Quiz 2

TRUE/FALSE: Write "True" in each of the following cases if the statement is always true and briefly justify your answer. Otherwise, write"False" and provide a counterexample or brief reasoning. The logic symbols make use of the textbook notation.

1. [2] (§2.2 \#19) Given sets A and $B, A \backslash B=A \cap \bar{B}$
2. [2] $(\S 2.2 \# 19)$ Given sets A and $B,(A \cap B) \cup(A \cap \bar{B})=A$
3. [2] (HW3 §2.1 \#2) $\{1,2\} \in\{1,2,3\}$.
4. [2] $(H W 3$ §2.1 \#2) $\{1,2\} \subset\{1,2,3\}$.

Free Response: Show your work! No credit is given without supporting work.
5. [4] (HW3 §2.5 \#3) Find an example of two uncountable sets A and B such that
(a) $A \cap B$ is finite.
(b) $A \cap B$ is countably infinite.
6. [4] (HW3 §3.1 \#3) A palindrome is a string that reads the same forwards as it does backwards. Create and describe an algorithm for detecting if a string can be reordered into a palindrome.
7. [4] (§2.6 \#37) Justify why the set of all computer programs in a particular programming language is countable.

