Take Home Midterm

This section is to be taken home, completed, and turned in through Canvas by 10:10 Tuesday Nov 3rd. There is no time limit and you do not need to type up your solutions to get full marks although the answers should be well edited and readable.

You may discuss this problem with anyone else from the class and use the class resources posted on Canvas. You may not consult anyone or any resource that is not affiliated with the class such as tutors, websites, or other textbooks.

1. Dr. Vanderpool provides you with Cayley table for a group W given below:

\star	z	x	y	w	r	s	t	u
z	z	x	y	w	r	s	t	u
x	x	r	u	y	s	z	w	t
y	y	w	r	s	t	u	z	x
w	w	t	x	r	u	y	s	z
r	r	s	t	u	Z	x	y	w
s	s	z	w	t	x	r	u	y
t	t	u	z	x	y	w	r	s
u	u	y	s	z	w	t	x	r

(a) [1] Find a generating set for W.
(b) [2] Find a minimal generating set for W. Prove that the set you provide is minimal.
(c) [3] Draw a Cayley graph for W based on the elements you find in part (b).
2. Consider Dr. Vanderpool's proof written for the theorem below.
(a) [2] Identify any logical errors.
(b) [2] Provide concrete suggestions for how the proof can be improved.

Theorem 1 (3.23). Let G be a group and let $g_{1}, g_{2}, \ldots g_{n} \in G$. If $x \in\left\langle g_{1}, g_{2}, \ldots g_{n}\right\rangle$, then $\left\langle g_{1}, g_{2}, \ldots g_{n}\right\rangle=\left\langle g_{1}, g_{2}, \ldots g_{n}, x\right\rangle$.

Proof. Recall, by definition $\left\langle g_{1}, g_{2}, \ldots g_{n}\right\rangle=\left\{y_{i} y_{2} y_{3} \cdots y_{m} \mid \forall i, y_{i} \in\left\{g_{1}, g_{2}, \ldots g_{n}, g_{1}^{-1}, g_{2}^{-1}, \ldots g_{n}^{-1}\right\}\right\}$. Recall also from Chapter 2, that $\left\langle g_{1}, g_{2}, \ldots g_{n}\right\rangle \leq G$.
Since $x \in\left\langle g_{1}, g_{2}, \ldots g_{n}\right\rangle$, we know $x=g_{i}$ for some i. Thus,

$$
\begin{aligned}
\left\langle g_{1}, g_{2}, \ldots g_{n}, x\right\rangle & =\left\langle g_{1}, g_{2}, \ldots g_{n}, g_{i}\right\rangle \\
& =\left\langle g_{1}, g_{2}, \ldots g_{n},\right\rangle
\end{aligned}
$$

where the last equality holds because sets are unordered and can ignore duplications.

