Quiz 3

Show all your work. No credit is given without reasonable supporting work. There are two sides to this quiz.

- 1. [4] TRUE/FALSE: Circle T in each of the following cases if the statement is *always* true and briefly justify your answer. Otherwise, circle F and provide a counterexample or brief reasoning.
 - T F (Suggested §4.1 #37b) Let a, b, and c be integers. If $a \equiv b \pmod{6}$ and $c \equiv d \pmod{6}$, then $a^c \equiv b^d \pmod{12}$.
 - T F (HW5 $\S 9.1 \# 3$) If R is a relation that is not symmetric, then R must be anti-symmetric.

- 2. Let R be a relation on the integers, \mathbb{Z} , defined by aRb if $a \equiv b \pmod 8$.
 - (a) [2] (HW5 $\S4.1~\#4$) Identify a number in the congruence class of 3 that is between -25 and -15.

(b) [4] (HW5 $\S 9.5 \# 2$) Determine if R is an equivalence relation. If not, explain what property R failed. If so, *briefly* justify that R satisfies the necessary properties.

3. [4] Define a relation T that is anti-symmetric, but not symmetric or reflexive.

- 4. (Suggested §9.1 #3) Consider the relation S on the set $A=\{1,2,3,4\}$ defined by $S=\{(1,1),(1,2),(1,3),(2,3),(3,1)\}$
 - (a) [2] Determine if S is anti-symmetric. Justify your answer.

(b) [2] (relations wks #4) Find $S \circ S$ or S^2

(c) [2] (Suggested $\S 9.4~\# 3$) Find the symmetric closure of S.