Quiz 2

TRUE/FALSE: Write "True" in each of the following cases if the statement is *always* true and briefly justify your answer. Otherwise, write "False" and provide a counterexample or brief reasoning. The logic symbols make use of the textbook notation.

1. [2] (§2.2 #19) Given sets A and B, $A \setminus B = A \cap \overline{B}$

2. [2] (§2.2 #19) Given sets A and B, $(A \cap B) \cup (A \cap \overline{B}) = A$

3. [2] (HW3 §2.1 #2) $\{1, 2\} \in \{1, 2, 3\}$.

4. [2] (HW3 §2.1 #2) $\{1, 2\} \subset \{1, 2, 3\}$.

Free Response: Show your work! No credit is given without supporting work.

- 5. [4] (HW3 §2.5 #3) Find an example of two uncountable sets A and B such that
 (a) A ∩ B is finite.
 - (b) $A \cap B$ is countably infinite.
- 6. [4] (HW3 §3.1 #3) A palindrome is a string that reads the same forwards as it does backwards. Create and describe an algorithm for detecting if a string can be reordered into a palindrome.

7. [4] (§2.6 #37) Justify why the set of all computer programs in a particular programming language is countable.