EXAM 2 TCSS 321 Winter 2013

- 1. [6] TRUE/FALSE: Circle T in each of the following cases if the statement is *always* true and briefly justify your answer. Otherwise, circle F and provide a counterexample or brief reasoning.
 - T F $\{2, -4\} \in \{8.3, -4, 7.2, 4, 2, 0\}.$
 - T F Let A and B be sets, then $A \setminus B = A \cap \overline{B}$.
 - T F Let A, B, C, and D be sets, then $(A \times B) \times (C \times D) = A \times (B \times C) \times D$.

Show your work for the following problems. The correct answer with no supporting work will receive NO credit.

2. [3] (HW3 §2.5 #3) Give an example of two uncountable sets A and B, such that $A \cap B$ is finite.

- 3. (HW4 §2.3 #3) Let $f(x) = \lfloor x \rfloor + \lceil x/2 \rceil$ be a map from \mathbb{R} to \mathbb{R} .
 - (a) [2] Evaluate f(-2).
 - (b) [2] Which of the following is a graph of f? Briefly justify yourself.

4. Each of the following give an exact count of operations taken in a worse case senerio for a certain algorithm. Identify their complexity (big-O for programmers or big- Θ for computer scientists) as you would to a colleague and justify yourself.

(a) [2] (§3.2 #5)
$$\frac{x^2 + 1}{x + 1}$$

(b) [2] (HW4 §3.2 #2) $\sqrt{n} + \log n$

(c) [2] (HW4 §3.2 #3) 1 + 2 + 3 + ... + n

- 5. (§2.4 #17) Consider the sequence $\{a\}$ defined recursively by $a_n = a_{n-1} + 2$ where $a_0 = 3$.
 - (a) [2] Find a_1 and a_2 .
 - (b) [4] Find a (closed form) formula for a_n as a function of n (as opposed to using any terms previous to a_n in the formula).

6. [3] (§2.4 #33) Compute
$$\sum_{i=0}^{2} \left(\sum_{j=0}^{3} (2i+3j) \right)$$
.

7. [6] (matrix wks) Let $M = \begin{bmatrix} a & c \\ 0 & c \\ 0 & 0 \end{bmatrix}$, $N = \begin{bmatrix} 1 & 0 & b \\ 0 & f & a \end{bmatrix}$, and $P = \begin{bmatrix} 1 & 0 \\ 0 & f \\ f & 0 \end{bmatrix}$, where a, b, c, and f are nonzero real numbers. Find the following if possible:

$$M + P$$
 $M^T + P$ NP

8. (matrix wks #6) Consider the algorithm described in pseudocode below for the next three questions.

```
Data: A, B: n \times n matrices where n > 2
for i = 1 to n do
for j = 1 to n do
c_{ij} := 0
if i \le j then
for q := i to j do
c_{ij} := c_{ij} + a_{iq}b_{qj}
end
end
end
return C \ \#C = [c_{ij}]
Algorithm 1: Matrix Algorithm
```

(a) [4] (§3.1 #1) Use Algorithm 1 by hand on $A = \begin{bmatrix} a & b \\ 0 & b \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 3 \\ 0 & 2 \end{bmatrix}$. Clearly indicate your computations for each *i* and *j*.

- (b) [2] Describe what the algorithm is doing as you would to a colleague during lunch.
- (c) [4] (§3.3 #3) Give a big-O estimate for the number of multiplications used in Algorithm 1 as a function of n. Show your reasoning.

- 9. [6] Choose ONE of the following and support your conclusions. Clearly identify which of the two you are answering and what work you want to be considered for credit. Let A and B be sets.
 - (a) (Quiz2 #2) Prove that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$ if and only if $A \subseteq B$.
 - (b) (HW3 #3) Prove if $\mathcal{P}(A) = \mathcal{P}(B)$, then A = B.