Topology & Maps

While working in a group make sure you:

- Expect to make mistakes but be sure to reflect/learn from them!
- Are civil and are aware of your impact on others.
- Assume and engage with the strongest argument while assuming best intent.

Definition 0.1. Let X be a set. A topology on X is a collection sets, τ (which is a subset of the powerset of X) that define the open sets of X. The collection τ satisfies:

1.
$$X \in \tau$$
 and $\emptyset \in \tau$,

2. if $U_i \in \tau$ for all *i* in some index set *A*, then $\left(\bigcup_{i \in A} U_i\right) \in \tau$, and

3. if
$$U_i \in \tau$$
 for all $i \in A$, and $|A| < \infty$, then $\left(\bigcap_{i \in A} U_i\right) \in \tau$.

1. Consider the following X and τ . Determine if they define a topology.

(a) Let
$$X = \{v_1, v_2, v_3\}$$
 and $\tau_0 = \{\{v_1, v_2, v_3\}, \emptyset\}$

(b) Let
$$X = \{v_1, v_2, v_3\}$$
 and $\tau_1 = \{\{v_1, v_2, v_3\}, \{v_1\}, \{v_1, v_2\}, \emptyset\}$

(c) Let
$$X = \{v_1, v_2, v_3\}$$
 and $\tau_2 = \{\{v_1, v_2, v_3\}, \{v_1\}, \{v_2\}, \emptyset\}$

2. Create a topology on the set $X = \{v_1, v_2, v_3\}$ so that we can 'separate' v_1 from v_2 . That is, we can find two open sets U_1 and U_2 so that $v_1 \in U_1, v_2 \in U_2$ but $U_1 \cap U_2 = \emptyset$. **Definition 0.2.** Let X and Y be topological spaces. A function $f : X \to Y$ is *continuous* if for every open set $U \subseteq Y$, the set $f^{-1}(U) \subseteq X$ is open. We also call continuous functions *maps*.

- 3. Let $X = \{v_1, v_2, v_3\}$ and $f : X \to X$ where $f(v_i) = v_i$ for $i \in \{1, 2, 3\}$. Does f define a continuous map if:
 - (a) the domain of f has topology τ_0 and the range has topology τ_1 ?

(b) the domain of f has topology τ_1 and the range has topology τ_0 ?

4. Consider the continuous map $f : \mathbb{R} \to \mathbb{R}$ (where \mathbb{R} has the usual topology) defined by f(x) = (x+3)(x+1)(x-2)(x-4). "Approximate" $f^{-1}(\mathcal{B}_{.01}(0))$ by determining how many disjoint open sets there are.