Quiz 3

TRUE/FALSE: Write "True" in each of the following cases if the statement is always true and briefly justify your answer. Otherwise, write"False" and provide brief reasoning.

1. [2] (HW4 §3.2 \#2) The function $5,000,000 n^{2}$ is $\mathrm{O}\left(2^{n}\right)$.
2. [2] (HW4 $\S 3.2 \# 2)$ The function 2^{n} is $\mathrm{O}\left(5,000,000 n^{2}\right)$.

Free Response: Show your work! No credit is given without supporting work.
3. Define the map $f: \mathbb{R} \rightarrow \mathbb{Z}$ by $f(x)=3\lfloor x+1\rfloor$.
(a) [2] (functions wks \#2) Find $f\left(\frac{3}{2}\right)$
(b) [2] (functions wks \#3) Find $f(f(1.5))$.
4. [3] (§3.3 \#3) Give a big-O estimate for the number of additions and multiplication used in the below segment of an algorithm. Justify your answer.
$t:=0$
for $i=1$ to 3 do
for $j=1$ to 4 do $t:=t+i j$ end
end
return t
Algorithm 1: Adding Multiples
5. [5] Write an algorithm that is big-O of n^{3}.
6. Recall that Binary Search is $\mathrm{O}(\log n)$ and that Bubble Sort is $\mathrm{O}\left(n^{2}\right)$.
(a) [2] (HW4 §3.3 \#4) How does the number of comparisons change in Bubble Sort when the inputs change from n to n^{2}.
(b) $[2](\S 3.3 \# 21)$ How does the number of comparisons change in Binary Search when the inputs change from n to n^{2}.

