4.1 WrittenHW #5 TCSS 321

1. [3] Let a, b, and ¢ be integers, where a # 0. Prove that if a|b and b|c, then alc.

2. [3] Let a, b, and ¢ be positive integers and a # 0. Prove or disprove if a|(bc) then a|B
or alc.

3. [2] Let a and b be integers such that ¢ = 11( mod 19) and b = 3( mod 19). Show
work done by hand or Sage code used to find:

(a) the integer ¢ € [0, 18) such that ¢ = 13a( mod 19)
(b) the integer d € [0, 18) such that 8d = 8b( mod 19)

4. [2] Show work done by hand or Sage code used to find the integer a such that:

(a) a=43( mod 23) and —22<a <0
(b) a = —1( mod 23) and 90 < a < 110.
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1. [3] Recall that congruence modulo 16 is an equivalence relation.

(a) Identify five numbers in the equivalence class of —2 mod 16.
(b) Identify five numbers in the equivalence class of 3 mod 16.

(c) Use set builder notation to describe all the elements in the equivalence class of 3
mod 16.

2. [4] Let R be the relation of logical equivalences on the set of all compound propositions.

(a) Show R is an equivalence relation.

(b) Identify two elements that are in the equivalence class of p — q.
3. [3] Define an equivalence relation on the set of classes offered at UWT.

(a) Justify why your relation is an equivalence relation.

(b) Determine the equivalence classes for your relation.
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1. [3] Determine whether the relation R on the set of all real numbers is reflexive, sym-
metric, antisymmetric, and/or transitive, where (z,y) € R if and only if:

a) t+y=0

b) = =2y

(c)x=1lory=1

(
(

2. [5] Let Rs and Rg be the “congruent modulo 5” and the “congruent modulo 6” relations,

respectively, on the set of integers. That is
Rs ={(a,b)la =b( mod 5)} and Rs = {(a,b)|a = b( mod 6)}. Find:

3. [2] Define a relation on the set A = {0, 1,2,5} that is neither symmetric nor antisym-
metric.
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1. [3] §9.4 #6

2. [3] Find the symmetric closures of the relations with the directed graph shown in
problem 1.

3. [4] Let R be the relation on the set {1,2,3,4,5} containing the ordered pairs (1, 3),
(2,4), (3,1), (3,5), (4,3), (5,1), (5,2), and (5,4). Find the transitive closure or R.



