Relations

R_1 is a relation on \mathbb{Z}	R_2 is a relation from $A = \{1, 2, 3, 4\}$
defined by	to $B = \{1, 2, 3\}$ defined by
$\{(a,b) a+b \le 3\}$	$\{(a,b) \gcd(a,b)=1\}$
R_3 is a relation on \mathbb{Z}	R_4 is a relation on \mathbb{R}
defined by	defined by
$\{(a,b) x=y^2\}$	$\{(a,b) a\cdot b \ge 0\}$

1. For each of the relations R_i defined above, list five ordered pairs that are in the relation. R_1 :

 R_2 :

 R_3 :

 R_4 :

2. For each of the relations R_i above, determine if R_i has the properties listed (if applicable). If the relation does not have the indicated property, identify an ordered pair (or set of ordered pairs) that exhibits the failure.

R_1	R_2	R_3	R_4
	1	I	
reflexive			
symmetric			
antisymmetric			
transitive			

3. Find an example of a relation on a set that is both symmetric and antisymmetric.

- 4. Let R be the relation on the set $\{1, 2, 3, 4, 5\}$ containing the ordered pairs: (1,1), (1,2), (1,3), (2,3), (2,4), (3,1), (3,4), (3,5), (4,2), (4,5), (5,1), (5,2), and (5,4).
 - (a) Find $R \circ R$

(b) Find R^2

(c) Find R^3