1. [2] Given that $a_{n}=7+4^{n}$, find a_{0} and a_{1}.
2. A man became employed in 2009 with a starting pay of $\$ 50,000$. Every year he receives a raise of $\$ 1,000$ plus 5% of the salary from the previous year.
(a) [2] Find a recurrence relation for the salary of this man n years after 2009.
(b) [3] Find an explicit formula for the salary of the man n years after 2009.
3. [3] Compute $\sum_{i=1}^{3} \sum_{j=1}^{2}(i-j)$
4. [3] Find a matrix A such that: $\left[\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right] A=\left[\begin{array}{ll}3 & 0 \\ 1 & 2\end{array}\right]$
5. [3] If A and B are both $m \times n$ matrices, prove that $A+B=B+A$.
6. [1] A $n \times n$ matrix is upper triangular if $x_{i j}=0$ whenever $i>j$. Create an example of an upper triangular matrix.
7. [3] Construct an algorithm that takes two upper triangular matrices and computes their product more efficiently than the generic definition of matrix multiplication. Give a big O estimate for the number of multiplications (between real numbers) that your algorithm uses.
