WrittenHW 3

- 1. ($\approx \#8$) Consider the set $S = \{5, 15, 25, 35\}$. Does S form a group under multiplication modulo 40? If so, what is the identify element and describe any relationships between S and U(8).
- 2. ($\approx \#16$) In a group, prove that $(ab)^{-1} = b^{-1}a^{-1}$. Draw an analogy between the statement $(ab)^{-1} = b^{-1}a^{-1}$ and the act of putting on and taking off your socks and shoes. Find an example that shows that it is possible to have $(ab)^{-2} \neq b^{-2}a^{-2}$. Find a distinct nonidentity elements A and B from a non-Abelian group with the property that $(ab)^{-1} = a^{-1}b^{-1}$.
- 3. ($\approx \#26$) Let G be a group and $a, b \in G$. Prove $(ab)^2 = a^2b^2$ if and only if ab = ba.
- 4. ($\approx \#32$) In D_n , let $r = R_{360/n}$, and let f be any reflection. Show that $frf = r^{-1}$ then use this relation to write the following elements in the form r^i or $r^i f$ where $0 \le i < n$.
 - (a) In D_4 , $fr^{-2}fr^5$
 - (b) In D_5 , $r^{-3}fr^4fr^{-2}$
 - (c) In D_6 , $fr^5 fr^{-2} f$

WrittenHW 3

- 1. ($\approx \#14^*$) If H and K are subgroups of G, is $H \cap K$ is a subgroup of G? Prove your conclusion or find a counterexample.
- 2. ($\approx \#22$) Is the center of a group Abelian? Prove your conclusion or find a counterexample.
- 3. ($\approx \#28$) Consider the elements $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$ from $SL(2, \mathbb{R})$. Using textbook notation: Find |A|, |B| and |AB|. Alternative notation: Find o(A), o(B) and o(AB).
- 4. ($\approx \#46^*$) Let G be a group of functions from \mathbb{R} to \mathbb{R}^* , where the operations of G is multiplication of functions. Let $H = \{f \in G | f(1) = 1\}$. Is H a subgroup of G? Prove your conclusion or find a counterexample.
- 5. ($\approx \#50$ acd) Find the smallest subgroup of \mathbb{Z} containing:
 - (a) 8 and 14
 - (b) 6 and 15
 - (c) m and n