
open-source technology to develop new products.

Advantages

1. Robustness

Traditionally, a company hires a finite number of developers to craft the
software. Next, a group of testers work with the product to make sure the
number of bugs is minimized. At that point, it is launched to the market. In
direct contrast, with the open-source method, a much larger number of
developers and testers can work on the product and test it under a variety of
conditions.

The open-source method could potentially lead to a more robust product. The
term robust here refers Neumann's sense- i.e., an intentionally inclusive term
embracing meaningful security, reliability, availability, and system
survivability, in the face of a wide and realistic range of potential adversities
(Neumann 1999). Open source leaders have long maintained that this
methodology leads to greater reliability (Ghosh 1998).

Several studies corroborate this. A study by Bloor Research clearly
demonstrated the superiority of Linux over Windows NT (Godden 2000). A study
conducted by Netcraft in August 2001 found that 92% of the top 50 often-
requested sites with the longest uptimes ran Apache [uptime.netcraft.com].

2. Flexibility to user

One of the problems with regular software programs is that unless you work
with all the software from one company, you do not have the flexibility of
“mixing and matching”. In the words of Linus Torvalds(Ghosh 1998),

In fact, one of the whole ideas with free software is not so much the price thing
and not having to pay cash for it, but the fact that with free software you aren't
tied to any one commercial vendor. You might use some commercial software on
top of Linux, but you aren't forced to do that or even to run the standard Linux

 12

kernel at all if you don't want to. You can mix the different software you have to
suit yourself.

3. Support from a community

Traditionally, if a user has a problem, he or she has to contact the technical
support division of the company. In many cases, the level of support is poor
(especially in the case of free service) or the user may have to pay a fee to get
high-quality service. Moreover, after a point, users are asked to pay for this
support. With open-source software, one has a highly motivated community
willing to answer questions (Lakhani and Von Hippel 2003). In the case of
Linux, Linux User Groups [or LUGs] are numerous and do an excellent job
providing service.

Disadvantages

Even though open-source product development has a lot of positives, it also comes
with its share of negatives.

1. Version Proliferation.

Consider the data in Table 2. This is based on the survey of 3568 machines.
The count is the number of machines and the % is the percentage of machines
running a particular version. As shown in the Table, there are at least 62
versions of the software running at this time.

The reason for this multiplicity of versions is due to a complicated version
release structure employed by LINUX. Releases can either by even-numbered
or odd-numbered. The former represent relatively stable software that can be
used by enterprise customers. In particular, version 2.0 and 2.2 were major
releases that were a long time in the making. On the other hand, odd-
numbered releases are developmental versions of the product with new
product features. This complicated structure was employed to satisfy two
audiences- developers and enterprise customers [Sproull and Moon 2000].

This makes it very difficult for the end-user to identify the best version of the
product. Companies such as Red Hat, play an important role here by selecting
one version to support.

Table 2, Survey of LINUX Kernel Versions

(Source: Alvestrand, Harald, “The Linux Counter Project”, <www.linuxcounter.org>,
Accessed on February 12, 2002)

Number Kernel Count Percentage Number Kernel Count Percentage
1 2.0.28 3 0.10% 58 2 33 0.90%
2 2.0.32 2 0.10% 59 2.2 488 13.70%
3 2.0.33 2 0.10% 60 2.4 3019 84.60%
4 2.0.34 2 0.10% 61 2.5 25 0.70%
5 2.0.34C52_SK 2 0.10% 62 Others 0.10%
6 2.0.36 6 0.20%
7 2.0.37 4 0.10%
8 2.0.38 5 0.10%

http://www.linuxcounter.org/
http://counter.li.org/reports/systemstats.php?days=60&dig=2.0.28
http://counter.li.org/reports/systemstats.php?days=60&dig=2.0
http://counter.li.org/reports/systemstats.php?days=60&dig=2.0.32
http://counter.li.org/reports/systemstats.php?days=60&dig=2.2
http://counter.li.org/reports/systemstats.php?days=60&dig=2.0.33
http://counter.li.org/reports/systemstats.php?days=60&dig=2.4
http://counter.li.org/reports/systemstats.php?days=60&dig=2.0.34
http://counter.li.org/reports/systemstats.php?days=60&dig=2.5
http://counter.li.org/reports/systemstats.php?days=60&dig=2.0.34C52_SK
http://counter.li.org/reports/systemstats.php?days=60&dig=%25
http://counter.li.org/reports/systemstats.php?days=60&dig=2.0.36
http://counter.li.org/reports/systemstats.php?days=60&dig=2.0.37
http://counter.li.org/reports/systemstats.php?days=60&dig=2.0.38

