FINAL

TCSS 321

Fall 2012

1. [6] TRUE/FALSE: Circle T in each of the following cases if the statement is always true and briefly justify your answer. Otherwise, circle F and provide a counterexample or brief reasoning.

If A and B are sets then $A \setminus B = A \cap \overline{B}$

T (F) If a|(bc) where a, b, c are integers greater than zero, then a|b or a|c.

T (F) A relation on a set cannot be both symmetric and antisymmetric.

Show your work for the following problems. The correct answer with no supporting work will receive NO credit. We use the logical symbols from the textbook unless otherwise specified.

2. (Quiz1 #3) Consider the following statement: "There is a girl who eats curds and whey."

(a)식계 Express the statement above using predicates, quantifiers, and logical connectives. Be sure to define any terms your create.

Lot C(x) be "x eats wids"

W(x) be "x eats whey"

(+.5) { Domain of X is girls.

(b) [2] Negate part (a) so that no negations are to the left of any quantifiers. Make used Demograsian

7 = x C(x) NW(x) (C(x) NW(x))](1)

3. (proof con't wks #1) Read the following "Theorem". Determine (and justify)

- (a) [2] if the "Theorem" is true
- (b) [4] if the "Proof" is valid.

Theorem 1 Let m, n, and p be integers. If m + n and n + p are even integers, then m + p is an even integer.

Proof 1 Assume that m+n and n+p are even integers. We want to show that m+pis an even integer.

Since m + n is an even integer, there exists integers a and b such that

$$m + n = 2a + 2b.$$

Thus we know that m = 2a and n = 2b.

Since n+p is an even integer and n=2b, we know that there exists and integer c such that

$$n+p=2b+2c.$$

Thus we also know that p = 2c.

Now we can consider m + p which equals 2a + 2c = 2(a + c). Thus m + p is even.

2/ (mp) => mxpiseen

Note which g(t,s)Note which f(t,s)Note which f(t,s)Note which f(t,s)Note which f(t,s)Note which f(t,s)Note which f(t,s)Note which f(t,s)

4. (§2.4 #17) Consider the sequence $\{a_n\}$ where $a_n = 2 \cdot n \cdot a_{n-1}$ where $a_0 = 1$.

(a) [3] Write the first five terms of the sequence.

$$a_0 = 1$$
 $a_1 = 2 \cdot 1 \cdot 1 = 2 + 5$

e sequence.
$$0 = 0 \cdot 3 \cdot 1^{2}$$

$$Q_{n} = 2^{n} \sqrt{2}$$

$$(1.5)$$

 5. Consider the recursive algorithm described below for the next few questions. int RecursiveAlg(n) Data: n: integer where n > 0 if n == 1 then return 1;
else
$\operatorname{return} \ n \cdot \operatorname{RecursvieAlg}(\operatorname{n-1})$ end
Algorithm 1: Recursive Algorithm
(a) [2] (Exam2 #4) Describe what the above algorithm does.
(ebicus 08 3€15)
(b) [3] (recursive wks #5) Use induction to prove the recursively defined program computes what you claimed in part (a).
FD > Base Case: Consider when n=1 Recusive My(1)=1=18 V ED Recusive My
(c) [4] (63.1 #3) Write a program that is not recursive but completes the same com-
(c) [4] (§3.1 #3) Write a program that is <i>not</i> recursive but completes the same computations done above.
Factorial(n) # n: Int and n> 0
onsuer=1 3 intralize 1
Children of 1=1 od 1=1 od 1=
answer = answer · i hours D
cohin ansier. Syle/sense &
(d) [2] ($\S 3.3 \#$) Give a big- Θ estimate for the number of products taken in your algorithm from part (c). Show your reasoning.
n, the de loop does exactly or products

	14 12x	1123 Wal	Joshu
6. [4] (Exam2 #7) Find $112_3 \times 210_3$. Give your answer in decin		112000	enies
294=135+03+1.3+2.32+2.32+0.8	, 10	12203	
7. [4] (§4.3 #31) The product of two integers is $2^4 \cdot 3^5 \cdot 7^4 \cdot 11$ and divisor is $2^4 \cdot 3^2 \cdot 11$. What is the least common multiple of	the two inte	egers? Show	
your reasoning. 100 15 15 24.35.74.11 = 24.33.11 . Lon 100 15 15 27 24.35.74.11 = 24.33.11 . Lon	6) 3(E) 3(E)	D alsero	(H)
elem(a,b) = 33.74 J	5 = 64	927	m 2 8
(1) x = 6 mod 8 (1) x = 2 and 7	8.3.1 M	ad 56	5 mod 7
8. (§4.4 #32) Solve the system of congruences $x = 20$ mod $x = 6$ and $x = 7$. (6.7 + 6) $x = 3$ and $x = 3$. (8. 1) $x = 3$ and $x = 3$. (9. 1) $x = 3$ and $x = 3$. (15) $x = 3$ and $x = 3$.	56	got or m	sh 11
9. [5] Choose ONE of the following and support your conclusion of the two you are answering and what work you want to be	3/ ns. Clearly id	•	
(a) (§5.1 #32) Prove 3 divides $n^3 + 2n$ whenever n is a positive contains a positive contains $n^3 + 2n$ whenever n is a positive contains $n^3 + 2n$ whenever n is a positive contains n and n is a positive contains n in the positive contains n is a positive contains n in the positive n in the positive contains n in t	sitive integer.		
(b) (§5.2 #3) Prove that a postage of n cents, for $n \geq 8$ of 3-cent stamps and 5-cents stamps.		~ -	
3-cent stamps and 5-cents stamps. The well use induction $3 + 3 + 3 = 3$ and $3 + 3 = 3$ The stamps and 5-cents stamps. The stamps are stamps and 5-cents stamps. The stamps are stamps are stamps are stamps.	stong ind	3 tg 2 tg	3 (1)
nduction: Assure 3 [[(n-1)^3+2(n-1)] 3 Induction: As we want to show 3 ((n3+2n)) Jus 36 as	sne Ki	conbehned: swhen Ksi	osingt
Notice (0-1)3+2(n-1)= n3-3n3+5n-2 Durice of Since 3/[(n-1)3+2(n-1)] 3/[n-3+2n-3n^2+3n-3] 2/2/4/5/4/5/5/7/5/4/5/4/5/4/5/4/5/4/5/4/5/4	+1 = (n-2) whassum	1+3. Phon n-2	can
Since 3 [[(n-1)3+2(n-1)] 3 [[n3+2n-3n2+3n-3] 4374 58 542	ups.	38 spends	+
=> 2 1 [03+20] / TEC Thus 0	171= X.3	1+426+31	1 //

