Reading Quiz §3

- 1. TRUE/FALSE: Identify the statement as True in each of the following cases if the statement is *always* true and provide brief justification. Otherwise, identify it as false and provide a counterexample.
 - (a) [2] Every group has two distinct identity elements.

False ex integers 72 order addition the only idently stevent is 0

(b) [2] The statement: If (G, \star) is a group and x is any element of G, then x has only one inverse in G.

Can be proved in only the following way: Let e be the identity element in G. Assume y and z are both inverses to x. Then we know:

 $y \star x = x \star y = e \text{ and } z \star x = x \star z = e \ (\lozenge).$

We want to show that y = z.

Certainly e = e, then by (\lozenge) we know $x \star y = x \star z$ (\heartsuit) .

If we multiply both sides of (\heartsuit) on the right by y we have: $y \star (x \star y) = y \star (x \star z)$.

Since \star is associative we can rewrite the above to $(y \star x) \star y = (y \star x) \star z$ which simplifies to $e \star y = e \star z$ by (\lozenge) . Thus y = z.

Take, statements can be proved in los of dif wys.

2. [1] Consider Theorem 3.7: Let G be a set and \star an associative binary operation on G. Assume that there is an element $e \in G$ such that $x \star e = x$ for all $x \in G$, and assume tat for any $x \in G$ there exists and element y in G such that $x \star y = e$. Then (G, \star) is a group.

How is the above theorem different from the definition of a group given in §2?

The identify clonest wasn't required to be a "two-sided"
identify, ie it's missing the requirement that exx=X

The inverse clement wasn't required to be a "two-sided"
inverse. ie it's missing the requirement that y+X=e