 13

9 2.0.39 3 0.10%
10 2.2.10 2 0.10%
11 2.2.12 10 0.30%
12 2.2.13 15 0.40%
13 2.2.14 34 1.00%
14 2.2.15 2 0.10%
15 2.2.16 62 1.70%
16 2.2.17 23 0.60%
17 2.2.18 23 0.60%
18 2.2.18pre21 4 0.10%
19 2.2.19 126 3.50%
20 2.2.19ext3 5 0.10%
21 2.2.19pre17 11 0.30%
22 2.2.20 69 1.90%
23 2.2.20RAID 2 0.10%
24 2.2.21 11 0.30%
25 2.2.22 29 0.80%
26 2.2.23 10 0.30%
27 2.2.24 8 0.20%
28 2.2.25 24 0.70%
29 2.2.5 9 0.30%
30 2.4.0 6 0.20%
31 2.4.10 42 1.20%
32 2.4.12 10 0.30%
33 2.4.13 9 0.30%
34 2.4.14 12 0.30%
35 2.4.16 48 1.30%
36 2.4.17 63 1.80%
37 2.4.18 1056 29.60%
38 2.4.19 391 11.00%
39 2.4.2 44 1.20%
40 2.4.20 942 26.40%
41 2.4.20.1 2 0.10%
42 2.4.21 178 5.00%
43 2.4.3 13 0.40%
44 2.4.4 28 0.80%
45 2.4.5 9 0.30%
46 2.4.6 7 0.20%
47 2.4.7 54 1.50%
48 2.4.8 18 0.50%
49 2.4.9 46 1.30%
50 2.4.x 2 0.10%
51 2.5.63 2 0.10%
52 2.5.65 2 0.10%
53 2.5.66 2 0.10%
54 2.5.67 4 0.10%
55 2.5.68 4 0.10%
56 2.5.69 6 0.20%
57 Others 1.70%

http://counter.li.org/reports/systemstats.php?days=60&dig=2.0.39
http://counter.li.org/reports/systemstats.php?days=60&dig=2.2.10
http://counter.li.org/reports/systemstats.php?days=60&dig=2.2.12
http://counter.li.org/reports/systemstats.php?days=60&dig=2.2.13
http://counter.li.org/reports/systemstats.php?days=60&dig=2.2.14
http://counter.li.org/reports/systemstats.php?days=60&dig=2.2.15
http://counter.li.org/reports/systemstats.php?days=60&dig=2.2.16
http://counter.li.org/reports/systemstats.php?days=60&dig=2.2.17
http://counter.li.org/reports/systemstats.php?days=60&dig=2.2.18
http://counter.li.org/reports/systemstats.php?days=60&dig=2.2.18pre21
http://counter.li.org/reports/systemstats.php?days=60&dig=2.2.19
http://counter.li.org/reports/systemstats.php?days=60&dig=2.2.19ext3
http://counter.li.org/reports/systemstats.php?days=60&dig=2.2.19pre17
http://counter.li.org/reports/systemstats.php?days=60&dig=2.2.20
http://counter.li.org/reports/systemstats.php?days=60&dig=2.2.20RAID
http://counter.li.org/reports/systemstats.php?days=60&dig=2.2.21
http://counter.li.org/reports/systemstats.php?days=60&dig=2.2.22
http://counter.li.org/reports/systemstats.php?days=60&dig=2.2.23
http://counter.li.org/reports/systemstats.php?days=60&dig=2.2.24
http://counter.li.org/reports/systemstats.php?days=60&dig=2.2.25
http://counter.li.org/reports/systemstats.php?days=60&dig=2.2.5
http://counter.li.org/reports/systemstats.php?days=60&dig=2.4.0
http://counter.li.org/reports/systemstats.php?days=60&dig=2.4.10
http://counter.li.org/reports/systemstats.php?days=60&dig=2.4.12
http://counter.li.org/reports/systemstats.php?days=60&dig=2.4.13
http://counter.li.org/reports/systemstats.php?days=60&dig=2.4.14
http://counter.li.org/reports/systemstats.php?days=60&dig=2.4.16
http://counter.li.org/reports/systemstats.php?days=60&dig=2.4.17
http://counter.li.org/reports/systemstats.php?days=60&dig=2.4.18
http://counter.li.org/reports/systemstats.php?days=60&dig=2.4.19
http://counter.li.org/reports/systemstats.php?days=60&dig=2.4.2
http://counter.li.org/reports/systemstats.php?days=60&dig=2.4.20
http://counter.li.org/reports/systemstats.php?days=60&dig=2.4.20.1
http://counter.li.org/reports/systemstats.php?days=60&dig=2.4.21
http://counter.li.org/reports/systemstats.php?days=60&dig=2.4.3
http://counter.li.org/reports/systemstats.php?days=60&dig=2.4.4
http://counter.li.org/reports/systemstats.php?days=60&dig=2.4.5
http://counter.li.org/reports/systemstats.php?days=60&dig=2.4.6
http://counter.li.org/reports/systemstats.php?days=60&dig=2.4.7
http://counter.li.org/reports/systemstats.php?days=60&dig=2.4.8
http://counter.li.org/reports/systemstats.php?days=60&dig=2.4.9
http://counter.li.org/reports/systemstats.php?days=60&dig=2.4.x
http://counter.li.org/reports/systemstats.php?days=60&dig=2.5.63
http://counter.li.org/reports/systemstats.php?days=60&dig=2.5.65
http://counter.li.org/reports/systemstats.php?days=60&dig=2.5.66
http://counter.li.org/reports/systemstats.php?days=60&dig=2.5.67
http://counter.li.org/reports/systemstats.php?days=60&dig=2.5.68
http://counter.li.org/reports/systemstats.php?days=60&dig=2.5.69
http://counter.li.org/reports/systemstats.php?days=60&dig=%25

