WrittenHW 3

1. $(\approx \# 8)$ Consider the set $S=\{5,15,25,35\}$. Does S form a group under multiplication modulo 40 ? If so, what is the identify element and describe any relationships between S and $U(8)$.
2. $(\approx \# 16)$ In a group, prove that $(a b)^{-1}=b^{-1} a^{-1}$. Draw an analogy between the statement $(a b)^{-1}=b^{-1} a^{-1}$ and the act of putting on and taking off your socks and shoes. Find an example that shows that it is possible to have $(a b)^{-2} \neq b^{-2} a^{-2}$. Find a distinct nonidentity elements A and B from a non-Abelian group with the property that $(a b)^{-1}=a^{-1} b^{-1}$.
3. $(\approx \# 26)$ Let G be a group and $a, b \in G$. Prove $(a b)^{2}=a^{2} b^{2}$ if and only if $a b=b a$.
4. $(\approx \# 32)$ In D_{n}, let $r=R_{360 / n}$, and let f be any reflection. Show that $f r f=r^{-1}$ then use this relation to write the following elements in the form r^{i} or $r^{i} f$ where $0 \leq i<n$.
(a) In $D_{4}, f r^{-2} f r^{5}$
(b) In $D_{5}, r^{-3} f r^{4} f r^{-2}$
(c) In $D_{6}, f r^{5} f r^{-2} f$

WrittenHW 3

1. $\left(\approx \# 14^{*}\right)$ If H and K are subgroups of G, is $H \cap K$ is a subgroup of G ? Prove your conclusion or find a counterexample.
2 . $(\approx \# 22)$ Is the center of a group Abelian? Prove your conclusion or find a counterexample.
2. $(\approx \# 28)$ Consider the elements $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{cc}0 & 1 \\ -1 & -1\end{array}\right]$ from $S L(2, \mathbb{R})$.

Using textbook notation: Find $|A|,|B|$ and $|A B|$.
Alternative notation: Find $\mathrm{o}(A), \mathrm{o}(B)$ and $\mathrm{o}(A B)$.
4. $\left(\approx \# 46^{*}\right)$ Let G be a group of functions from \mathbb{R} to \mathbb{R}^{*}, where the operations of G is multiplication of functions. Let $H=\{f \in G \mid f(1)=1\}$. Is H a subgroup of G ? Prove your conclusion or find a counterexample.
5. ($\approx \# 50 \mathrm{acd})$ Find the smallest subgroup of \mathbb{Z} containing:
(a) 8 and 14
(b) 6 and 15
(c) m and n

