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1. [6] TRUE/FALSE: Circle T in each of the following cases if the statement is always

true and briefly justify your answer. Otherwise, circle F and provide a counterexample
or brief reasoning.

Ve (T) F 1f A and B are sets then A\ B= ANB @
sodd) ¢

T @ If a|(bc) where a, b, c are integers greater than zero, then alb or alc.
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T @ A relation on a set cannot be both symmetric and antisymmetric.
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Show your work forJthe following problenys. The correct answer with

no supporting work will receive NO credit. We use the logical symbols
from the textbook unless otherwise specified.

2. (Quizl #3) Consider the following statement:
“There is a girl who eats curds and whey.”

(a)M Express the statement above using predicates, quantifiers, and logical connec-
tives. Be sure to define any terms your create.
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3. (proof con’t wks #1) Read the following “Theorem”. Determine (and justify)

(a) [2] if the “Theorem” is true
(b) [4] if the “Proof” is valid.

Theorem 1 Let m, n, and p be integers. If m +n and n + p are even integers, then
m+ p s an even integer.

Proof 1 Assume that m+n and n+p are even integers. We want to show that m+p
1S an even integer.

Since m + n is an even integer, there ezists integers a and b such that
m+n = 2a + 2b.
>@us we know that m = 2a and n = 2b.

Since n+p is an even integer and n = 2b, we know that there ezists and integer ¢ such
that

n+p=2b+ 2c.
Thus we also know that p = 2c.

Now we can consider m + p which equals 2a + 2¢c = 2(a +c). Thus m + p is even.

o) Vo & i@ D) A wedd (&
mm-«DA & axg = S cra = 23 e A €7,
&2_ CWANONYO = géxgg @ o dont Laso ek

@ =S m*? Q\A’«QQ ~%a oN 00O O\ o AR

s .D\ Q) 27 tarQsten Syl @

4. (§2.4 #17) Consider the sequence {a,} where a, = 2-n - a,_; where ag = 1.

(a) [3] Write the first five terms of the sequence.
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5. Consider the recursive algorithm described below for the next few questions.

int RecursiveAlg(n)
Data: n: integer where n > 0
if n == 1 then

return 1,
else

return n- RecursvieAlg(n-1)
end

Algorithm 1: Recursive Algorithm

(a) [2] (Exam2 #4) Describe whaé;he above algorithm does. Srecr @
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(b) [3] (recursive wks #5) Use induction to prove the recursively defined program

computes what you claimed in part (a). \\)()\\(_Q_,
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(c) [4] (§3.1 #3) Write a program that is not recursive but completes the same com-
putations done above.
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) [2] (§3.3 #) Give a big-© estimate for the number of products taken in your
algorithm from part (c). Show your reasoning.
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6. [4] (Exam2 #7) Find 1125 x 2103. Give your answer in decima. b‘;s 10. \ {50 @ CoctteS
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7. [4] (§4.3 #31) The product of two integers is 2¢ - 3% - 72~ 11 and their greatest common

divisor is 24. 3%2.11. What is the least common multiple of the two integers? Show
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8. [8] (§4.4 #32) Solve the system of congruences =2 R@@A®P and =P MokP
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9. [5] Choose ONE of the following and support your conclusions. Clearly identify which
of the two you are answering and what work you want to be considered for credit.

(a) (85.1 #32) Prove 3 divides n3 + 2n whenever n is a positive integer

(b) (85.2 #3) Prove that a postage of n cents, for n > 8 can be formed using just
3-cent stamps and 5-cents stamps.

)L o wbockun [ @)/e

B)L v S RSN
Torse Caze | Jok 02\ adne SO —fz AT R ‘st@
O>Jnz 2 e 212 & \D:SVQS
/f\édc)\\w\ M ) \X((\‘\\ SIS 1 /\(\c\>~)d’t~@f\ A‘;&H"Q- \ c;mb&go“"‘)«g ‘)&‘&
Lo etk ReNay ’5\ ((\ ,\2(\’) Sﬁ? ’Q“ LAY 5\94\?‘> SR NIN n,
Kone_ Q\-\\%J(Q((v\\ - \,\?: 2,3 -850 -2
Do 3T ¥ ]
3 \i‘\% rdn -3 &v&} A
=7 3 \ Y(\'£> "gr\’\ v

15 |\]_>\\uz art=z (e-NrS .

QA mdodhon assudpen N7 e

T O A N
‘a%}i 5}LNQS

A )= %58 \-\6%\&-‘«%& V4




4 10. L?'I (functions wks #5) Define a function that is onto/surjective, but not one-to-one.
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11. [6] Choose ONE of the following and support your conclusions. Clearly identify which
of the two you are answering and what work you want to be considered for credit.

(a) (11/14 lecture) Show if a, b, and m are integers such that m > 2 and
a =b mod m, then the ged(b, m) divides the gcd(a.m).

(b) (§9.1 #50) Let R and S be reflexive relations on a set A. Show that R® S is

irreflexive.
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‘/\ 12. [,%‘f (12/5 lecture) Define a set and a relation on that set that is a partial ordering but
not a total orderl
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13. [6] Choose ONE of the following and support your conclusions. Clearly identify which
of the two you are answering and what work you want to be considered for credit.
& (a) (Examl #8) Suppose you are on an island that has two kinds of inhabitants,
Cﬁr knights who always tell the truth, and their opposites, knaves who always lie.
[ore €))

You encounter two people A and B. What are A and B if A says “I am a knave
or B is a knight.” and B says nothing.

\

(Exam2 #6) Clearly describe an algorithm that finds all terms of a finite sequence .
oSS @ of integers that are greater than the sum of all previous terms in the sequence. %}F""G:D
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