 14

2. Usability

Some open source products suffer from poor usability (Nichols and Twidale
2003). This may stem from the way projects are structured, the nature of the
audience and the level of resources available to open source projects.
However, for major products [i.e., Stars], this is an opportunity for a new
business.

Analyzing the Profit Potential of Open Source Products

Not all open source products have a high profit potential. To analyze the profit
potential of an open source product, I use two dimensions - customer applicability and
relative product importance. The classification scheme that results from this is shown
in Figure 7.

Customer applicability refers to the proportion of the market that can benefit from
the software. For example, if a product is being designed for a rarely used operating
system, only a small proportion of consumers will be able to benefit from it. This will
make the level of customer applicability small. On the other extreme, some products
are designed for a large number of computing environments or the computing
environment that is most commonly found. This makes it high on customer
applicability.

Relative product importance refers to how important a program is to the functioning
of the user’s computer. An operating system is clearly the most important. Without
it, the computer will not be able to function. On the other extreme, a screensaver
program will add some value to the user- but it is something that the user can do
without.

The products with the highest profit potential have high relative product importance
and high customer applicability [Quadrant II in Figure 7]. These are the stars that we
hear most about. Companies are started around these products. They have large
developer communities supporting them. These products have the greatest direct and
indirect marketing support. These products have the highest profit potential. An
example of such a product is LINUX. Its relative importance is high since it is an
operating system and its customer applicability is high since it can be installed on
every desktop PC.

On the other extreme, products that are low relative product importance and low
customer applicability are the low-profile nichers [Quadrant III in Figure 7]. These
products serve a specific niche and itch a small scratch (Raymond 1998). They are
never going to be dominant products that will run on a large proportion of desktops.
But, that is not the goal of the creators of these products. The creators know they are
filling a small niche and their goal is to fill it effectively. These products have the
lowest profit potential. A good example of such a product is Wings3D, which is a very
powerful polygon mesh modeler. This is perhaps a program that students of advanced
mathematics may find useful.

 15

The products with low relative product importance and high customer applicability are
the mainstream utilities [Quadrant IV in Figure 7]. These are products that everybody
can benefit from. However, they are not critical to the functionality of the computer.
For instance, TouchGraph's Google Browser converts the search results within result
into a graphical map. This makes for an interesting map of the results. However, it
may not be something, by itself, that is commercially feasible. Another great example
of a mainstream utility is Agnostos- a Web-based tool for managing to-do lists. Such
products could make excellent promotional items for companies.

Finally, the products with high relative product importance and low customer
applicability are the high-profile nichers [Quadrant I in Figure 7]. These products are
regarded very highly within the specific niche that they serve. However, beyond that,
they are not well known. If marketed well, they can lead to a profitable operation.
A great example of this is SquirrelMail. This is a program that can be used to run an
Internet Service Provider's (ISP) mail operation. It is very well regarded within its
niche.

