Reading Quiz §3

- 1. TRUE/FALSE: Identify the statement as True in each of the following cases if the statement is *always* true and provide brief justification. Otherwise, identify it as false and provide a counterexample.
 - (a) [2] Every group has two distinct identity elements.
 - (b) [2] The statement: If (G, *) is a group and x is any element of G, then x has only one inverse in G.
 Can be proved in only the following way: Let e be the identity element in G. Assume y and z are both inverses to x. Then we know: y * x = x * y = e and z * x = x * z = e (◊). We want to show that y = z. Certainly e = e, then by (◊) we know x * y = x * z (♡). If we multiply both sides of (♡) on the right by y we have: y * (x * y) = y * (x * z). Since * is associative we can rewrite the above to (y * x) * y = (y * x) * z which simplifies to e * y = e * z by (◊). Thus y = z.

2. [1] Consider Theorem 3.7: Let G be a set and \star an associative binary operation on G. Assume that there is an element $e \in G$ such that $x \star e = x$ for all $x \in G$, and assume tat for any $x \in G$ there exists and element y in G such that $x \star y = e$. Then (G, \star) is a group.

How is the above theorem different from the definition of a group given in $\S 2$?