Sets & Stuff

Let the sets A, Z, and B be the sets defined in class and use the logic notation from the textbook (\lor, \land, \neg) .

Definition 1. The cardinality of a finite set X is equal to the number of elements in the set X and is denoted as |X|.

- 1. Find each of the following:
 - (a) the number of elements in the set A.
 - (b) |Z|
 - (c) the cardinality of the set B.

Definition 2. Let X and Y be sets. The Cartesian product of X and Y, denoted by $X \times Y$, is the set of all ordered pairs [x, y] where $x \in X$ and $y \in Y$.

- 2. Write out 2 elements from $A \times B$ and 2 elements from $B \times A$.
- 3. Find $|A \times B|$.

Definition 3. Given a set X, the power set of X is the set of all subsets of the set X and is denoted by $\mathcal{P}(X)$

- 4. Write down $\mathcal{P}(A)$.
- 5. Find $|\mathcal{P}(Z)|$.
- 6. Consider the set $C = \{x^2 | x \in \mathbb{Z} \land 0 \le x^2 \le 10000\}$
 - (a) Enter the set C into sage.
 - (b) Use sage to find the cardinality of C. (Don't forget about the tab completion!)
 - (c) Find $|\mathcal{P}(C)|$.

7. Consider the sets S and T within the Universal set U. For each of the following, identify the regions on the Venn diagram and determine if any of them are describing the same set.

 $\mathbf{2}$