Figure 7
Classification of Open-Source Products

Low Customer Applicability
[e.g. OS/2 desktops]

High Relative Product Importance
[E.g. Operating System]

Low Re
[e.g. Fi

Quadrant II

STARS
High Customer Applicability
[e.g. All Desktop PCs]
Quadrant III
Low-profile
Nichers.
Quadrant I
High-profile
Nichers.
la
le
Quadrant IV
Mainstream
Utilities.
16

tive Product Importance
 Management Utility]

 17

Why Should Corporate Users Switch to Open-Source Products?

There are three ways to respond to this question.

The first issue is product performance. Large companies will not adopt a product just
because it is built using a certain product development style. They care about
performance. Open-source products have been making inroads into large companies
because they are good- it is just that simple. In many cases, open-source products
have been evaluated for their technical merits and their ability to meet stringent
requirements. They have been adopted because they met and exceeded these
requirements. Examples of notable adoptions include Amazon and Yahoo’s use of Perl,
Orbitz' use of Linux and Apache and Google's usage of Linux.

Second, since open-source products are usually available for free as an online
download, corporations can treat it as a low product risk. They can simply download
the product and play with it in a back-office for a while. Even if they decide not to
implement it, they will have not paid anything. Of course, this only covers the up-
front cost of purchasing the product (see next point about total cost of ownership).

Third, corporations must evaluate the total cost of ownership [i.e., the cost of
purchasing, installing and maintaining the product] of corporate alternatives with
open-source products and see what that tells them. If the total cost of ownership is in
fact lower with open source products, there may be a case. The total cost of
ownership is sensitive to the nature of the organization and should be evaluated by
each organization as such.

Key Factors That Affect Profits

Support from primary developer community

The key engine for innovation within the open source ecosystem is the primary
developer community (Shankland 2002). If this community is focused on innovation,
everybody benefits. Distributors can use the latest version in their next release.
Software producers can add the latest code. Customers get the product with the best
performance that is most stable.

The success of a developer community crucially depends on its leadership structure.
However, a variety of leadership styles and structures are observed. For instance,
Linus Torvalds is generally considered to be a strong leader in all senses of the word.
On the other hand, a committee runs Apache. At this time, it seems like the issue is
clarity of the direction for the project. This may be provided by one leader or a group
of people working closely together.

Presence of dominant competitive OSS products

OSS products compete with each other fiercely. Open source products compete for
developers, distributors and customers. Developers want to be associated with
products that are likely to have a major impact. Distributors would like to devote

 18

resources only to products that are likely to become very successful. Customers want
to use products that they can rely on.

There are two levels of competition- the product category level [E.g. BSD and LINUX
are competing open source operating systems] and the distribution level- the
distributors of LINUX are in aggressive competition with each other.

The competition among LINUX distributors is especially interesting. Red Hat has
established a dominant position- especially in the American market. One source puts
its market share in the 50% rangeiii. However, many other distributors are vying for
share. Recently, four LINUX distributors- Caldera, Conectiva, SuSE, and TurboLinux-
have decided that instead of competing with one another, they must compete with the
market leader, i.e., Red Hat. To this end, they have formed a group called
UnitedLinux. This company will release one product that all four will support.
However, each individual company retains its identity and will strive to differentiate
on the service side.

While some competition may be necessary for product innovation, excessive
competition can hamper long-term profitability.

Presence of dominant competitive non-open-source products

Perhaps, the greatest threat to profits from an OSS product is the presence of
competitive non-OSS products. Linux competes with Microsoft’s Windows products.
OpenOffice competes with Microsoft Office. Products such as OpenCourse and Moodle
compete with commercial products such as WebCT and Blackboard in the course
design arena.

In all these cases, the commercial competitor has a resource advantage that can be
used to gain market power through advertising, salesperson interaction with large
corporations and through public relations. Sometimes, the presence of such
competition creates an underdog mentality that can help the open-source product to
some degree. On the other hand, it is very hard to compete with major corporations
on a regular basis.

Relative competitive position

In the final analysis, what really matters is how competitive the product is. If the
product is truly innovative, it will have a strong chance. If it is does not stack up well
against competitive products, it will not. The hope is that making the source code
available for free will lead to greater innovation. However, this may fail to
materialize if a software product does not attract too many developers.

