True/False: If the statement is false, give a counterexample.
If the statement is always true, give a brief explanation of why it is (not just an example!).

1. [3] A subring of a field, is a field.
2. [3] The map $\phi: \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{12}$ defined by $\phi(x)=3 x$ is a ring homomorphism.
3. [3] The set $\left\{(x, y, z) \in \mathbb{R}^{3} \mid x-2 y+2 z=0\right\}$ is a (vector) subspace.
4. [5] Place the following algebraic objects into a square below so that the object satisfies the condition given in the row and the condition in the column. Note, there maybe more than one square that the object fits in, but you need only place each object once.

5. Find an example for each of the following in $\mathbb{Z}[x]$, if possible. No proofs are necessary. Be careful of notation!!
(a) [1] a principal ideal
(b) [2] an ideal that is not principal
(c) [2] a maximal ideal
(d) [2] a factor ring of R that is also a field

Free Response: Show your work for the following problems. The correct answer with no supporting work will receive NO credit.
6. [3] Given that 4 is a root, factor $x^{4}+4 x^{3}+x^{2}+2$ in $\mathbb{Z}_{5}[x]$ into irreducible elements.
7. [8] Choose $O N E$ of the following theorems to prove. Clearly identify which of the two you are proving and what work you want to be considered for credit. No, doing both questions will not earn you extra credit.

Theorem 1. Let ϕ be a ring homomorphism from a ring R to a ring S. Let B be an ideal of S. The set $\phi^{-1}(B)$ defined as $\{r \in R \mid \phi(r) \in B\}$ is an ideal of R.

Theorem 2. Let F be a field. Show that the field of quotients of F is ring-isomorphic to F.

