True/False: If the statement is false, give a counterexample.
If the statement is always true, give a brief explanation of why it is (not just an example!).

1. [3] (§2.6) Let G_{1} and G_{2} be groups such that $G_{1} \cong G_{2}$. Then the Caley Diagram of G_{1} matches the Caley Diagram of G_{2}.
Sod (1.5) fin false. There re many Call Diagrams for each group.
(1.5) If $\mathrm{C}_{1} \cong \overline{\mathrm{C}_{2}}$ then there exists matching Call
(IT) Diagems, bt arbitron Coley Diagrams mog hot milts.
\widetilde{E}_{x} : $\operatorname{Let} G_{1}=\mathbb{C}=C_{2}$.
Coley Dragon for $\mathrm{C}_{1}=1>$

$$
\begin{aligned}
& \text { Caley Diagram for } G_{y}=\langle 2,3\rangle \\
& -2 \rightarrow 0 \rightarrow 2 \rightarrow 4 \rightarrow 6 \\
& \rightarrow-1 \rightarrow 1 \rightarrow 3 \rightarrow 5 \rightarrow 7
\end{aligned}
$$

$-1 \rightarrow 0 \rightarrow 1 \rightarrow 2 \longrightarrow 3$
. The map $\theta: \mathbb{Z}_{(\rightarrow \mathbb{1}} \mathbb{Z}$ defined by
2. $[3]$ (§3.3) Consider the integers \mathbb{Z} under addition. $\theta(x)=9 x$ satisfies the homomorphic property.
sher s.(.5)
True Let $x, y \in \pi$. We verity $\theta(x+y)=\theta(x)+\theta(y)$
(4.5) Competing lett hand side: $\begin{aligned} \theta(x+y) & =9(x+y) \\ & =9 x+9 y\end{aligned}$
pued/shouect +1)

$$
\begin{aligned}
& =9 x+9 y \quad b / c \text { didribtanin } \pi \\
& =\theta(x)+\theta(y) \\
& =\text { right hond side }
\end{aligned}
$$

3. [3] (§3.1) If H is an abelian subgroup of G, then G is abelian.

False Let $H=\{e\}$ and $G=D_{4}$.
sh is (8. 4.5
Ne D_{4} is not abelion ($s s \neq s$) even though H is abelion.
ex (4)
abeliandef (1.5)
sogroupdet(4.5)

Free Response: Show your work for the following problems. The correct answer with no supporting work will receive NO credit.
4. [6] (Chapter 2) Identify three non-isomorphic groups of order 8 (you can use the same notation for the groups we used in class). You must explain why each group is not isomorphic to the others.
+3) lists groups of $\begin{aligned} & 3, D_{4}, Q \text { (quaternions) } \\ & \text { order }\end{aligned}$
T_{0} is abelian whereas the other two ore not.
Notice that there are only two elements in D_{4}
with order 4 (r and r^{3}).
However Q has at leas) three elemans with aster $4(i, j d k)$ so Q has more elemuts of order 4 hon D_{4}.
5. ($\S 2.4 \& 8.1$) For each question below, find a set and a binary operators) that satisfy the criteria, if one exists. If n set and binary operators) exist, explain why.
Set +.5
(a) [3] a cyclic, but non-abelian group

Not possible. If G is cycle, then $\exists g \in G \quad \exists G=<g$?
mon abelion (2)
explain

$$
\begin{aligned}
\text { Then } x y & =g^{i} g^{j}=g^{i+j}=g^{j+i} \quad b / c i, j \in \mathbb{Z} \\
& =g^{j} g^{i}=y x .
\end{aligned}
$$

star (1.5)
set (1.5) opertor (1) a sing (1.5)
(b) [3] a ring, but not commutative
$M_{j_{\times 2}}$ (TR) with matrix addition a matrix multiplication recall matin milt. does not connate, eg

$$
\begin{aligned}
& {\left[\begin{array}{ll}
0 & 1 \\
2 & 3
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
2 & 0
\end{array}\right]=\left[\begin{array}{cc}
2 & 0 \\
8 & -2
\end{array}\right] \quad b A} \\
& {\left[\begin{array}{cc}
1 & -1 \\
2 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
2 & 3
\end{array}\right]=\left[\begin{array}{cc}
-2 & 2 \\
0 & 2
\end{array}\right]}
\end{aligned}
$$

(c) [3] an integral domain, but not a field
start (1.5)
$(7 c,+, x)$
set 1.5
operator 71
note that there are no zero divisors in \mathbb{K} bt integht domain 1.5 integers lager than 1 (ex 3) have no multiplicative inverse.
(a) [2] (§4.1) Find all the elements that generate G.
(1) io all powers of a thet are relatively prime
poversut (1.5) (4.5) $\left\{a^{1}, a^{3}, a^{5}, a^{9}, a^{11}, a^{13}, a^{15},{ }^{17}, a^{19}, a^{23}, a^{25}, a^{27}\right.$
(b) [2] (§4.1) Find an element in G that has order 4.
stat (1.3)

(c) $[4](\S 3.2 \& 4.1)$ Draw the subgroup lattice for G.