Need for marketing

Building awareness for open source products is a challenge. Consider the case of
LINUX. There is a two-level challenge here. On the first level, one must build
awareness for LINUX itself [product category awareness]. On the second level, one
must create awareness for a specific distribution- such as Red Hat [brand awareness].
Distributors will only be interested in boosting brand awareness. Red Hat will want to

 19

be closely associated with LINUX and they would want people to equate LINUX with
their brand name.

If there are no companies in the market, the community will have to take on this
challenge. In that case, awareness is built using techniques such as word of mouth
that are not resource-intensive.

Of course, building awareness alone is insufficient. What is needed is greater product
knowledge followed by trial of the product.

Conclusion

We now know that it is possible to build a business around the open-source strategy.
We are increasingly finding that Open Source Software communities are awesome
competitors. They are able to compete with large companies on an equal footing and
even defeat them. They are, therefore, not to taken lightly or dismissed off-hand.

Open-source software is not for hobbyists any more. Instead, it is a business strategy
with broad applicability. Businesses can be built around this idea. In this paper, I
want the reader to grapple with the specifics of how to build and grow such a
business.

To this end, I have proposed three fundamental business models- Distributor, Software
producer [GPL and non-GPL] and the Third-Party Service Provider. These are
sustainable models that can lead to robust revenue streams. The business models
provided here can be enhanced by the addition of further revenue streams. For
instance, we now know that certification of developers on an Open-Source product can
lead to strong revenues.

Not all products have the same profit potential. Therefore, not all Open Source
Software products have the same profit potential. I have classified Open Source
Software products into four categories- Stars, High-profile nichers, Low-profile nichers
and Mainstream utilities. Businesses can be built around Stars. High-profile nichers
can lead to robust revenue streams if properly marketed. The other two categories
may not lead to high profits. Since many Open Source Software products are freely
available, managers must scan public repositories to find out which products will be
suitable for their business.

The future of Open Source Software is bright. Increasingly, we will find that these
products will take a central role in the realm of software and will find a larger place in
all our lives.

 20

REFERENCES

Ghosh, Rishabh Aiyer (1998), “What Motivates Free Software Developers: Interview with Linus
Torvalds”, 3(3), First Monday, Available at
<http://www.firstmonday.dk/issues/issue3_3/torvalds/index.html>.

Godden, Frans (2000), " How do Linux and Windows NT measure up in real life?", Available at-
<http://gnet.dhs.org/stories/bloor.php3>.

Leonard, Andrew (1998), “Let My Software Go”, Salon, Available at-
<http://www.salon.com/21st/feature/1998/04/cov_14feature2.html>.

Lakhani, Karim and Eric Von Hippel (2003), "How Open Source Software Works: Free User-to-
User Assistance", Forthcoming in Research Policy.

Moon, Jae Yun and Lee Sproull (2000), "Essence of Distributed Work: The Case of the Linux
Kernel", First Monday, 5(11), Available at-
http://firstmonday.org/issues/issue5_11/moon/index.html

Neumann, Peter G. (1999), "Robust open-source software", Communications of the ACM, 42(2),
128-129.

Nichols, David M. and Michael B. Twidale (2003), "The Usability of Open Source Software",
First Monday, 8(1), Available at: <http://firstmonday.org/issues/issue8_1/nichols/index.html>.

Raymond, Eric (1998), "The Cathedral and the Bazaar", 3(3), Available at-
<http://www.firstmonday.org/issues/issue3_3/raymond/index.html>.

Shankland, Stephen (2002), "Tiemann steers course for open source", ZDNet, December 4,
Available at- <http://zdnet.com.com/2100-1104-975996.html>.

 21

ENDNOTES

i See- http://support.microsoft.com/default.aspx?scid=KB;en-us;q306819
ii http://counter.li.org/reports/machines.html, Accessed on Feb 09, 2002.
iii <http://www.newsfactor.com/perl/story/20036.html>

	Producers of Open-Source Products - The Community
	Business Models
	The Distributor
	The Distributor Business Model

	The Software Producer [Non-GPL Model]
	Software Producer-Non-GPL Model

	Software Producer- GPL Model
	Software Producer - GPL Model

	Third Party Service Provider
	Third Party Service Provider

	Advantages and disadvantages of Open-Source
	
	
	Advantages
	Disadvantages

	Consider the data in Table 2. This is based on the survey of 3568 machines. The count is the number of machines and the % is the percentage of machines running a particular version. As shown in the Table, there are at least 62 versions of the software r

	Analyzing the Profit Potential of Open Source Products
	Why Should Corporate Users Switch to Open-Source Products?
	Conclusion

