WrittenHW 7

1. [3] Let k be a fixed integer and define $H=\{0, \pm k, \pm 2 k, \pm 3 k, \ldots\}$.
(a) Find all the left cosets of H in \mathbb{Z}.
(b) Find all the right cosets of H in \mathbb{Z}.
(c) Find $[\mathbb{Z}: H]$.
2. [3] Let $\mathrm{o}(a)=30$. Find all the left cosets of $\left\langle a^{8}\right\rangle$ in $\langle a\rangle$.
3. [3] Let \mathbb{C}^{*} be the group of nonzero complex numbers with multiplication.

Let $H=\left\{a+b i \mid a^{2}+b^{2}=1\right\}$. Give a geometric description of the cosets of H.
4. [4] Let the order of G be 15. If G has only one group of order 3 and only one group of order 5 , prove that G is cyclic.
5. [2] Suppose a group contains elements of orders 1 through 9 . What is the minimum possible order of the group? Justify your answer.

HW7 Writing Focus

1. [5] Let p and q be prime numbers. Let a and b be nonidentity elements of different orders in a group G and $|G|=p q$. Prove that the only subgroup of G containing a and b is G itself.
2. [5] Suppose that G is an Abelian group with an odd number of elements. Show the product of all the elements of G is the identity.
3. [5] Prove that 3,5 , and 7 are the only three consecutive odd integers that are prime.
