Show all your work. Reasonable supporting work must be shown to earn credit.

- 1. [8] Let A and B be points with coordinates a and b respectively. Let l and m be lines and ϕ a fold. Determine if the following make sense/could be true and be sure to justify your answer:
 - (a) A < B
 - (b) l(A) = B
 - (c) $\phi(A) \in l$
 - (d) $\phi = A$
- 2. Use the figure on the right to answer the following.
 - (a) [1] Identify a transversal line.
 - (b) [2] Identify a pair of angles in the figure that are non-alternating interior angles.
 - (c) [2] Give a condition on the angles that will guarantee two of the lines shown are parallel.

- 3. Fold a line and use a ruler to mark points $A,\,B,\,C,$ and D with coordinates 0, 1, 3 and 4 units respectively.
 - (a) [3] (Practice 4.12) Determine if there exists a fold ϕ such that $\phi(A) = D$ and $\phi(B) = C$. If ϕ exists, define it clearly. If ϕ does not exist, explain why not.

(b) [3] Determine if there exists a fold θ such that $\theta(A) = B$ and $\theta(B) = C$. If θ exists, define it clearly. If θ does not exist, explain why not.

(c) [4] (2D congruence Activity #4) Determine if there exists an isometry τ such that \overline{AB} is translated to \overline{CD} . If τ exists, define it clearly. If τ does not exist, explain why not.

(d) [4] (HW5 5.3) For each fold or isometry above that exists, find the inverse. That is, if ϕ exists, find ϕ^{-1} ; if θ exists, find θ^{-1} ; and if τ exists, find τ^{-1} .

4. [5] (Suggested 6.29) Below are definitions for a few other special quadrilaterals. Explain the relation between them.

Definition 1. A quadrilateral is convex provided that both diagonals are contained in the interior of their respective angles. An isosceles trapezoid is a trapezoid whose legs are congruent. A quadrilateral ABCD is a dart provided that AB = BC and CD = AD. A convex dart is called a kite

- 5. (2DInteresting Activity) Let us redefine "point" to mean what you would usually call a line through the origin in \mathbb{R}^3 .
 - (a) [2] How would "lines" be defined in this space?
 - (b) [3] Do parallel lines in this geometry satisfy the parallel postulate? Recall the parallel postulate: If two parallel lines are cut by a transversal, then alternate interior angles are congruent.

6. [4] (HW5 5.15) Consider the conjecture below. If it is true, provide a proof, if it is false, provide a counter example.

Conjecture 1. Given four distinct points A, B, C, and D and an isometry σ such that $\sigma(B) = B$, $\sigma(C) = C$ and $\sigma(D) = D$, than $\sigma(A) = A$.

7. [2] (5/7 Lecture) Identify a geometry that has the sum of angles in a triangle adding up to more than π radians.

8. [5] (HW4 #4.59) Let A, B, and C be points, and let ϕ a fold such that $\phi(A) = C$, $\phi(C) = B$ and $\phi(B) = A$. Prove that A = C.

9. [2] What concept did you study well and not see on the exam?