Recursive Definitions

Recall that sequences can be defined by writing a few terms, writing a closed formula, or *recursively*. That is, the first term(s) are defined explicitly and the n^{th} term is defined by using only term(s) before it.

1. Let f(0) = 1 and f(n) = -2f(n-1) for $n \ge 1$.

```
(a) Find f(4).
```

- (b) Find a closed formula for f(n).
- 2. Give a recursive definition for the sequence $\{a_n\}_{n\geq 1}$, where $a_n = 4n 2$.

Definition 1. Recursive definitions involve two parts (and can be applied to functions, sets, structures, and more):

- (a) Bases Step: a specific and initial definition
- (b) Recursive Step: rule forming new function/set/rule dependent on facts preceding it.
- 3. The set of *full binary (and rooted) trees*, where a rooted tree consists of a set of vertices containing a distinguished vertex called the *root*, and eyes connecting these vertices, can be defined recursively by:

Basis Step: A single vertex r is a full binary (and rooted) tree.

Recursive Step: Suppose that T_1 and T_2 are disjoint full binary (and rooted) trees, there is a full binary (and rooted) tree, denoted $T_1 \cdot T_2$, consisting for a root r together with edges connecting r to the root of the left subtree T_1 and r to the root of the right subtree T_2 .

- (a) Draw the basis step tree.
- (b) Draw the family of trees one step "above" the basis step tree.
- (c) Draw the family of trees two steps "above" the basis step tree.

4. Use induction to prove if T is a full binary tree, then $n(T) \leq 2^{h(T)+1} - 1$.

```
int factorial (int n)

if n == 1 then

return 1;

end

else

return n * factorial(n-1)

end
```

Algorithm 1: Sort Algorithm

5. Use induction to prove the above recursively defined program computes the factorial of n.