1. [2] Determine whether f is a function from \mathbb{Z} to \mathbb{R} and justify your answer.
(a) $f(n)=\sqrt{n^{2}+1}$
(b) $f(n)=\frac{1}{n^{2}-9}$
2. [2] Create a function that is not the identity function, from \mathbb{Z} to \mathbb{Z} that has an inverse.
3. Let $f(x)=\lfloor x\rfloor+\lceil x / 3\rceil$ be a map from \mathbb{R} to \mathbb{R}.
(a) [1] Evaluate $f(5)$.
(b) [1] Evaluate $f(-13)$.
(c) [2] Identify the image/range of f.
(d) [2] Graph f. Make sure to clearly indicate any endpoints.
4. [2] Show that x^{3} is $O\left(x^{5}\right)$ but x^{5} is not $O\left(x^{3}\right)$.
5. [3] Arrange the functions, $\sqrt{n}, 2^{n}, n \log n, 1000 \log n$, and $\frac{n^{2}}{10000}$ in a list so that each function is bit- O of the next function. Justify the ordering.
6. [3] Let n be a positive integer, is $1^{3}+2^{3}+3^{3}+4^{3}+\ldots+n^{3} \in O\left(n^{3}\right) ? O\left(n^{4}\right)$?
7. [2] Suppose that you have two different algorithms for solving a problem. To solve problem of size n, the first algorithms uses exactly $n^{2} 2^{n}$ operations and the second algorithm uses exactly n ! operations. As n grows, which algorithm uses fewer operations? Justify yourself.
8. [3] Give a big- θ for the number of additions used in the below segment of an algorithm. note: in industry this is normally called big-O....
```
t:= 0
for }i=1\mathrm{ to }n\mathrm{ do
        for j=1 to n do
        t:=t+i+j
    end
end
return C #C = [cij]
```


Algorithm 1: Matrix Algorithm

2. [3] Consider the following algorithm for evaluating polynomials at the value c. Work through each step of the algorithm with the polynomial $3 x^{2}+x+1$ at $x=2$ showing the values assigned at each assignment step.

Data: $c, a_{0}, a_{1}, \ldots . a_{n}$: real numbers

$$
y:=a_{n}
$$

for $i=1$ to n do $y:=y * c+a_{n-i}$
end
return $y\left\{y=a_{n} c^{n}+\ldots+a_{1} c+a_{0}\right\}$
Algorithm 2: Matrix Algorithm
3. [2] Consider the algorithm described in the above question. Exactly how many multiplications and additions are used by this algorithm to evaluate a polynomial of degree n at $x=c$? (Do not count additions used to increment the loop variable.)
4. [2] How does the number of comparisons change from n to $2 n$ with bubble sort?

