Somemore Logic

with quantifiers!

Let p, q, and r be propositions for the entirety of this worksheet (front & back).

- 1. Below is all the ways I could think to combing (using textbook notation) \neg , \wedge , and \vee .
 - (a) Find the truth tables for each.

(i)
$$\neg (p \land q)$$

(ii)
$$(\neg p) \land q$$

(iii)
$$p \wedge (\neg q)$$

(iii)
$$p \wedge (\neg q)$$
 (iv) $(\neg p) \wedge (\neg q)$

(v)
$$\neg (p \lor q)$$

(vi)
$$(\neg p) \lor q$$

(vii)
$$p \vee (\neg q)$$

$$(v) \neg (p \lor q) \qquad \qquad (vi) (\neg p) \lor q \qquad \qquad (vii) \ p \lor (\neg q) \qquad \qquad (viii) \ (\neg p) \lor (\neg q)$$

- (b) Do any of the above truth tables look the same (i.e. are there any logical equivalences)? Which ones?
- 2. Perform the same investigation on the following (using textbook notation) and try to identify another logical equivalence.

(i)
$$p \lor (q \land r)$$

(ii)
$$p \wedge (q \vee r)$$

(iii)
$$(p \lor q) \land (p \lor r)$$

(i)
$$p \lor (q \land r)$$
 (ii) $p \land (q \lor r)$ (iii) $(p \lor q) \land (p \lor r)$ (iv) $(p \land q) \lor (p \land r)$

Let x be a real number in the following.

- 3. Translate the following symbolic propositions into English sentences and determine the truth value.
 - (a) $\forall x, x + 1 > x$.
 - (b) $\exists x, x + 1 > x$.
 - (c) $\forall x < 0, x^2 > 0$.
 - (d) $\forall x, (x < 0 \to x^2 > 0)$
 - (e) $\exists x > 0, x^2 = 2$.
 - (f) $\exists x, (x > 0 \land x^2 = 2).$
 - (g) $\neg \forall x, x^2 > x$.
 - (h) $\exists x, \neg(x^2 > x).$
- 4. Do any of the above statements seem logically equivalent? Which ones?

Verify your answers by examining Examples 8,10,17, &21 of §1.4.