## Quiz 4

TRUE/FALSE: Write "True" in each of the following cases if the statement is always true and briefly justify your answer. Otherwise, write"False" and provide brief reasoning.

1. [2] (HW6 $\S 4.1 \# 2)$ Let $a, b, \& c$ be positive integers $\& a \neq 0$. If $a \mid(b c)$ then $a \mid b$ or $a \mid c$.
2. [2] (§9.1 \#3d) The relation on the set $\{1,2,3,4\}$ defined by $\{(1,2),(2,1),(2,3),(3,4)\}$ is antisymmetric.
3. [2] (Relations Wks \#2) The relation on the set $\{1,2,3,4\}$ defined by $\{(a, b) \mid \max (a, b)=b\}$ is reflexive.
4. [3] (§9.5 \#13) The relation on the set of all bit strings of length 3 or more defined by $\{(a, b) \mid$ the 1st and 3rd bits agree $\}$ is an equivalence relation.

Free Response: Show your work! No credit is given without supporting work.
5. Let $R_{12}$ be a relation on $\mathbb{Z}$ defined as $\{(a, b) \mid a \equiv b \bmod 12\}$
(a) $[3]$ (HW6 $\S 9.5 \# 1)$ Identify three numbers in the equivalency class of 4.
(b) $[2](\operatorname{Mod} \mathrm{Wks})$ Compute $4 \bmod 12+11 \bmod 12$
(c) $[3]($ HW6 $\S 9.1 \# 2)$ Identify three numbers in the set $R_{12} \circ R_{12}$.
(d) [3] Prove the equivalency class of $4 \bmod 12$ intersected with the equivalency class of $0 \bmod 12$ is empty.

