TMATH 342: Example Proof

Theorem 0.1. A set isomorphism is an equivalence relation on the collection of all graphs.
Proof. Recall an equivalence relation \sim must be reflexive, symmetric, and transitive. We thus verify these three properties to show set isomorphisms satisfy the requirements of an equivalence relation on sets.

Let A, B and C be sets. Define the equivalence relation \sim so that $A \sim B$ if there exists a set isomorphism between A and B. Recall the definition of a set isomorphism, that there is a $f: A \rightarrow B$ with a two-sided inverse $g: B \rightarrow A$ so $f \circ g=i d_{B}$ and $g \circ f=i d_{A}$.

We first verify \sim is reflexive. Assume that $A \sim A$, we need to show that $A \sim A$. Note that we can write down the isomorphism here as $f: A \rightarrow A$ by $f(a)=a$ for all $a \in A$. The inverse g, is in fact the same identity map, thus we have a $A \sim A$.

To check \sim is symmetric we assume $A \sim B$ and want to show $B \sim A$. Notice since $A \sim B$ we know there exists and isomorphism $f: A \rightarrow B$ that has a two-sided inverse $g: B \rightarrow A$. Thus we have an isomorphism $g: B \rightarrow A$ with a two-sided inverse $f: A \rightarrow B$ meaning that $B \sim A$.

We last check \sim is transitive. Assume that $A \sim B$ and $B \sim C$. We need to show that $A \sim C$. Since we know $A \sim B$ we have an isomorphism $f: A \rightarrow B$ with a two-sided inverse $g: B \rightarrow A$. So $f \circ g=i d_{B}$ and $g \circ f=i d_{A}$. Since we know that $B \sim C$ we have an isomorphism $j: B \rightarrow C$ with a two-sided inverse $k: C \rightarrow B$. So $j \circ k=i d_{C}$ and $k \circ j=i d_{B}$.

Consider the compositions, or $j \circ f: A \rightarrow C$ and $g \circ k: C \rightarrow A$. Notice since map composition is associative:

$$
\begin{aligned}
& (j \circ f) \circ(g \circ k)=j \circ(f \circ g) \circ k=j \circ i d_{B} \circ k=j \circ k=i d_{C} \\
& (g \circ k) \circ(j \circ f)=g \circ(k \circ j) \circ f=g \circ i d_{B} \circ f=g \circ f=i d_{A}
\end{aligned}
$$

We thus have an isomorphism $j \circ f: A \rightarrow C$ with a two-sided inverse meaning that $A \sim C$ which completes the proof.