Sund all the sbognup (t1)
levels/placemut (41) truial dononproper slojpe(t)

7. [8] Choose ONE of the following theorems to prove. Clearly identify which of the two you are proving and what work you want to be considered for credit.
No, doing both questions will not earn you extra credit.
Theorem 1. Let $\phi: G_{1} \rightarrow G_{2}$ be a function between two groups that satisfies the homomorphic property. The kernel of ϕ is defined:

$$
K_{\phi}=\left\{g \in G_{1} \mid \phi(g)=e_{2}\right\}
$$

where e_{1} and e_{2} are the identities of G_{1} and G_{2} respectively. Prove that $K_{\phi}=\left\{e_{1}\right\}$ if and only if ϕ is one-to-one.

Theorem 2. Let G be a group with identity element e. If $x^{2}=e$ for all $x \in G$, then G is abelian.
Pout of Thy 1: We show each direction seperately.
\Rightarrow Assume $K_{\phi}=\left\{e_{1}\right\}$, we want to show ϕ is one-to-one. Let $x, y \in G_{1}$ such that $\phi(x)=\phi(y)$. To shan ϕ is ore-di-are we mill show that $x=y$.
Since $\phi(x)=\phi(y), \phi$ has the homomurphicpoupety, and that $\&$ preserves inverses,

$$
\phi(x) \phi(y)^{-}=\phi(j) \phi(y)^{-1} \text { or } \phi\left(x y^{-1}\right)=e_{2}
$$

Thus $x y^{-1} \in K_{\text {er }}$
Since $K_{\phi}=\left\{e_{1}\right\}$ we know $x y^{-1}=e_{1}$ thus $x=y$.
\& Assume ϕ is one-to-one, we will show $\operatorname{Ker}_{\phi}=\left\{e_{1}\right\}$.
Note the homomorphic property $\Rightarrow e_{1} \in$ Kero, this we need only show e_{1} is the only elementin var ϕ.
let $x \in \operatorname{Ker}_{\phi}$, then $\phi(x)=e_{2} \Rightarrow \phi(x)=\phi\left(e_{1}\right)$. Since ϕ is one-to-ore, $x=e_{1}$. Thus $\operatorname{Ver}_{\phi}=\left\{e_{1}\right\}$
Pf of Thy 2: We assume $\forall x \in G$, thee $x^{2}=e$ and will show G isabelion. That is, we will show \forall g,heG that ghing.
Consider $(\mathrm{g} h)^{2}$. Note $g h \in\left(7\right.$, so our assumption $\Rightarrow(g h)^{2}=e$.
Thus $g h g h=0$.
Apply h^{-1} on the right of each side to obtain $g h g=h$. Apply g_{2}^{-1} on the right of each side to jotain $\mathrm{gh}_{\mathrm{h}}=h^{-1} \mathrm{~g}^{-1}$. $\mathrm{h}^{-1}=h$. since $h^{2}=e$, we know $h^{-1}=h$. Simirly $y^{-1}=g$. Since $h^{2}=e$, we crow h cen be simplified to $g h=h g$ which was
This equator whet we waxed.

This section is to be taken home, completed, and turned in through Canvas by 10:10 Thursday Dec 17 th . There is no time limit and you do not need to type up your solutions to get full marks although the answers should use correct symbols and be well edited.

You may discuss this problem with anyone else from the class and use the class resources posted on Canvas. You may not consult anyone or any resource that is not affiliated with the class such as tutors, websites, or other textbooks. Please follow these rules, I am trusting you to be ethical.

1. Clearly define a set S along with appropriate binary operators) that satisfy the following. Briefly justify how each condition is met.

- [1] The set S has more than 5 elements,
- [1] forms a non-Abelian group ${ }^{\circ}$ with a binary operator (we will denote with +),
- [1] has at least one subgroup of order $\frac{1}{2}|S|$.

2. Clearly define a set T along with appropriate binary operator (s) that satisfy the following. Briefly justify how each condition is met.

- [1] The set T has more than 5 elements,
- [1] forms a ring with a binary operators (we will denote them with + and ${ }^{*}$), and
- [1] there exist non-zero elements s and r in S such that $r * s=0$.

3. Consider Dr. Vanderpool's proof written for the theorem below.

- [2] Identify an logical rrors. (There is more than one!!!)
- [2] Provide concrete suggestions for how the proof can be improved.

Theorem 1. Let G and H be groups and let $\phi: G \rightarrow H$ be a homomorphism, then $\operatorname{ker}(\phi)$ is a subgroup of G. shad be in $G+5$
Proof. We will use the Two-Step Theorem (2.6). That is, we will thus verify if $h \in H$ then $h^{-1} \in H$ and that H is closed. need to also check nonempty
First begin with h. Since G is a group, we know that inverses exist, thus we have g^{-1} such that $h g^{-1}=e$. We thus have inverses. Need inversedeerist in Kor $\phi+5$ $a b \in \operatorname{ker}(\phi)$. Note that $\phi(a)=0$ and $\phi(b)=0$ because $a, b \in \operatorname{ker}(\phi)$ and by definition of kernel. Since ϕ is a homon/orphism we can perform the following confutation:

$$
\begin{aligned}
& \phi(a b)=\phi(a) \phi(b)=e e=e \quad \text { (} \\
& \text { \& call identity } O \text { ben then }) \text { Keep notchun } \\
& \text { consistent? }
\end{aligned}
$$

Thus $a b \in \operatorname{ker}(\phi)$ which is what we wanted to show.

