Show all your work. Reasonable supporting work must be shown to earn credit.

1. [8] Let A and B be points with coordinates a and b respectively. Let l and m be lines and ϕ a fold. Determine if the following make sense/could be true and be sure to justify your answer:
(a) $A<B$
(b) $l(A)=B$
(c) $\phi(A) \in l$
(d) $\phi=A$
2. Use the figure on the right to answer the following.
(a) [1] Identify a transversal line.
(b) [2] Identify a pair of angles in the figure that are non-alternating interior angles.
(c) [2] Give a condition on the angles that will guarantee two of the lines shown are parallel.

3. Fold a line and use a ruler to mark points A, B, C, and D with coordinates $0,1,3$ and 4 units respectively.
(a) [3] (Practice 4.12) Determine if there exists a fold ϕ such that $\phi(A)=D$ and $\phi(B)=C$. If ϕ exists, define it clearly. If ϕ does not exist, explain why not.
(b) [3] Determine if there exists a fold θ such that $\theta(A)=B$ and $\theta(B)=C$. If θ exists, define it clearly. If θ does not exist, explain why not.
(c) [4] (2D congruence Activity \#4) Determine if there exists an isometry τ such that $\overline{A B}$ is translated to $\overline{C D}$. If τ exists, define it clearly. If τ does not exist, explain why not.
(d) [4] (HW5 5.3) For each fold or isometry above that exists, find the inverse. That is, if ϕ exists, find ϕ^{-1}; if θ exists, find θ^{-1}; and if τ exists, find τ^{-1}.
4. [5] (Suggested 6.29) Below are definitions for a few other special quadrilaterals. Explain the relation between them.

Definition 1. A quadrilateral is convex provided that both diagonals are contained in the interior of their respective angles. An isosceles trapezoid is a trapezoid whose legs are congruent. A quadrilateral $A B C D$ is a dart provided that $A B=B C$ and $C D=A D$. A convex dart is called a kite
5. (2DInteresting Activity) Let us redefine "point" to mean what you would usually call a line through the origin in \mathbb{R}^{3}.
(a) [2] How would "lines" be defined in this space?
(b) [3] Do parallel lines in this geometry satisfy the parallel postulate? Recall the parallel postulate: If two parallel lines are cut by a transversal, then alternate interior angles are congruent.
6. [4] (HW5 5.15) Consider the conjecture below. If it is true, provide a proof, if it is false, provide a counter example.

Conjecture 1. Given four distinct points A, B, C, and D and an isometry σ such that $\sigma(B)=B, \sigma(C)=C$ and $\sigma(D)=D$, than $\sigma(A)=A$.
7. [2] (5/7 Lecture) Identify a geometry that has the sum of angles in a triangle adding up to more than π radians.
8. [5] (HW4 \#4.59) Let A, B, and C be points, and let ϕ a fold such that $\phi(A)=C$, $\phi(C)=B$ and $\phi(B)=A$. Prove that $A=C$.
9. [2] What concept did you study well and not see on the exam?

