Weekly Homework 2

Ruth Vanderpool
TMATH 402 Abstract Algebra I

October 18, 2022

Theorem (Division Existence). Let a and b be integers with $b>0$. Then there exists integers q and r where $0 \leq r<b$ and

$$
a=b q+r
$$

Proof. Let a and b be integers with $b>0$. To help us find q and r such that $a=b q+r$ where $0 \leq r<b$ we will rearrange the equation to $r=a-b q$. Consider letting q vary and collecting the set of all possible 'remainders', that is, let

$$
R=\{a-b k \mid k \in \mathbb{Z} \text { and } a-b k \geq 0\}
$$

We will consider two cases: if $0 \in R$ and if $0 \notin R$. In both cases we will identify q and r that satisfies the above conclusions of the theorem.

Case 1: Assume $0 \in R$. Then there exists a $k \in \mathbb{Z}$ such that $0=r=a-b k$ or $b k=a$. We can let $q=k$ and $r=0$ and satisfy the conclusions of the theorem. In particular, note $r=0$ satisfies $0 \leq r<b$ and also that,

$$
\begin{aligned}
b q+r & =b q+0 \\
& =b k \\
& =a .
\end{aligned}
$$

Case 2: Assume $0 \notin R$. We would like to use the Well Ordering Principal to identify the smallest number in the set R to identify the q and r needed for this theorem. Recall the Well Ordering Principal requires us to verify that the set R is nonempty.

We will show R is nonempty using two cases ($2 \mathrm{a} \& 2 \mathrm{~b}$): if $0 \leq a$ and if $a<0$.
Case 2a: Assume that $0 \leq a$. Notice then if we choose $k=0$, that $0 \leq a-b \cdot 0$, so we have identified an element $(a-b \cdot 0)$ in R.

Case 2b: Assume that $a<0$. Notice then if we choose $k=2 a$, that $a-b(2 a)=a(1-2 b)$. Recall in this case that $a<0$ and since b was assumed to be positive in the hypothesis of the theorem, we know $(1-2 b)<0$. A negative times a negative is a positive, thus we know $a(1-2 b)>0$, implying that we have identified an element $(a-b 2 a)$ in R.

Now that we have shown R to be nonempty we can use the Well Ordering Principal to identify the smallest number in R. Denote the smallest number as r^{\prime}. By construction of R then we know there exists an integer q^{\prime} such that $r^{\prime}=a-b q^{\prime}$. We claim that this r^{\prime} and q^{\prime} will meet the conclusions stated in the theorem.

Note that q^{\prime} was chosen such that $r^{\prime}=a-b q^{\prime}$. By adding $b q^{\prime}$ to both sides we see $a=b q^{\prime}+r^{\prime}$ which is what we are trying to show. Notice also, by definition of R since $r^{\prime} \in R$, that $0 \leq r^{\prime}$. It only remains to show that $r^{\prime}<b$.

Assume towards a contradiction that $r^{\prime} \geq b$. Consider the element $a-b\left(q^{\prime}+1\right)$:

$$
\begin{aligned}
a-b\left(q^{\prime}+1\right) & =a-b q^{\prime}-b \\
& =r^{\prime}-b
\end{aligned}
$$

Since we were assuming that $r^{\prime}>b$ we see that $r^{\prime}-b>0$ implying that the element $a-b\left(q^{\prime}-1\right)$ is in the set R. The element $a-b\left(q^{\prime}-1\right)$ is also smaller than $a-b q^{\prime}=r^{\prime}$. But r^{\prime} was identified as the smallest element in R, thus we have a contradiction! We can thus conclude that $r^{\prime}<b$ which completes the proof.

