WrittenHW 5

1. Consider the set $S=\{0,2,4,6,8\}$ under addition and multiplication modulo 10. Does S have unity? Justify your answer.
2. Let n be and integer and consider the ring \mathbb{Z}_{n}. For each of the properties below determine if the statements is always true in \mathbb{Z}_{n}. If true, give a brief explanation of why. If false, provide a counterexample.
(a) If $a^{2}=a$, then $a=0$ or $a=1$.
(b) If $a b=0$, then $a=0$ or $b=0$
(c) If $a b=a c$ and $a \neq 0$, then $b=c$.
3. Find the subring lattice for \mathbb{Z}_{12}.
4. Is \mathbb{Z}_{6} a subring of \mathbb{Z}_{12} ? Justify your answer.

HW5 Writing Focus

1. Let m and n be positive integers and let $k=l c m(m, n)$. Prove that $m \mathbb{Z} \cap n \mathbb{Z}=k \mathbb{Z}$

WrittenHW 5

1. For each of the following determine if the set and binary operators form a field.
(a) \mathbb{Z} with standard addition and multiplication.
(b) The Gaussian integers $\mathbb{Z}[i]=\{a+b i \mid a, b, \in \mathbb{Z}\}$ with standard addition and multiplication.
(c) The ring $\mathbb{Z}[x]$ of polynomials with integer coefficients and polynomial addition and polynomial multiplication.
(d) \mathbb{Z}_{p} where p be prime using addition modulo p and multiplication modulo p.
(e) The ring $\mathbb{Z}[\sqrt{3}]=\{a+b \sqrt{3} \mid a, b \in \mathbb{Z}\}$ with standard addition and multiplication.
2. Find the zero-divisors of \mathbb{Z}_{20}.

HW5 Writing Focus

1. Prove the set of nilpotent elements of a commutative ring form a subring. Define x to be nilpotent if there exists and integer n so that $x^{n}=0$.
2. Find a necessary and sufficient condition on n and k so that k is a zero-divisor in \mathbb{Z}_{n}. Prove your statement.
3. Let R be a ring with m elements. Prove that the characteristic of R divides m.
