WrittenHW 6

1. [3] What are the possible orders for elements of S_{7} ?
2. Let $\alpha, \beta \in S_{8}$, where $\alpha=\left[\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 1 & 3 & 5 & 4 & 7 & 6 & 8\end{array}\right]$ and $\beta=\left[\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 3 & 8 & 7 & 6 & 5 & 2 & 4\end{array}\right]$.
(a) [1] Compute α^{-1}.
(b) [1] Compute $\beta \alpha$
(c) [1] Write α as a product of 2-cycles.
(d) [1] Write β as a product of disjoint cycles.
3. [3] In S_{4} find a cyclic subgroup of order 4 and a noncyclic subgroup of order 4 .

HW6 Writing Focus

1. [5] Let $H=\left\{\beta \in S_{5} \mid \beta(1)=1\right.$ and $\left.\beta(4)=4\right\}$. Prove that $H \leq S_{5}$.

WrittenHW 6

1. [2] Show $U(8)$ is not isomorphic to $U(10)$.
2. [3] Let $g, h \in G$ where G is a group. Let the function ϕ_{g} be defined by $\phi_{g}(x)=g x g^{-1}$ for all $x \in G$. Is $\phi_{g} \phi_{h}=\phi_{g h}$? Justify your answer.
3. [2] Let $G=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}$ and $H=\left\{\left.\left[\begin{array}{cc}a & 3 b \\ b & a\end{array}\right] \right\rvert\, a, b \in \mathbb{Q}\right\}$. Show that G and H are isomorphic under addition.
4. [3] Let $G=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}$ and $H=\left\{\left.\left[\begin{array}{cc}a & 3 b \\ b & a\end{array}\right] \right\rvert\, a, b \in \mathbb{Q}\right\}$. Show that G and H are isomorphic under multiplication.

HW6 Writing Focus

1. [5] Let G be a group. Prove that the mapping $\phi(g)=g^{-1}$ for all $g \in G$ is an automorphism if and only if G is Abelian.
2. [5] Suppose that G is a finite Abelian group and G has no element of order 2. Prove that the mapping $g \rightarrow g^{2}$ is an automorphisms of G.
